首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthryl-labeled fluorescent probes closely mimicking phosphatidylcholine and sphingomyelin were applied to study the state of these phospholipids in the rabbit erythrocyte membrane. At normal cholesterol levels both probes exhibited higher fluorescence polarization values in the membranes than in phospholipid vesicles of similar lipid composition, indicating a decreased fluidity of the probe environment in erythrocyte ghosts. In ghosts prepared from normal erythrocytes no evidence of lateral separation of phosphatidylcholine and sphingomyelin was found. At higher cholesterol levels, however, these lipids appear to segregate. Probably the effect of cholesterol on the erythrocyte membrane lipids involves lipid-protein interactions. At physiological concentrations, prostaglandin E1 only weakly affects the state of phosphatidylcholine and sphingomyelin in erythrocyte membranes. Cholesterol enrichment amplifies the effect of prostaglandin E1. Although the prostaglandin E1-induced changes depended much upon whether the ghosts were enriched with cholesterol in vitro or in vivo, with both types of ghosts effects of prostaglandin E1 were seen at extremely low effector concentrations that may have presented a few molecules of prostaglandin per ghost. The structural and functional significance of these findings is discussed.  相似文献   

2.
Hemolysins are cell-damaging protein toxins produced by pathogenic bacteria, which are usually released into the extracellular medium. Escherichia coli enterohemolysin is an intracellular toxin produced during the log phase of growth, with a maximal intracellular accumulation in the late log phase. In the present study, we have employed electron microscopy and SDS-PAGE to assess the effects of enterohemolysin on erythocyte membranes from different species. The erythrocyte cell damage began immediately after exposure to enterohemolysin with chemically detectable changes in cell membrane permeability, and the formation of surface lesions which increased rapidly in size. This process resulted in complete cell destruction. Ring-shaped structures with a diameter of 10nm were observed by electron microscopy after treatment of horse erythrocyte membranes with enterohemolysin. The ring structures were found clustered and irregularly distributed on the surface of the membranes. Following incubation of the toxin with horse erythrocyte ghosts and detergent-solubilization, the enterohemolysin was isolated from the cytoplasm in its membrane-bound form by sucrose density gradient. SDS-PAGE and silver staining of deoxycholate-solubilized target membranes revealed heterogeneous forms of the toxin. By using SDS-PAGE and gel filtration, the molecular weight of the toxin was estimated to be 35 kDa. With respect to species specificity, horse erythrocytes showed the highest sensitivity to the enterohemolysin, followed by human and guinea pig erythrocytes. The hemolytic sensitivity correlated with the toxin binding capacity of erythrocyte membranes of different animal species. The degree of hemolysis was unaffected by temperature in the range of 4 degrees C-37 degrees C and was optimal at pH 9.0. In contrast to pore-forming cytolysins, the hemolytic activity of enterohemolysin was enhanced continuously in the presence of increasing concentrations of dextran 4 and dextran 8 within the range of 5 to 30 mM. Trypsin sensitivity of membrane-bound enterohemolysin indicates that the cell surface is the most likely target site for this toxin. Additionally, the fact that proteinase and phosphatase inhibitors failed to inhibit lysis suggests that enterohemolysin alters and disrupts cell membranes by a detergent-like mechanism.  相似文献   

3.
Aqueous extracts of the edible mushroom, Pleurotus ostreatus, contain a substance that is lytic in vitro for mammalian erythrocytes. The hemolytic agent, pleurotolysin, was purified to homogeneity and found to be a protein lacking seven of the amino acids commonly found in proteins. In the presence of sodium dodecyl sulfate it exists a monomers of molecular weight 12 050 whereas under non-dissociating conditions it appears to exist as dimers. It is isoelectric at about pH 6.4. The sensitivity of erythrocytes from different animals correlates with sphingomyelin content of the erythrocyte membranes. Sheep erythrocyte membranes inhibit pleurotolysin-induced hemolysis and the inhibition is time and temperature dependent. Ability of membranes to inhibit hemolysis is abolished by prior treatment of membranes with specific phospholipases. Pleurotolysin-induced hemolysis is inhibited by liposomes prepared from cholesterol, dicetyl phosphate and sphingomyelin derived from sheep erythrocytes whereas a variety of other lipid preparations fail to inhibit. It is concluded that sphingomyelin plays a key role in the hemolytic reaction.  相似文献   

4.
Adenylate cyclase activity associated to wild type Neurospora membranes is highly dependent on Mn2+ and insensitive to fluoride, guanyl nucleotides, and cholera toxin. These membranes are able to interact with components of detergent extracts from turkey erythrocyte ghosts. The reconstituted cyclase system is catalytically active in the presence of Mg2+ and it is activated by guanyl-5'-yl imidodiphosphate plus isoproterenol and fluoride. When detergent extracts were prepared from avian erythrocyte membranes treated with cholera toxin, the reconstituted system was stimulated by guanyl-5'-yl imidodiphosphate in the absence of isoproterenol and cyclase activities were higher than those observed with extracts from membranes not treated with the toxin. Dose-response curves for isoproterenol and fluoride in the reconstituted system were similar to those reported for avian erythrocyte and liver membranes, respectively.  相似文献   

5.
The following evidence supports the concept that cholesterol in membranes is the receptor and target site for the cytolytic action of cereolysin. (i) Of the various phospholipids, gangliosides, and steroids tested, only cholesterol and closely related sterols (sitosterol and dihydrocholesterol) significantly inhibited the hemolytic activity of cereolysin. (ii) Acholeplasma laidlawii cells grown in the presence of cholesterol inhibited the hemolytic activity of cereolysin, but A. laidlawii grown in the absence of cholesterol did not. (iii) Incubation of A. laidlawii cells, grown in the absence of cholesterol, with a cholesterol-Tween 80 mixture reestablished the ability of the cells to bind cereolysin. (iv) Treatment of erythrocyte membranes and A. laidlawii cells containing cholesterol with cholesterol oxidase (EC 1.1.3.6, Brevibacterium species) abolished the ability of these membranes to bind cereolysin and inhibit the hemolytic activity of the toxin, (v) Cereolysin could bind to and alter the permeability of both right-side-out ghosts and inside-out vesicles prepared from human erythrocytes, in agreement with other data that cholesterol is present on both sides of the erythrocyte membrane, (vi) Cereolysin caused the release of [14C]glucose from liposomes containing cholesterol, and this release was dependent on the amount of cholesterol in the liposomes.  相似文献   

6.
Sheep erythrocyte ghosts released water-soluble organic phosphorus when treated with purified beta-hemolysin. Phospholipid analysis demonstrated that sphingomyelin accounted for 53% of the phospholipids present in sheep erythrocytes. Purified beta-hemolysin showed phospholipase C activity when purified ox brain or sheep erythrocyte sphingomyelin was used as substrate. Such studies have also revealed that the disappearance of sphingomyelin from the reaction mixture was accompanied by a comparable increase in the concentration of phosphoryl choline. Thin-layer chromatography of phospholipids, extracted from sheep erythrocytes which had been exposed to beta-hemolysin, demonstrated that sphingomyelin was rapidly degraded. Activators of beta-hemolysin, such as Mg(++), enhanced the release of organic phosphorus from erythrocyte ghosts and from sphingomyelin. Inhibitors of beta-hemolysin, such as ethylenediaminetetraacetic acid, p-chloromercuribenzoate, and iodoacetamide, also inhibited the release of organic phosphorus from erythrocyte ghosts and from sphingomyelin. These studies strongly suggested that beta-hemolysin enzymatically degraded the sphingomyelin of the erythrocyte membrane. Such degradation probably resulted in the eventual lysis of the erythrocyte.  相似文献   

7.
Antibodies directed against purified human erythrocyte Ca2+-ATPase (purified according to a procedure modified from V. Niggli, J. T. Penniston, and E. Carafoli, 1979, J. Biol. Chem., 254, 9955–9958) were raised in rabbits. In competitive radioimmunoassay tests of immunological cross-reactivity, human erythrocyte Ca2+-ATPase shows a consistent pattern of immunological similarity to the Ca2+-ATPases derived from cell surface fractions of other species, such as rat and dog erythrocyte ghosts, rat corpus luteum plasma membranes, and rat brain synaptic plasma membranes. On the other hand, a purified Ca2+-ATPase preparation from rabbit skeletal muscle sarcoplasmic reticulum failed to show any immunological similarity to the human enzyme. The amount of Ca2+-ATPase protein in the erythrocyte ghosts was estimated to be about 0.6 μg/mg ghost protein, which was not too different from the calculated value of 1.2 ± 0.2 μg/mg ghost protein (mean ± SD, n = 6) based on the calmodulin binding studies of the erythrocyte ghosts. Anti-Ca2+-ATPase immunoglobulin G inhibited enzyme activity and calcium transport, showing that at least one subpopulation of antibodies can block the active site of the enzyme. The antibodies had no effect on the binding of calmodulin to erythrocyte membranes.  相似文献   

8.
Aqueous extracts of the edible mushroom, Pleurotus ostreatus, contain a substance that is lytic in vitro for mammalian erthrocytes. The hemolytic agent, pleurotolysin, was purified to homogeneity and found to be a protein lacking seven of the amino acids commonly found in proteins. In the presence of sodium dodecyl sulfate it exists as monomers of molecular weight 12 050 whereas under non-dissociating conditions it appears to exist as dimers. It is isoelectric at about pH 6.4. The sensitivity of erythrocytes from different animals correlates with sphingomyelin content of the erythrocyte membranes. Sheep erythrocyte membranes inhibit pleurotolysin-induced hemolysis and the inhibition is time and temperature dependent. Ability of membranes to inhibit hemolysis is abolished by prior treatment of membranes with specific phospholipases. Pleurotolysin-induced hemolysis is inhibited by liposomes prepared from cholesterol, dicetyl phosphate adn sphingomyelin derived from sheep erythrocytes whereas a variety of other lipid preparations fail to inhibit. It is concluded that sphingomyelin plays a key role in the hemolytic reaction.  相似文献   

9.
A fluorescence microscopic assay for the activity of complement, perforin, and other cytolytic proteins which form transmembrane pores in cellular membranes is described. The assay was worked out and tested with red blood cell membranes (ghosts) and was then applied to intact hemoglobin-free cells. Resealed human erythrocyte ghosts were incubated with complement or perforin. A small polar fluorescent probe (fluorescein-labeled 1-kDa dextran, FD1) which permeates through complement and perforin pores but not through normal cell membranes was added to the samples. The capability of the confocal laser scanning microscope (CLSM) to generate thin optical sections was exploited to visualize and quantitate fluorescence inside single ghosts and thus determine the fraction of ghosts which had become permeable for FD1. The activity of complement or perforin was quantitated by plotting the fraction of permeable cells versus the concentration of the pore-forming protein. The results were in good agreement with those of a conventional hemolytic assay. The CLSM-based assay was then applied to intact hemoglobin-free cells for which only few alternative assays are available. Compared to conventional hemolytic assays for the activity of pore-forming proteins the assay described here can be applied to a large variety of natural and artificial membrane systems. The assay can be performed under nonlysing conditions. Furthermore, the assay is simple, relatively fast, and requires only extremely small amounts of cells and pore-forming proteins.  相似文献   

10.
We prepared resealed erythrocyte ghosts loaded with SPQ and chloride. We demonstrated that these membranes were still functional, as they were capable of exchanging anions, most probably through the band-3 protein. When cytolytic toxins (Escherichia coli hemolysin and Staphylococcus aureus alpha-toxin) were offered to the resealed ghosts, the internal SPQ was released. This could be attributed to the formation of toxin-induced ion channels into the ghost membrane that were so large that SPQ could escape through them. This release was actually independent of the anion-exchanging protein, since DIDS had no inhibitory effect on it. Due to their simplicity, and because they do not lyse, erythrocyte ghosts may serve as useful models to study the action of cytolytic pore-forming toxins. To assess the validity of these model membranes we compared results obtained using RBC and resealed erythrocyte ghosts as targets for the toxin, finding complete consistency. Pre-assembled toxin channels could also be studied on the ghosts. Applying different proteolytic enzymes to the external compartment after channel formation, we found that performed E. coli hemolysin pores were at least partially destroyed by enzymatic digestion.  相似文献   

11.
The presence of cholesterol or phosphatidylethanolamine in sphingomyelin liposomes enhanced 2- to 10-fold the breakdown of sphingomyelin by sphingomyelinase from Bacillus cereus. On the other hand, the presence of phosphatidylcholine was either without effect or slightly stimulative at a higher molar ratio of phosphatidylcholine to sphingomyelin (3/1). In the bovine erythrocytes and their ghosts, the increase by 40-50% or the decrease by 10-23% in membranous cholesterol brought about acceleration or deceleration of enzymatic degradation of sphingomyelin by 50 or 40-50%, respectively. The depletion of ATP (less than 0.9 mg ATP/100 ml packed erythrocytes) enhanced K+ leakage from, and hot hemolysis (lysis without cold shock) of, bovine erythrocytes but decelerated the breakdown of sphingomyelin and hot-cold hemolysis (lysis induced by ice-cold shock to sphingomyelinase-treated erythrocytes), either in the presence of 1 mM MgCl2 alone or in the presence of 1 mM MgCl2 and 1 mM CaCl2. Also, ATP depletion enhanced the adsorption of sphingomyelinase onto bovine erythrocyte membranes in the presence of 1 mM CaCl2 up to 81% of total activity, without appreciable K+ leakage and hot or hot-cold hemolysis. These results suggest that the presence of cholesterol or phosphatidylethanolamine in biomembranes makes the membranes more susceptible to the attack of sphingomyelinase from B. cereus and that the segregation of lipids and proteins in the erythrocyte membranes by ATP depletion causes the deceleration of sphingomyelin hydrolysis despite the enhanced enzyme adsorption onto the erythrocyte membranes.  相似文献   

12.
Lipid organization in erythrocyte membrane microvesicles.   总被引:1,自引:0,他引:1       下载免费PDF全文
The aminophospholipids of microvesicles released from human erythrocytes on storage or prepared from erythrocyte ghosts by shearing under pressure are susceptible to the action of 2,4,6-trinitrobenzenesulphonic acid. The aminophospholipids of the former vesicles are also susceptible to attack by phospholipase A2. Under the same conditions, the aminophospholipids of erythrocytes undergo little reaction. This suggests that the phospholipids in microvesicle membranes are more randomly distributed than those in erythrocyte membranes. Measurements have also been made of the ability of filipin to react with the cholesterol of sealed and unsealed erythrocyte ghosts and of microvesicles prepared from them. From the initial rates of reaction, it was concluded that there is no preferential transfer of cholesterol molecules from one side of the bilayer to the other during the formation of the microvesicles.  相似文献   

13.
Thirty-nine blood group antigens were detected by hemolytic inhibition tests on erythrocyte ghosts prior to enzyme digestion. The ghosts, produced from erythrocytes collected from six different cattle, were digested with the proteolytic enzymes papain, protease, ficin, chymotrypsin and trypsin. Of the 39 antigens, 30 were removed from the membranes and detected in the soluble fraction resulting from the digestions. Some antigens were consistently removed by all enzymes digesting all ghosts possessing them, while the degree to which many other antigenic determinants were removed varied according to the ghosts being digested and the enzymes employed. Of the 9 remaining determinants never removed from the ghosts, some were detected in the insoluble fraction while others were not detected at all. These latter antigens were presumably destroyed by the enzyme digestion.  相似文献   

14.
Phospholipid degradation by native phospholipase C from Bacillus cereus and enzyme forms where one or both of the Zn2+ prosthetic groups had been replaced with Co2+ was studied in human erythrocyte membranes (ghosts) and resuspended freeze-dried bovine brain myelin. The rate of total phospholipid degradation was 2-9-fold more rapid with erythrocytes than with myelin. With both membrane systems the activity decreased in the order ZnZn-enzyme greater than ZnCo-enzyme greater than CoCo-enzyme. For all three enzyme forms with either membrane system, phosphatidylethanolamine (or the ethanolamine-containing phosphoglycerides) and phosphatidylcholine were hydrolysed most rapidly and sphingomyelin least. The relative rate of sphingomyelin degradation was highest with the ZnCo-enzyme. In myelin at low ionic strength there seemed to be a core of phospholipid that was very resistant to degradation by native phospholipase C but which was much more accessible to the Co2+-substituted forms. It is suggested that ZnCo-phospholipase C has potential applications in membrane studies.  相似文献   

15.
M Record  A Loyter    S Gatt 《The Biochemical journal》1980,187(1):115-121
Incubation at 37 degrees C of haemolysed chicken erythrocytes ('chicken erythrocyte ghosts') resulted in hydrolysis of the membrane sphingomyelin, suggesting an activation of a latent sphingomyelinase during the haemolysis procedure. When this incubation was continued for several hours, the entire sphingomyelin of the erythrocyte 'ghosts' was hydrolysed and membranes were obtained that were devoid of sphingomyelin, but had an active sphingomyelinase. Mixing the latter membranes with human erythrocyte 'ghosts' or positively charged liposomes led to hydrolysis of the sphingomyelin in these two membranes. This suggested that, after haemolysis, the activated sphingomyelinase in the membrane of the chicken erythrocyte 'ghosts' could hydrolyse sphingomyelin in its own membrane ('intramembrane utilization') or adjacent membranes ('intermembrane utilization').  相似文献   

16.
Human erythrocyte ghosts but was able to fuse only iso-human erythrocyte ghosts. Iso- and hypo-human erythrocyte ghosts were incubated with the proteolytic enzyme pronase under isotonic (iso-human erythrocyte ghosts) or hypotonic (hypo-human erythrocyte ghosts) conditions. Gel electrophoresis and electron microscope (freeze-etching) studies revealed that most of the erythrocyte membrane polypeptides were hydrolyzed by pronase under hypotonic conditions. Sendai virus readily agglutinated both pronase-digested iso-human erythrocyte ghosts and hypo-human erythrocyte ghosts were fused by the non-viral fusogenic agent glyceromonooleate. Freeze-etching studies revealed that during fusion the membranes of pronase-digested human erythrocyte ghosts are intermixed.  相似文献   

17.
Detergent-resistant membrane raft fractions have been prepared from human, goat, and sheep erythrocyte ghosts using Triton X-100. The structure and thermotropic phase behaviour of the fractions have been examined by freeze-fracture electron microscopy and synchrotron X-ray diffraction methods. The raft fractions are found to consist of vesicles and multilamellar structures indicating considerable rearrangement of the original ghost membrane. Few membrane-associated particles typical of freeze-fracture replicas of intact erythrocyte membranes are observed in the fracture planes. Synchrotron X-ray diffraction studies during heating and cooling scans showed that multilamellar structures formed by stacks of raft membranes from all three species have d-spacings of about 6.5 nm. These structures can be distinguished from peaks corresponding to d-spacings of about 5.5 nm, which were assigned to scattering from single bilayer vesicles on the basis of the temperature dependence of their d-spacings compared with the multilamellar arrangements. The spacings obtained from multilamellar stacks and vesicular suspensions of raft membranes were, on average, more than 0.5 nm greater than corresponding arrangements of erythrocyte ghost membranes from which they were derived. The trypsinization of human erythrocyte ghosts results in a small decrease in lamellar d-spacing, but rafts prepared from trypsinized ghosts exhibit an additional lamellar repeat 0.4 nm less than a lamellar repeat coinciding with rafts prepared from untreated ghosts. The trypsinization of sheep erythrocyte ghosts results in the phase separation of two lamellar repeat structures (d=6.00; 5.77 nm), but rafts from trypsinized ghosts produce a diffraction band almost identical to rafts from untreated ghosts. An examination of the structure and thermotropic phase behaviour of the dispersions of total polar lipid extracts of sheep detergent-resistant membrane preparations showed that a reversible phase separation of an inverted hexagonal structure from coexisting lamellar phase takes place upon heating above about 30 degrees C. Non-lamellar phases are not observed in erythrocytes or detergent-resistant membrane preparations heated up to 55 degrees C, suggesting that the lamellar arrangement is imposed on these membrane lipids by interaction with non-lipid components of rafts and/or that the topology of lipids in the erythrocyte membrane survives detergent treatment.  相似文献   

18.
M M Hosey  M Tao 《Biochemistry》1977,16(21):4578-4583
This report describes the substrate and phosphoryl donor specificities of solubilized erythrocyte membrane cyclic adenosine 3',5'-monophosphate (cAMP)-independent protein kinases toward human and rabbit erythrocyte membrane proteins. Three types of substrate preparations have been utilized: heat-inactivated ghosts, isolated spectrin, and 2,3-dimethylmaleic anhydride (DMMA)-extracted membranes. A 30 000-dalton protein kinase, extracted from either human or rabbit erythrocyte membranes, catalyzes the phosphorylation of heat-inactivated membranes in the presence of ATP. The resulting phosphorylation profile is analogous to that of the autophosphorylation of membranes with ATP (in the absence of cAMP). These kinases also phosphorylate band 2 of isolated spectrin and band 3, but not glycophorin, in the DMMA-extracted ghosts. The ability of the 30 000-dalton kinases to use GTP as a phosphoryl donor appears to be related to the substrate or some other membrane factor. A second kinase, which is 100 000 daltons and derived from rabbit erythrocyte membranes, uses ATP or GTP to phosphorylate membrane proteins 2, 2.1, 2.9-3 in heat-inactivated ghosts, band 2 in isolated spectrin, glycophorin, and to a lesser extent, band 3 in the DMMA-extracted ghosts.  相似文献   

19.
Comparison of hemolytic activity and chromate-releasing activity of partially purified preparations of staphylococcal alpha-toxin indicated the presence of a lytic factor other than alpha-toxin. This lytic release factor (RF) was isolated from the preparations and was shown to be active against both lipid spherules and erythrocytes. Heat-purified alpha-toxin (HP alpha-toxin) disrupted spherules, with the formation of fragments which always showed the presence of ring structures similar in dimensions (ca. 90 A) to pure alpha 12S-toxin. The interaction of HP alpha-toxin with spherules was accompanied by loss of hemolytic activity and adsorption of toxic protein. The alpha 12S-toxin, although only weakly hemolytic, was shown to be lytic for spherules. An alpha 12S-free toxin rapidly disrupted spherules, with formation of fragments with attached rings similar in dimensions to the alpha 12S molecule. Lipid monolayer experiments showed that HP alpha-toxin could penetrate lipid monolayers by virtue of a hydrophobic interaction. Effects of HP alpha-toxin on rabbit and human erythrocyte ghosts were similar to its effects on spherules, in that rings appeared on membrane fragments. Toxin-lysed rabbit erythrocytes showed similar rings on the resulting membrane fragments. However, rings were not seen on toxin-treated rabbit erythrocytes in the prelytic lag phase; this result and the fact that human erythrocytes are largely insensitive to alpha-toxin were interpreted as evidence against a lytic mechanism involving ring formation as the primary event. Rings were interpreted as toxin polymers similar to alpha 12S molecules, formed from specifically orientated active toxin molecules at the surface of lipid structures. Possible mechanisms for toxin lysis of spherules and erythrocytes are discussed.  相似文献   

20.
Using a highly sensitive scanning calorimeter, the thermally induced structural transitions of erythrocyte ghosts from normal individuals and from patients with Duchenne muscular dystrophy (DMD) were carefully examined. No differences were observed under a variety of conditions. This finding is consistent with the idea that the composition, structure, and organization of membrane proteins and lipids in DMD erythrocyte membranes is very similar to normal erythrocyte membranes, in contrast to many other reports in the literature which utilized different techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号