首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study investigated the underlying mechanisms of oxytocin (OT)-induced increases in intracellular Ca2+ concentrations ([Ca2+]i) in acutely dispersed myometrial cells from prepartum sows. A dosedependent increase in [Ca2+]i was induced by OT (0.1 nM to 1 μM) in the presence and absence of extracellular Ca2+ ([Ca2+]e). [Ca2+]i was elevated by OT in a biphasic pattern, with a spike followed by a sustained plateau in the presence of [Ca2+]e. However, in the absence of [Ca2+]e, the [Ca2+]i response to OT became monophasic with a lower amplitude and no plateau, and this monophasic increase was abolished by pretreatment with ionomycin, a Ca2+ ionophore. Administration of OT (1 μM) for 15 sec increased inositol 1,4,5-trisphosphate (IP3) formation by 61%. Pretreatment with pertussis toxin (PTX, 1 μg/ml) for 2 hr failed to alter the OT-induced increase in [Ca2+]i and IP3 formation. U-73122 (30 nM to 3 μM), a phospholipase C (PLC) inhibitor, depressed the rise in [Ca2+]i by OT dose dependently. U-73122 (3 μM) also abolished the OT-induced IP3 formation. Thapsigargin (2 μM), an inhibitor of Ca2+-ATPase in the endoplasmic reticulum, did not increase [Ca2+]i. However, it did time-dependently inhibit the OT-induced increase in [Ca2+]i. Nimodipine (1 μM), a Voltage-dependent Ca2+ channel (VDCC) blocker, inhibited the OT-induced plateau by 26%. La3+ (1 μM), a nonspecific Ca2+ channel blocker, abrogated the OT-induced plateau. In whole-cell patch-clamp studies used to evaluate VDCC activities, OT (0.1 μM) increased Ca2+ Current (Ica) by 40% with no apparent changes in the current-voltage relationship. The OT-induced increase in Ica reached the maximum in 5 min, and the increase was abolished by nimodipine (1 μM). These results suggested that (1) activation of OT receptors in porcine myometrium evokes a cascade in the PTX-insensitive G-protein–PLC-IP3 signal transduction, resulting in an increase in [Ca2+]i; (2) the OT-induced increase in [Ca2+]i is characterized by a biphasic pattern, in which the spike is predominately contributed by the intracellular Ca2+ release from the IP3-sensitive pool, and to a lesser extent by Ca2+ influx, whereas the plateau is from increased Ca2+ influx; and (3) the influx is via VDCC and receptor-operated Ca2+ channels. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Neomycin, known to inhibit phospholipase C-mediated IP3 formation, was applied in the bath or injected into cells and its effects on electrical light responses were analyzed. Neomycin effects on inositol 1,4,5-trisphosphate- and Ca2+-induced Ca2+ release from the endoplasmic reticulum and/or the light-induced Ca2+ elevation were also studied. Neomycin (0.5 mmol x l(-1)) blocked inositol 1,4,5-trisphosphate-, caffeine-, and Ca2+-induced Ca2+ release. Bath application of neomycin decreased the sensitivity to 20-ms light flashes by a factor of up to 100 and slowed the kinetics of dim flash responses. Intracellularly injected neomycin desensitized the photoreceptors more than 1 log unit, increased the latency, and slowed the rate of rise of the light response. Neomycin (0.5 mmol x l(-1)) in the bath delayed and reduced the transient component of responses to 1-s steps of light at intermediate intensities. It also decreased and slowed the light-induced, and it blocked the caffeine-induced intracellular Ca2+ elevation. The combined pharmacological effects of neomycin are suggested to decrease the Ca2+-mediated amplification of the phototransduction cascade and the Ca2+-mediated acceleration of processes determining the kinetics of light responses.  相似文献   

3.
Ca2+ sparks are the elementary events of intracellular Ca2+ release from the sar-coplasmic reticulum in cardiac myocytes. In order to investigate whether spontaneous L-type Ca2+ channel activation contributes to the genesis of spontaneous Ca2+ sparks, we used confocal laser scanning microscopy and fluo-4 to visualize local Ca2+ sparks in intact rat ventricular myocytes. In the presence of 0.2 mmol/L CdCI2 which inhibits spontaneous L-type Ca2+ channel activation, the rate of occurrence of spontaneous Ca2+ sparks was halved from 4.20 to 2.04 events/(100 μm·s), with temporal and spatial properties of individual Ca2+ sparks unchanged. Analysis of the Cd2+-sensitive spark production revealed an open probability of-10-5 for L-type channels at the rest membrane potentials (-80 mV). Thus, infrequent and stochastic openings of sarcolemmal L-type Ca2+ channels in resting heart cells contribute significantly to the production of spontaneous Ca2+ sparks.  相似文献   

4.
Danilo Guerini 《Biometals》1998,11(4):319-330
The Ca 2+ ATPases or Ca 2+ pumps transport Ca 2+ ions out of the cytosol, by using the energy stored in ATP. The Na + / Ca 2+ exchanger uses the chemical energy of the Na + gradient (the Na + concentration is much higher outside than inside the cell) to remove Ca 2+ from the cytosol. Ca 2+ pumps are found in the plasma membrane and in the endoplasmic reticulum of the cells. The pumps are probably present in the membrane of other organelles, but little experimental information is available on this matter. The Na + / Ca 2+ exchangers are located on the plasma membrane. A Na + / Ca 2+ exchanger was found in the mitochondria, but very little is known on its structure and sequence. These transporters control the Ca 2+ concentration in the cytosol and are vital to prevent Ca 2+ overload of the cells. Their activity is controlled by different mechanisms, that are still under investigation. A number of the possible isoforms for both types of proteins has been detected.© Kluwer Academic Publishers  相似文献   

5.
Vanadate is a commonly used Ca2+ pump blocker, exerting a substantial effect on Ca2+ extrusion at millimolar concentrations in human red cells. At such levels, vanadate also seems to open an L type-like Ca2+ channel in these cells (J Biol Chem 257 (1982) 7414; Gen Physiol Biophys 16 (1997) 359). Since neither a dose-dependence effect nor a metabolic requirement for the latter action could be found in the literature, we have addressed this matter in the present work. Accordingly, vanadate action on Ca2+ entry was systematically investigated in both young and old human red cells after metabolic depletion. Although vanadate enhanced Ca2+ entry indifferently in either cell type, a distinct over-all effect was paradoxically found depending on whether or not metabolic substrates that give rise to ATP were present. In ATP-depleted cells, unlike with ATP-containing cells, vanadate-stimulated Ca2+ entry was neither blocked by raising external K+ nor by adding voltage-dependent Ca2+ channel blockers (nifedipine, calciseptine, FTX3.3) or compounds affecting polyphosphoinositide metabolism (Li+, neomycin). Likewise, full substitution of external Na+ by other cations did not inhibit vanadate-enhanced Ca2+ entry. Regardless of the cell age, stimulation by vanadate depended strongly on internal Na+ (0-30 mM). Vanadate stimulation was significantly reduced (about 55%) by heparin (10 mg/ml) only in young cells and by ryanodine (about 35%, 250 microM) in old cells. The results suggest presence of a new vanadate-induced Ca2+ entry pathway in ATP-depleted cells.  相似文献   

6.
We have used chlortetracycline (CTC) analysis to investigate mechanisms that may play important roles during bull sperm capacitation in a culture medium (containing glucose, heparin, and caffeine) known to promote capacitation and fertilization in vitro. In initial experiments employing the Ca2+ ionophore A23187, we identified three discrete CTC patterns so similar to those described for mouse and human sperm that we have employed the same nomenclature: “F,” characteristic of uncapacitated, acrosome-intact cells; “B,” characteristic of capacitated, acrosome-intact, cells; “AR,” characteristic of capacitated, acrosome-reacted cells. Over a 60-min period, A23187 stimulated significant increases in B and AR pattern cells, with concomitant decreases in F pattern cells, suggesting a very rapid transition from the uncapacitated to the capacitated state and then on to exocytosis. Without ionophore, significant changes in the proportions of F and B pattern cells were also observed, but the maximum responses required 4 hr; the proportion of AR cells was consistently ~ 15% throughout, indicating a low incidence of spontaneous acrosome loss. Analysis of cells in media with altered composition indicated that the inclusion of either heparin or caffeine significantly promoted capacitation to about the same extent, but together, heparin plus caffeine had an even more stimulatory effect. Despite this, none of these treatments triggered acrosome loss above the levels seen in media lacking these constituents. In the presence of caffeine, with or without heparin, the inclusion of glucose had little effect on responses, but in the presence of heparin there were fewer B cells. In the presence of either quercetin, a Ca-ATPase inhibitor used at 50–200 μM, or W-7, a calmodulin antagonist used at 5–125 μM, capacitation per se was accelerated, as evidenced by significant decreases in F and significant increases in B pattern cells; only the highest concentration of each caused significant increases in AR cells. In addition, 25 and 125 μM W-7 markedly stimulated motility, both quantitatively and qualitatively. Finally the Na+ ionophore monensin at 500 μM significantly accelerated both capacitation and acrosomal exocytosis. The addition of the dihydropyridine calcium channel blocker nifedipine at 10 nM, just prior to monensin, did not inhibit capacitation (F to B transition) but blocked acrosomal exocytosis (B to AR transition). We suggest that Ca2+ is required for functional changes in bull sperm, with a Ca2+-ATPase modulating intracellular Ca2+ during capacitation and calcium channels controlling the Ca2+ influx required for acrosomal exocytosis. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Free-flying drones (Apis mellifera) were attracted by pheromone to an elevated observation site where they looked for small distant objects, a visual task similar to nuptial pursuit. The brightness of the sky against which drones performed this task was measured as the radiance over a range of wavelengths covering the absorbance spectra of the principal drone rhodopsin and its metarhodopsin. This brightness varied relatively little, by just over one log unit. In laboratory experiments on the intact drone, the amplitude of photoreceptor responses to small decrements in intensity showed a marked maximum when the background intensity depolarized the cells to about –35mV. The radiance of this optimal background was only 0.2 log units greater than the sky radiance at which most drones were seen. It is argued that because of probable systematic errors the true difference may be less. It is known that in superfused retinal slices voltage-dependent sodium channels amplify small signals under these stimulus conditions. We therefore conclude that this amplification is useful for the major visual activity of the drone.  相似文献   

8.
We have measured Cai at rest and upon light stimulation in the photoreceptors of the honeybee drone microfluorometrically with the fluorescent Ca2+ indicator dyes fura-2, fluo-3 and Ca-green 5N.In darkness, Cai was 90 nM after 5 min of dark adaptation. A saturating light step caused Cai to rise in the bulk cytoplasm to 750 nM within 1 s. Our measurements with the low affinity dye Ca-green 5N showed that bright 1-s light flashes cause a rapid increase in Cai which was graded with stimulus intensity. Ca-green 5N fluorescence reached a peak in about 200 ms, and then decayed to a slightly lower sustained plateau. The fluorescence signal peaked, when the receptor potential was repolarizing from its peak to the plateau. This observation is in agreement with the proposal that the peak-to-plateau transition of the receptor potential is caused by the rise in Cai From our Fluo-3 measurements it appears that the latency of the Ca2+ increase is by 3–4 ms longer than the latency of the receptor potential elicited by bright 100-ms light flashes. This result provides no support for the proposal that Ca2+ mediates the opening of those membrane channels responsible for the upstroke of the receptor potential.Abbreviations ER endoplasmic reticulum - IP3 Inositol 1,4,5-trisphosphate - SMC submicrovillar cisternae  相似文献   

9.
利用焦锑酸盐和磷酸铅沉淀技术分别对NaHCO3胁迫条件下星星草(Puccinellia tenuiflora)根中Ca2+和Ca2+-ATPase进行超微细胞化学定位研究,旨在进一步探讨Ca2+在NaHCO3胁迫诱导胞内信号转导过程中的作用,以及Ca2+-ATPase活性定位变化与NaHCO3胁迫下星星草抗盐碱能力的关系。结果表明:在正常状态下,根毛区细胞质内Ca2+较少,主要位于质膜附近和液泡中,Ca2+-ATPase主要定位于质膜和液泡膜,有一定活性。在0.448%NaHCO3胁迫下,根毛区细胞质中Ca2+增多,液泡中Ca2+减少,且主要集中于液泡膜附近,质膜和液泡膜Ca2+-ATPase活性明显升高。在1.054%NaHCO3胁迫下,细胞质中分布的Ca2+增多,而液泡中Ca2+极少,Ca2+-ATPase活性也降低。以上结果表明,Ca2+亚细胞定位和Ca2+-ATPase活性变化在星星草响应NaHCO3胁迫的信号传递过程中具有重要作用。  相似文献   

10.
目的:建立膀胱逼尿肌不稳定的大鼠模型并初步研究逼尿肌T型钙通道亚型的表达。方法:以增加膀胱出口梗阻的方法诱导膀胱逼尿肌不稳定的出现;以RT-PCR的方法检测正常膀胱和不稳定膀胱逼尿肌上T通道亚型的表达。结果:梗阻后5、6周逼尿肌不稳定发生率高且稳定;不稳定逼尿肌细胞与正常逼尿肌细胞均有α1I亚型表达且无数量差异,逼尿肌细胞有α1G亚型的表达,而正常逼尿肌上无此亚型表达。结论:梗阻第5、6周的动物是用来研究DI产生机制的良好模型;α1G亚型可能与逼尿肌不稳定的发生具有一定关系。  相似文献   

11.
The correct spatial and temporal control of Ca2+ signaling is essential for such cellular activities as fertilization, secretion, motility, and cell division. There has been a long-standing interest in the role of caveolae in regulating intracellular Ca2+ concentration. In this review we provide an updated view of how caveolae may regulate both Ca2+ entry into cells and Ca2+-dependent signal transduction  相似文献   

12.
The antioxidant nordihydroguaiaretic acid (NDGA) inhibited the different sarco/endoplasmic reticulum Ca2+-ATPase isoforms found in skeletal muscle and blood platelets. For the sarcoplasmic reticulum, but not for the blood platelets Ca2+-ATPase, the concentration of NDGA needed for half-maximal inhibition was found to vary depending on the substrate used and its concentration in the assay medium. The phosphorylation of the sarcoplasmic reticulum Ca2+-ATPase by ATP and by Pi were both inhibited by NDGA. In leaky vesicles, measurements of the ATP Pi exchange showed that NDGA increases the affinity for Ca2+ of the E2 conformation of the enzyme, which has low affinity for Ca2+. The effects of NDGA on the Ca2+-ATPase were not reverted by the reducing agent dithiothreitol nor by the lipid-soluble antioxidant butylated hydroxytoluene.  相似文献   

13.
In this study we investigated the release of Ca2+ in brain microsomes after Ca2+ loading by the Ca2+-ATPase or by the Na+/Ca2+ exchanger. The results show that in microsomes loaded with Ca2+ by the Ca2+-ATPase, Ins(1,4,5)P3 (5 μM) release 21±2% of the total Ca2+ accumulated, and that in the microsomes loaded with Ca2+ by the Na2+/Ca2+ exchanger, Ins(1,4,5)P3 released 28±3% of the total Ca2+ accumulated. These results suggest that receptors of Ins(1,4,5)P3 may be co-localized with the Na2+/Ca2+ exchanger in the endoplasmic reticulum membrane or that there are Ins(1,4,5)P3 receptors in the plasma membrane where the Na2+/Ca2+ exchanger is normally present, or both. We also found that Ins(1,4,5)P3 inhibited the Ca2+-ATPase by 33.7%, but that it had no significant effect on the Na2+/Ca2+ exchanger.  相似文献   

14.
The role of the Na+/Ca2+ exchanger (NCX) as the main pathway for Ca2+ extrusion from ventricular myocytes is well established. However, both the role of the Ca2+ entry mode of NCX in regulating local Ca2+ dynamics and the role of the Ca2+ exit mode during the majority of the physiological action potential (AP) are subjects of controversy. The functional significance of NCXs location in T-tubules and potential co-localization with ryanodine receptors was examined using a local Ca2+ control model of low computational cost. Our simulations demonstrate that under physiological conditions local Ca2+ and Na+ gradients are critical in calculating the driving force for NCX and hence in predicting the effect of NCX on AP. Under physiological conditions when 60% of NCXs are located on T-tubules, NCX may be transiently inward within the first 100 ms of an AP and then transiently outward during the AP plateau phase. Thus, during an AP NCX current (INCX) has three reversal points rather than just one. This provides a resolution to experimental observations where Ca2+ entry via NCX during an AP is inconsistent with the time at which INCX is thought to become inward. A more complex than previously believed dynamic regulation of INCX during AP under physiological conditions allows us to interpret apparently contradictory experimental data in a consistent conceptual framework. Our modelling results support the claim that NCX regulates the local control of Ca2+ and provide a powerful tool for future investigations of the control of sarcoplasmic reticulum (SR) Ca2+ release under pathological conditions.  相似文献   

15.
Contributions of L-, N-, and P/Q-type voltage-operated Ca2+ channels to two responses of bovine adrenal chromaffin cells have been studied using the nonreceptor stimulus K+ depolarization. Tyrosine hydroxylase activity and catecholamine secretion were both increased by K+ over a similar concentration range and in a Ca(2+)-dependent manner. At a submaximal concentration of 20 mM K+, tyrosine hydroxylase activation was reduced by nitrendipine but unaffected individually by (+/-)-Bay K 8644, omega-conotoxin GVIA, omega-agatoxin IVA, and omega-conotoxin MVIIC. It was fully blocked by combined inhibition of L-, N-, and P/Q-type channels. With a maximal concentration of 50 mM K+, tyrosine hydroxylase activation was unaffected by nitrendipine as well as by each of the other drugs on its own; however, it was reduced by 71 % by combined inhibition of L-, N-, and P/Q-type channels. In contrast, catecholamine secretion with both 20 and 50 mM K+ was enhanced by (+/-)-Bay K 8644, partially inhibited by nitrendipine and omega-conotoxin MVIIC, and completely blocked by a combination of antagonists for L-, N-, and P/Q-type channels. The results show that Ca2+ entry through voltage-operated Ca2+ channels can differentially regulate distinct chromaffin cell responses and that this is an intrinsic property of the mechanisms by which Ca2+ entry activates these responses. It is not dependent on the parallel activation of other signaling events by receptors.  相似文献   

16.
We investigated the cytosolic free calcium concentration ([Ca2+]i) of leech Retzius neurons in situ while varying the extracellular Ca2+ concentration via the bathing solution ([Ca2+]B). Changing [Ca2+]B had only an effect on [Ca2+]i if the cells were depolarized by raising the extracellular K+ concentration. Surprisingly, raising [Ca2+]B from 2 to 10 mm caused a decrease in [Ca2+]i, and an increase was evoked by reducing [Ca2+]B to 0.1 mm. These changes were not due to shifts in membrane potential. At low [Ca2+]B moderate membrane depolarizations were sufficient to evoke a [Ca2+]i increase, while progressively larger depolarizations were necessary at higher [Ca2+]B. The changes in the relationship between [Ca2+]i and membrane potential upon varying [Ca2+]B could be reversed by changing extracellular pH. We conclude that [Ca2+]B affects [Ca2+]i by modulating Ca2+ influx through voltage-dependent Ca2+ channels via the electrochemical Ca2+ gradient and the surface potential at the extracellular side of the plasma membrane. These two parameters are affected in a counteracting way: Raising the extracellular Ca2+ concentration enhances the electrochemical Ca2+ gradient and hence Ca2+ influx, but it attenuates Ca2+ channel activity by shifting the extracellular surface potential to the positive direction, and vice versa. Received: 23 January 2001/Revised: 23 June 2001  相似文献   

17.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

18.
Lung lamellar bodies maintain an acidic interior by an energy-dependent process. The acidic pH may affect the packaging of surfactant phospholipids, processing of surfactant proteins, or surfactant protein A-dependent lipid aggregation. The electron-probe microanalysis of lamellar body elemental composition has previously suggested that lamellar bodies contain high levels of calcium some of which may be in ionic form. In this study, we investigated the Ca2+ uptake characteristics in isolated lung lamellar bodies. The uptake of Ca2+ was measured by monitoring changes in the fluorescence of Fluo-3, a Ca2+ indicator dye. The uptake of Ca2+ in lamellar bodies was ATP-dependent and increased with increasing concentrations of Ca2+. At 100 nm Ca2+, the uptake was almost completely inhibited by bafilomycin A1, a selective inhibitor of vacuolar type H+-ATPase, or by NH4Cl, which raises the lamellar body pH, suggesting that the pH gradient regulates the uptake. The uptake of Ca2+ increased as the Ca2+ concentration was increased, but the relative contribution of bafilomycin A1-sensitive uptake decreased. At 700 nm, it comprised only 20% of the total uptake. These results suggest the presence of additional mechanism(s) for uptake at higher Ca2+ concentrations. At 700 nm Ca2+, the rate and extent of uptake were lower in the absence of K+ than in the presence of K+. The inhibitors of Ca2+-activated K+-channels, tetraethylammonium, Penitrem A, and 4-aminopyridine, also inhibited the K+-dependent Ca2+ uptake at 700 nm Ca2+. Thus the uptake of Ca2+ in isolated lung lamellar bodies appears to be regulated by two mechanisms, (i) the H+-gradient and (ii) the K+ transport across the lamellar body membrane. We speculate that lamellar bodies accumulate Ca2+ and contribute to regulation of cytosolic Ca2+ in type II cells under resting and stimulated conditions. Received: 18 August 1999/Revised: 9 November 1999  相似文献   

19.
Familial hemiplegic migraine type 1 (FMH-1) is a rare form of migraine with aura, which is characterized by transient hemiparesis, sensory loss and visual disturbances. This monogenic disease shares many common features with classic migraine, suggesting a similar molecular pathophysiology. Migraine is triggered by activation and sensitization of the trigeminovascular system, specifically the trigeminal nociceptive afferents innervating the meninges. Aura migraine is associated with cortical spreading depression (CSD), which is a short-lasting intense wave of neuronal and glial cell depolarization that slowly progresses over the cortex and is followed by long-lasting neuronal activity depression.  相似文献   

20.
Near the base of mammalian seminiferous epithelium, Sertoli cells are joined by tight junctions, which constitute the blood-testis barrier. Differentiating germ cells are completely enveloped by Sertoli cells and must traverse the tight junctions during spermatogenic cycle. Following the specific ligand activation of L-selectin, the up-regulated Rho family small G-proteins have been implicated as important modulators of tight junctional dynamics. Although the activation of L-selectin transmits subsequent intracellular signals in a Ca(+2)-dependent fashion in various cell types, little is understood regarding the signaling pathways utilized by L-selectin in Sertoli cells. Therefore, we have examined the possible resultant calcium influx triggered by specific ligand-activation of cell surface L-selectin receptors or by cross-linking of L-selectin with anti-L-selectin. Spectrofluorimetric studies demonstrate increase of intracellular Ca(+2) levels immediately after the treatment of the L-selectin ligands, fucoidan and sialyl Lewis-a, or after treatment with anti-L-selectin antibody. We then determined the mechanism of Ca(+2) influx by investigating L- and T-type voltage-operated Ca(+2) channels, which have been suggested to present in the membranes of Sertoli cells. Data demonstrate that Sertoli cells treated with L-type voltage-operated Ca(+2) channel antagonists, nifedipine, diltiazem, or verapamil, lead to dose-dependent blockage of L-selectin-induced Ca(+2) influx. Cells treated with mibedradil, a T-type voltage-operated Ca(+2) channel antagonist, results in little or no blocking effect. Therefore, we conclude that activation of Sertoli cell L-selectin induces Ca(+2) influx, which is at least partially regulated by L-type voltage-operated Ca(+2) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号