首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The course of functional maturation with age of mossy fiber synapses on pyramidal cells in areas CA3,4 of the dorsal hippocampus was investigated by extracellular recording of focal potentials and single unit responses of the hippocampus to electrical stimulation of the dentate fascia in waking, unimmobilized rabbits aged from 1 to 14 days. After the 4th day of postnatal life focal potentials appeared in response to single stimulation, in the form of a biphasic short-latency wave, characteristic of responses of the mature hippocampus, accompanied by spike discharges with a latent period of 3 to 10 msec and inhibitory responses of the hippocampal neurons. During the next 10 days the amplitude of the focal potentials increased from several hundred millivolts, with the sharpest increase observed from the 4th through the 7th days. In early age periods global and unitary responses were shown to be capable of frequency potentiation and also of short-term after-potentiation.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 12, No. 3, pp. 246–254, May–June, 1980.  相似文献   

2.
Vocal potentials were recorded in hippocampal area CA1 and dentate fascia in unanesthetized rabbits aged from 1 to 50 days during stimulation of Schaffer's collaterals and the perforant path, respectively, with paired (interval 15–100 msec) and repetitive (20–40 Hz for 3–5 sec) electric pulses. Short-term potentiation of focal potentials during paired stimulation and post-tetanic potentiation lasting from a few minutes to 3 h were shown to be reproduced in the hippocampus from the first days after birth, whereas in the dentate fascia, which matures later, reproduction began on the 8th–10th day, when neurons first began to respond to stimulation of the corresponding afferent pathways.  相似文献   

3.
Changes in the EEG induced by a single spike were recorded in the hippocampus of an unanesthetized rabbit. Summation of focal electrical activity synchronous with spontaneous single unit discharges at the symmetrical point of contralateral hemisphere revealed no stable potentials which could reflect these changes. In two cases discharges identified as activity of Shaffer's collaterals were recorded in area CA1. Summation of post-spike changes in evoked activity recorded by the same microelectrode showed stable negative waves with an amplitute of 40–60 µV, which could have been evoked by single spikes. The curve of amplitude of the averaged evoked potentials versus near-threshold current strength stimulating the intrahippocampal pathways was not smooth in most experiments but stepwise in character. It is suggested that the minimal evoked potential corresponding to the first step (amplitude 40–80 µV) reflects a response to stimulation of one fiber. After above-threshold tetanization prolonged posttetanic potentiation of the minimal evoked potentials did not arise in CA1 in response to stimulation of Shaffer's collaterals. Minimal evoked potentials recorded in area CA3 in response to stimulation of the dentate fascia showed clear potentiation. The results are in agreement with the hypothesis of the synaptic localization of the mechanisms responsible for prolonged posttetanic potentiation.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 124–134, March–April, 1977.  相似文献   

4.
Long-term potentiation and depression of synaptic transmission have been considered as cellular mechanisms of memory in studies conducted in recent decades. These studies were predominantly focused on mechanisms underlying plasticity at excitatory synapses. Nevertheless, normal central nervous system functioning requires maintenance of a balance between inhibition and excitation, suggesting existence of similar modulation of glutamatergic and GABAergic synapses. Here we review the involvement of G-protein-coupled receptors in the generation of long-term changes in synaptic transmission of inhibitory synapses. We considered the role of endocannabinoid and glutamate systems, GABAB and opioid receptors in the induction of long-term potentiation and long-term depression in inhibitory synapses. The preand postsynaptic effects of activation of these receptors are also discussed.  相似文献   

5.
G Hess  U Kuhnt 《Folia biologica》1989,37(3-4):195-202
A minimal intensity of the stimulation necessary for the induction of long-term potentiation of synaptic transmission (LTP) was investigated by intracellular recording in guinea pig in vitro hippocampal slices. High frequency stimulation of afferent fibres at intensities evoking in CA 1 neurons control excitatory postsynaptic potentials (EPSPs) of amplitudes 1-5 mV, resulted usually in a long-lasting increase in response amplitude. LTP was not observed at lower stimulus strength. The coactivation of a certain, though small number of synaptic contacts is thus necessary for the production of LTP.  相似文献   

6.
Hippocampal neurons fire spikes when an animal is at a particular location or performs certain behaviors in a particular place, providing a cellular basis for hippocampal involvement in spatial learning and memory. In a natural environment, spatial memory is often associated with potentially dangerous sensory experiences such as noxious or painful stimuli. The central sites for such pain-associated memory or plasticity have not been identified. Here we present evidence that excitatory glutamatergic synapses within the CA1 region of the hippocampus may play a role in storing pain-related information. Peripheral noxious stimulation induced excitatory postsynaptic potentials (EPSPs) in CA1 pyramidal cells in anesthetized animals. Tissue/nerve injury caused a rapid increase in the level of the immediate-early gene product Egr1 (also called NGFI-A, Krox24, or zif/268) in hippocampal CA1 neurons. In parallel, synaptic potentiation induced by a single tetanic stimulation (100 Hz for 1 s) was enhanced after the injury. This enhancement of synaptic potentiation was absent in mice lacking Egr1. Our data suggest that Egr1 may act as an important regulator of pain-related synaptic plasticity within the hippocampus.  相似文献   

7.
《Journal of Physiology》1996,90(5-6):329-330
Despite a considerable amount of investigation on long-term potentiation, the question of whether this process occurs at inhibitory synapses has remained controversial until studies of these junctions have been achieved in the Mauthner cell of Teleosts. In this preparation, inhibitory long-term potentiation similar to that occurring at hippocampal excitatory synapses has been demonstrated.  相似文献   

8.
Feldman DE 《Neuron》2000,27(1):45-56
Experience-dependent plasticity in somatosensory (S1) and visual (V1) cortex involves rapid depression of responses to a deprived sensory input (a closed eye or a trimmed whisker). Such depression occurs first in layer II/III and may reflect plasticity at vertical inputs from layer IV to layer II/III pyramids. Here, I describe a timing-based, associative form of long-term potentiation and depression (LTP/LTD) at this synapse in S1. LTP occurred when excitatory postsynaptic potentials (EPSPs) led single postsynaptic action potentials (APs) within a narrow temporal window, and LTD occurred when APs led EPSPs within a significantly broader window. This long LTD window is unusual among timing-based learning rules and causes EPSPs that are uncorrelated with postsynaptic APs to become depressed. This behavior suggests a simple model for depression of deprived sensory responses in S1 and V1.  相似文献   

9.
The appearance of oscillatory modes of 'gamma' activity in many cortical areas of different species has generated interest in understanding their underlying mechanisms and possible functions. This paper reviews evidence from studies on primate motor cortex showing that oscillatory activity entrains many neurons during periods of exploratory manipulative behavior. These oscillatory episodes synchronize widely spread neurons in sensorimotor cortex bilaterally, including descending corticospinal neurons, as evidenced by correlated modulations in EMG activity. The resulting neural synchronization involves task-related and -unrelated neurons similarly, suggesting that it is more likely to play some global role in attention than mediating any obvious interactions involved in coordinating movements. Intracellular recordings have elucidated the strength and types of synaptic interactions between motor cortical neurons that are involved in both normal and oscillatory activity. Spike-triggered averages (STAs) of intracellular membrane potentials have revealed serial connections in the form of unitary excitatory and inhibitory post-synaptic potentials (EPSPs and IPSPs). More commonly, STAs showed large synchronous excitatory or inhibitory potentials (ASEPs and ASIPs) beginning before the trigger spike and composed of multiple unitary events. ASEPs involved synchronous activity in a larger and more widespread group of presynaptic neurons than ASIPs. During oscillatory episodes synchronized excitatory and inhibitory synaptic potentials occurred in varying proportions. EPSPs evoked by stimulating neighboring cortical sites during the depolarizing phase of spontaneous oscillations showed evidence of transient potentiation. These observations are consistent with several functional hypotheses, but fit best with a possible role in attention or arousal.  相似文献   

10.
Lu W  Man H  Ju W  Trimble WS  MacDonald JF  Wang YT 《Neuron》2001,29(1):243-254
Long-term potentiation (LTP) of excitatory transmission in the hippocampus likely contributes to learning and memory. The mechanisms underlying LTP at these synapses are not well understood, although phosphorylation and redistribution of AMPA receptors may be responsible for this form of synaptic plasticity. We show here that miniature excitatory postsynaptic currents (mEPSCs) in cultured hippocampal neurons reliably demonstrate LTP when postsynaptic NMDA receptors are briefly stimulated with glycine. LTP of these synapses is accompanied by a rapid insertion of native AMPA receptors and by increased clustering of AMPA receptors at the surface of dendritic membranes. Both LTP and glycine-facilitated AMPA receptor insertion are blocked by intracellular tetanus toxin (TeTx), providing evidence that AMPA receptors are inserted into excitatory synapses via a SNARE-dependent exocytosis during LTP.  相似文献   

11.
In experiments on mature and developing (3-4 weeks old) rats the influence was shown of neuroimmunization with summate antigens of hippocampal or neocortical tissue cytosolic fraction on short-term plasticity of hippocampal CA3 field potentials under dentate gyrus zone stimulation. An increase of paired facilitation and frequency potentiation was revealed in pyramidal layer responses of hippocampal tissue immunized animals. In case of immunization with neocortical antigens the changes were less expressed, had mainly the opposite direction and took place in the apical dendrites zone. In young animals besides antigen spectrum depending effects of neuroimmunization an earlier manifestation (in comparison with age norm) of some focal activity definitive properties was described. The suggestions are made about different localization of hippocampal or neocortical tissue immunization "targets" with possible preferential damage of intrahippocampal systems when using this structure antigens, and also about dependence of physiological consequences on the extent of target structure ontogenetic maturity.  相似文献   

12.
A method of detecting "minimal" excitatory postsynaptic potentials (EPSP) in neurons of hippocampal area CA3 of the unanesthetized rabbit during stimulation of the septo-fimbrial region and the dentate fascia is described. The method consists of presenting a strong (a current of up to 1 mA) conditioning stimulus, inducing a distinct inhibitory postsynaptic potential (IPSP), before a near-threshold (current of 0.03–0.35 mA) testing stimulus. The response to the testing stimulus, develoing after the previous conditioning IPSP, in most cases was purely depolarizing and, judging from the change in the latent period in some cases and the absence of correlation between its amplitude and that of the IPSP, it is a pure EPSP. If the testing stimuli are presented at low enough frequency (intervals of not less than 1 sec) the amplitude of the EPSP evoked by them gradually falls. This decrease exhibits some of the characteristic properties of extinction of behavioral responses (recovery after an interruption, a more rapid decrease during repeated series of stimuli, a slower decrease in amplitude during less frequent stimulation). The amplitude of the IPSP also fell or showed no significant change. The results are evidence in support of the hypothesis that extinction is based on a mechanism of homosynaptic depression.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 3–12, January–February, 1978.  相似文献   

13.
Best known for their pivotal role in a form of programmed cell death called apoptosis, caspases may also function in more subtle physiological processes. Caspases are present in synapses and dendrites of neurons where they can be activated in response to glutamate receptor stimulation and calcium influx. Here we tested the hypothesis that caspase-1 plays a role in modulating long-term potentiation (LTP) at hippocampal synapses. We provide evidence that caspase-1 plays a role in regulating alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated calcium influx and synaptic plasticity in the hippocampus. LTP of excitatory postsynaptic potentials at CA1 synapses was significantly enhanced when hippocampal slices were treated with either a pan-caspase inhibitor or a selective inhibitor of caspase-1, but not by an inhibitor of caspase-6. Inhibition of caspase-1 significantly enhanced the AMPA current-mediated component of LTP without affecting the N-methyl-D-aspartate current-mediated component. Calcium responses to AMPA were enhanced in hippocampal neurons treated with a caspase-1 inhibitor suggesting that caspase-1 normally functions to reduce AMPA receptor-mediated calcium influx. These findings suggest that, by selectively reducing AMPA currents and calcium influx, caspase-1 functions as a negative regulator of LTP at hippocampal synapses.  相似文献   

14.
Long-term, activity-driven synaptic plasticity allows neuronal networks to constantly and durably adjust synaptic gains between synaptic partners. These processes have been proposed to serve as a substrate for learning and memory. Long-term synaptic potentiation (LTP) has been observed at many central excitatory synapses and perhaps most extensively studied at Schaffer collaterals synapses onto hippocampal CA1 neurons. Multiple contradictory models were proposed to account for this form of LTP. However, recent evidence suggests that some synapses are initially devoid of functional AMPA receptors which can be incorporated during LTP. This new model appears to account for most, but not all, properties of this form of plasticity. Indeed, several mechanisms seem to act in parallel to specifically enhance AMPA-receptor mediated synaptic transmission.  相似文献   

15.
Evoked potentials (EP) and neuronal responses produced by tooth pulp stimulation and a clicking sound were recorded at different hippocampal sites using microelectrodes in unrestrained rats. Spatial distribution of EP was found to be the same for both types of stimulation. Averaged EP consisted of a high amplitude negative preceded by a low-amplitude positive component (N1 and P1, respectively). Latency of the N1 wave reached its minimum (of 27 msec) at the middle third of the molecular layer of the dentate gyrus and the outer portion of the CA3 apical dendrites. Latency of N1 was considerably longer in the stratum radiatum layer of the CA1. Laminar profiles of the amplitude of the N1 componenent of EP produced in the dentate gyrus and the CA3 by tooth pulp stimulation resemble those observed during perforant path stimulation; in the CA1 they are similar to those evoked by stimulating the Schaffer collaterals. Maximum amplitude of the P1 component was observed above the pyramidal layer of the CA1 and the hilus. Neuronal discharge pattern changed in all hippocampal regions under the effects of both tooth pulp stimulation and the clicking sound. It is deduced that information can reach the hippocampus by two routes: via a "fast" (inhibitory) pathway through the fimbria and the fornix and a slower (excitatory) path through the entorhinal cortex.P. Flexig Institute for Brain Research, Karl Marx University, Leipzig, DR. Institute of Physiology, Pecs University Medical School, Pecs, Hungary. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 36–46, January–February, 1987.  相似文献   

16.
The negative slope conductance created by the persistent sodium current (INaP) prolongs the decay phase of excitatory postsynaptic potentials (EPSPs). In a recent study, we demonstrated that this effect was due to an increase of the membrane time constant. When the negative slope conductance opposes completely the positive slope conductances of the other currents it creates a zero slope conductance region. In this region the membrane time constant is infinite and the decay phase of the EPSPs is virtually absent. Here we show that non-decaying EPSPs are present in CA1 hippocampal pyramidal cells in the zero slope conductance region, in the suprathreshold range of membrane potential. Na+ channel block with tetrodotoxin abolishes the non-decaying EPSPs. Interestingly, the non-decaying EPSPs are observed only in response to artificial excitatory postsynaptic currents (aEPSCs) of small amplitude, and not in response to aEPSCs of big amplitude. We also observed concomitantly delayed spikes with long latencies and high variability only in response to small amplitude aEPSCs. Our results showed that in CA1 pyramidal neurons INaP creates non-decaying EPSPs and delayed spikes in the subthreshold range of membrane potentials, which could potentiate synaptic integration of synaptic potentials coming from distal regions of the dendritic tree.  相似文献   

17.
Although the supralinear summation of synchronizing excitatory postsynaptic potentials (EPSPs) and backpropagating action potentials (APs) is important for spike-timing-dependent synaptic plasticity (STDP), the spatial conditions of the amplification in the divergent dendritic structure have yet to be analyzed. In the present study, we simulated the coincidence of APs with EPSPs at randomly determined synaptic sites of a morphologically reconstructed hippocampal CA1 pyramidal model neuron and clarified the spatial condition of the amplifying synapses. In the case of uniform conductance inputs, the amplifying synapses were localized in the middle apical dendrites and distal basal dendrites with small diameters, and the ratio of synapses was unexpectedly small: 8-16% in both apical and basal dendrites. This was because the appearance of strong amplification requires the coincidence of both APs of 3-30 mV and EPSPs of over 6 mV, both of which depend on the dendritic location of synaptic sites. We found that the localization of amplifying synapses depends on A-type K+ channel distribution because backpropagating APs depend on the A-type K+ channel distribution, and that the localizations of amplifying synapses were similar within a range of physiological synaptic conductances. We also quantified the spread of membrane amplification in dendrites, indicating that the neighboring synapses can also show the amplification. These findings allowed us to computationally illustrate the spatial localization of synapses for supralinear summation of APs and EPSPs within thin dendritic branches where patch clamp experiments cannot be easily conducted.  相似文献   

18.
A comparative analysis was made of the functional characteristics of connections between hippocampal areas CA3 and CA1 (Schaffer's collaterals) in experiments in vivo on unanesthetized rabbits and in vitro on surviving slices of guinea pig hippocampus, with extracellular recording in area CA1. In the case of electrical stimulation of the collaterals in vitro, post-activational inhibition was weak, responses of inhibition of spontaneous discharges were absent, and low frequencies of stimulation were more effective than in vivo. Posttetanic changes were found more frequently in experiments in vitro and they lasted longer than in vivo. The predominant effect of tetanization under normal conditions was depression, but during incubation it was facilitation of responses. The possible causes of these differences are discussed.Institute of Biophysics, Academy of Sciences of the USSR, Puschino-on-Oka. Translated from Neirofiziologiya, Vol. 11, No. 3, pp. 208–217, May–June, 1979.  相似文献   

19.
Chevaleyre V  Castillo PE 《Neuron》2003,38(3):461-472
Neuronal excitability and long-term synaptic plasticity at excitatory synapses are critically dependent on the level of inhibition, and accordingly, changes of inhibitory synaptic efficacy should have great impact on neuronal function and neural network processing. We describe here a form of activity-dependent long-term depression at hippocampal inhibitory synapses that is triggered postsynaptically via glutamate receptor activation but is expressed presynaptically. That is, glutamate released by repetitive activation of Schaffer collaterals activates group I metabotropic glutamate receptors at CA1 pyramidal cells, triggering a persistent reduction of GABA release that is mediated by endocannabinoids. This heterosynaptic form of plasticity is involved in changes of pyramidal cell excitability associated with long-term potentiation at excitatory synapses and could account for the effects of cannabinoids on learning and memory.  相似文献   

20.
Long-term potentiation (LTP) of excitatory postsynaptic potentials (epsp's) was investigated with extracellular field potential recording in hippocampal slices from rats. In the presence of 100 microM 4-aminopyridine (4-AP) the probability of eliciting LTP was unchanged or increased; the extent of potentiation was not significantly different from normal. During LTP saturation, 4-AP further enhanced the epsp. These data are inconsistent with an involvement of A-current reduction in LTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号