首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vanadium-dependent bromoperoxidase from the marine macro-alga Corallina pilulifera was heterologously expressed in Saccharomyces cerevisiae. The enzyme was purified and crystals in "tear drop" form were obtained. The catalytic properties of the recombinant enzyme were studied and compared with those of the native enzyme purified from C. pilulifera. Differences in thermal stability and chloroperoxidase activity were observed. The recombinant enzyme retained full activity after preincubation at 65 degrees C for 20 min, but the native enzyme was completely inactivated under the same conditions. The chlorinating activity of the native enzyme was more than ten times higher than that of the recombinant enzyme. Other properties, such as K(m) values for KBr and H(2)O(2), and optimal temperature and pH, were similar for each source of C. pilulifera bromoperoxidase.  相似文献   

2.
The Saccharomyces cerevisiae PGU1 gene was successfully expressed in Schizosaccharomyces pombe. The optimum pH and temperature for the recombinant enzyme were 5 and 40°C, respectively, these being around 0.5 U higher and 5°C lower than those shown by the native enzyme. The Km value was about fourfold higher than that of the S. cerevisiae enzyme. The recombinant endopolygalacturonase was more efficient in reducing the viscosity of polygalacturonic acid and was also more stable at different pHs and temperatures than the native enzyme.  相似文献   

3.
The endo-beta-1,4-mannanase encoding gene man1 of Aspergillus aculeatus MRC11624 was amplified from mRNA by polymerase chain reaction using sequence-specific primers designed from the published sequence of man1 from A. aculeatus KSM510. The amplified fragment was cloned and expressed in Saccharomyces cerevisiae under the gene regulation of the alcohol dehydrogenase (ADH2(PT)) and phosphoglycerate kinase (PGK1(PT)) promoters and terminators, respectively. The man1 gene product was designated Man5A. Subsequently, the FUR1 gene of the recombinant yeast strains was disrupted to create autoselective strains: S. cerevisiae Man5ADH2 and S. cerevisiae Man5PGK1. The strains secreted 521 nkat/ml and 379 nkat/ml of active Man5A after 96 h of growth in a complex medium. These levels were equivalent to 118 and 86 mg/l of Man5A protein produced, respectively. The properties of the native and recombinant Man5A were investigated and found to be similar. The apparent molecular mass of the recombinant enzyme was 50 kDa compared to 45 kDa of the native enzyme due to glycosylation. The determined K(m) and V(max) values were 0.3 mg/ml and 82 micromol/min/mg for the recombinant and 0.15 mg/ml and 180 micromol/min/mg for the native Man5A, respectively. The maximum pH and thermal stability were observed within the range of pH 4-6 and 50 degrees C and below. The pH and temperature optima and stability were relatively similar for recombinant and native Man5A. Hydrolysis of an unbranched beta-1,4-linked mannan polymer released mannose, mannobiose, and mannotriose as the main products.  相似文献   

4.
Saccharomyces cerevisiae invertase, chemically modified with chitosan, was immobilized on a carboxymethylcellulose-coated chitin support via polyelectrolyte complex formation. The yield of immobilized protein was determined to be 72% and the enzyme retained 68% of the initial invertase activity. The optimum temperature for invertase was increased by 5 degrees C and its thermostability was enhanced by about 9 degrees C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was 12.6-fold more resistant to thermal treatment at 65 degrees C than the native counterpart. The prepared biocatalyst retained 98% and 100% of the original catalytic activity after 10 cycles of reuse and 70 h of continuous operational regime in a packed bed reactor, respectively. The immobilized enzyme retained 95% of its activity after 50 days of storage at 37 degrees C.  相似文献   

5.
Cel5A (endoglucanase II) of Trichoderma reesei was expressed in Saccharomyces cerevisiae then purified. Two components (C1 and C2) of recombinant Cel5A with different glycosylation were obtained. Purified C1 had a larger molecular mass (57 kDa) than that of the native Cel5A produced by T. reesei (48 kDa) due to the different extents of asparagines-linked glycosylation. There was no significant difference in enzymatic activity between the C1 and the native Cel5A from T. reesei. C1 treated with Endoglycosidase H had a molecular mass of 54 kDa and retained about 88% of its original activity. Unpurified C2 was larger form of hyperglycosylation proteins. Its molecular mass was larger than 85 kDa till up to 200 kDa. It still retained activity regardless of its magnitude molecular mass. With increased glycosylation extent of the enzyme components (C2 >C1 >native Cel5A), the pH range of activity become wider, and thermal stability become higher.  相似文献   

6.
7.
Hyperthermostable beta-glucosidase from Pyrococcus furiosus was enclosed in gelatin gel by cross-linking with transglutaminase. Gelatin-immobilized beta-glucosidase was considerably more thermostable than the native enzyme. Lyophilized immobilisate was stored at 90 degrees C for 1 month without loss of activity. The immobilized beta-glucosidase catalyzed transglucosylation of 5-phenylpentanol with 10.0 equivalent of cellobiose at pH 5.0 and 70 degrees C for 12 h to afford 5-phenylpentyl beta-D-glucopyranoside in 41% yield. The immobilized enzyme was more effective than the native one in transglucosylation. The gelatin-immobilized Pfu-beta-glucosidase recovered from the first run of the reaction was reusable on successive runs.  相似文献   

8.
9.
Heterologous production of the heterodimeric penicillin G amidase (PAC) from Providencia rettgeri was optimized in Saccharomyces cerevisiae. Several factors, including the effect of different growth and induction conditions, were identified to be critical for the enzyme overproduction and secretion. The PAC yield was significantly increased by more than 500-fold compared to that obtained in the native bacterium, and the recombinant enzyme was almost entirely secreted. Electrophoretic characterization of the secreted rPAC(Pr), which was purified over 20-fold by a combination of hydrophobic interaction and ion-exchange chromatography, demonstrated a microheterogeneity of the recombinant enzyme. The recombinant PAC(Pr) was further characterized in terms of specific activity, pH, and temperature profiles and kinetic parameters. The data presented here suggest that by overexpressing rPAC(Pr) in S.cerevisiae and purifying secreted enzyme from culture medium one can readily obtain a large amount of an alternative source of penicillin amidase with properties comparable to that of todays main industrial source of enzyme.  相似文献   

10.
The gram-negative antarctic bacterium Pseudoalteromonas sp. 22b, isolated from the alimentary tract of krill Thyssanoessa macrura, synthesizes an intracellular cold-adapted beta-galactosidase. The gene encoding this beta-galactosidase has been PCR amplified, cloned, expressed in Escherichia coli, purified, and characterized. The enzyme is active as a homotetrameric protein, and each monomer consists of 1028 amino acid residues. The enzyme was purified to homogeneity (50% recovery of activity) by using the fast, two-step procedure, including affinity chromatography on PABTG-Sepharose. Enzymatic properties of the recombinant protein are identical to those of native Pseudoalteromonas sp. 22b beta-galactosidase. The enzyme is cold-adapted and at 10 degrees C retains 20% of maximum activity. The purified enzyme displayed maximum activity close to 40 degrees C and at pH of 6.0-8.0. PNPG was its preferred substrate (58% higher activity than against ONPG). The enzyme was particularly thermolabile, losing all activities within 10 min at 50 degrees C. The hydrolysis of lactose in a milk assay revealed that 90% of milk lactose was hydrolyzed during 6 h at 30 degrees C and during 28 h at 15 degrees C. Because of its attributes, the recombinant Pseudoalteromonas sp. 22b beta-galactosidase could be applied at refrigeration temperatures for production of lactose-reduced dairy products.  相似文献   

11.
The araA gene encoding L-arabinose isomerase (AI) from the hyperthermophilic bacterium Thermotoga maritima was cloned and overexpressed in Escherichia coli as a fusion protein containing a C-terminal hexahistidine sequence. This gene encodes a 497-amino-acid protein with a calculated molecular weight of 56,658. The recombinant enzyme was purified to homogeneity by heat precipitation followed by Ni(2+) affinity chromatography. The native enzyme was estimated by gel filtration chromatography to be a homotetramer with a molecular mass of 232 kDa. The purified recombinant enzyme had an isoelectric point of 5.7 and exhibited maximal activity at 90 degrees C and pH 7.5 under the assay conditions used. Its apparent K(m) values for L-arabinose and D-galactose were 31 and 60 mM, respectively; the apparent V(max) values (at 90 degrees C) were 41.3 U/mg (L-arabinose) and 8.9 U/mg (D-galactose), and the catalytic efficiencies (k(cat)/K(m)) of the enzyme were 74.8 mM(-1).min(-1) (L-arabinose) and 8.5 mM(-1).min(-1) (D-galactose). Although the T. maritima AI exhibited high levels of amino acid sequence similarity (>70%) to other heat-labile mesophilic AIs, it had greater thermostability and higher catalytic efficiency than its mesophilic counterparts at elevated temperatures. In addition, it was more thermostable in the presence of Mn(2+) and/or Co(2+) than in the absence of these ions. The enzyme carried out the isomerization of D-galactose to D-tagatose with a conversion yield of 56% for 6 h at 80 degrees C.  相似文献   

12.
The dextransucrase gene dsrX from Leuconostoc mesenteroides CGMCC 1.544 was cloned into the vector pET-28a(+) and expressed as a N-terminal His(6)-tag fusion protein of 167.57 kDa in Escherichia coli BL21(DE3). DsrX with the high volumetric activity of 8.8 U ml(-1) culture and the specific activity of 97.37 U mg(-1) crude enzyme extracts was measured in the optimized recombinant expression system. The resultant expression level of the fusion protein amounted to 24.5% of the total cell proteins. The results of affinity chromatography and western blotting indicated that the three sensitive sites of proteolysis existed in the N-terminal catalytic domain of DsrX. Both the recombinant and native enzyme activity were slightly activated by 1 mmol l(-1) Mn(2+) and strongly inhibited by 1 mmol l(-1) Cu(2+) or Al(3+), and their optimum pH values were 5.4. The optimum temperature of the recombinant enzyme for dextran synthesis was 30 degrees C, which was 10 degrees C less than that of the native one. The transglucosylation products of two enzymes were studied by using thin layer chromatography and high-performance anion exchange chromatography. It could be concluded that the better sample-pretreatment temperature in SDS-PAGE was 37 degrees C, which significantly improved the detection of thermal instable enzyme than that of 100 degrees C.  相似文献   

13.
ATP sulfurylases from Penicillium chrysogenum (a mesophile) and from Penicillium duponti (a thermophile) had a native molecular weight of about 440,000 and a subunit molecular weight of about 69,000. (The P. duponti subunit appeared to be a little smaller than the P. chrysogenum subunit.) The P. duponti enzyme was about 100 times more heat stable than the P. chrysogenum enzyme; k inact (the first-order rate constant for inactivation) at 65 degrees C = 3.3 X 10(-4) s-1 for P. duponti and 3.0 X 10(-2) s-1 for P. chrysogenum. The P. duponti enzyme was also more stable to low pH and urea at 30 degrees C. Rabbit serum antibodies to each enzyme showed heterologous cross-reaction. Amino acid analyses disclosed no major compositional differences between the two enzymes. The analogous Km and Ki values of the forward and reverse reactions were also essentially identical at 30 degrees C. At 30 degrees C, the physiologically important adenosine 5'-phosphosulfate (APS) synthesis activity of the P. duponti enzyme was 4 U mg of protein-1, which is about half that of the P. chrysogenum enzyme. The molybdolysis and ATP synthesis activities of the P. duponti enzyme at 30 degrees C were similar to those of the P. chrysogenum enzyme. At 50 degrees C, the APS synthesis activity of the P. duponti enzyme was 12 to 19 U mg of protein-1, which was higher than that of the P. chrysogenum enzyme at 30 degrees C (8 +/- 1 U mg of protein-1). Treatment of the P. chrysogenum enzyme with 5,5'-dithiobis(2-nitrobenzoate) (DTNB) at 30 degrees C under nondenaturing conditions modified one free sulfhydryl group per subunit. Vmax was not significantly altered, but the catalytic activity at low magnesium-ATP or SO4(2-) (or MoO4(2-)) was markedly reduced. Chemical modification with tetranitromethane had the same results on the kinetics. The native P. duponti enzyme was relatively unreactive toward DTNB or tetranitromethane at 30 degrees C and pH 8.0 or pH 9.0, but at 50 degrees C and pH 8.0, DTNB rapidly modified one SH group per subunit. APS kinase (the second sulfate-activating enzyme) of P. chrysogenum dissociated into inactive subunits at 42 degrees C. The P. duponti enzyme remained intact and active at 42 degrees C.  相似文献   

14.
The specific activity of recombinant Pyrobaculum islandicum glutamate dehydrogenase (pis-GDH) expressed in Escherichia coli is much lower than that of the native enzyme. However, when the recombinant enzyme is heated at 90 degrees C or exposed to 5 M urea, the activity increases to a level comparable to that of the native enzyme. Small-angle X-ray scattering measurements revealed that the radius of gyration (R(g,z)) of the hexameric recombinant enzyme was reduced to 47 A from 55 A by either heat or urea, and that the final structure of the active enzyme is the same irrespective of the mechanism of activation. Activation was accompanied by a shift in the peaks of the Kratky plot, though the molecular mass of the enzyme was unchanged. The activation-induced decline in R(g,z) followed first-order kinetics, indicating that activation of the enzyme involved a transition between two states, which was confirmed by singular-value decomposition analysis. When the low-resolution structure of the recombinant enzyme was restored using ab initio modeling, we found it to possess no point symmetry, whereas the heat-activated enzyme possessed 32-point symmetry. In addition, a marked increase in the fluorescence emission was observed with addition of ANS to the inactive recombinant enzyme but not the active forms, indicating that upon activation hydrophobic residues on the surface of the recombinant protein moved to the interior. Taken together, these data strongly suggest that subunit rearrangement, i.e., a change in the quaternary structure of the hexameric recombinant pis-GDH, is essential for activation of the enzyme.  相似文献   

15.
A gene encoding inulin fructotransferase (di-D-fructofuranose 1,2': 2,3' dianhydride [DFA III]-producing IFTase, EC 4.2.2.18) from Bacillus sp. snu-7 was cloned. This gene was composed of a single, 1,353-bp open reading frame encoding a protein composed of a 40-amino acid signal peptide and a 410-amino acid mature protein. The deduced amino acid sequence was 98% identical to Arthrobacter globiformis C11-1 IFTase (DFA III-producing). The enzyme was successfully expressed in E. coli as a functionally active, His-tagged protein, and it was purified in a single step using immobilized metal affinity chromatography. The purified enzyme showed much higher specific activity (1,276units/mg protein) than other DFA III-producing IFTases. The recombinant and native enzymes were optimally active in very similar pH and temperature conditions. With a 103-min half-life at 60 degrees C, the recombinant enzyme was as stable as the native enzyme. Acidic residues and cysteines potentially involved in the catalytic mechanism are proposed based on an alignment with other IFTases and a DFA IIIase.  相似文献   

16.
The inulinase gene (INU1) from Kluyveromyces marxianus NCYC2887 strain was overexpressed by using GAL10 promotor in a △gal80 strain of Saccharomyces cerevisiae. The inulinase gene lacking the original signal sequence was fused in-frame to mating factor alpha signal sequence for secretory expression. Use of the △gal80 strain allowed the galactose-free induction of inulinase expression using a glucose-only medium. Shake flask cultivation in YPD medium produced 34.6 U/ml of the recombinant inulinase, which was approximately 13-fold higher than that produced by K. marxianus NCYC2887. It was found that the use of the △gal80 strain improved the expression of inulinase in the recombinant S. cerevisiae in both the aerobic and the anaerobic condition by about 2.9- and 1.7-fold, respectively. 5 L fed-batch fermentation using YPD medium was performed under aerobic condition with glucose feeding, which resulted in the inulinase production of 31.7 U/ml at OD600 of 67. Ethanol fermentation of dried powder of Jerusalem artichoke, an inulin-rich biomass, was also performed using the recombinant S. cerevisiae expressing INU1 and K. marxianus NCYC2887. Fermentation in a 5L scale fermentor was carried out at an aeration rate of 0.2 vvm, an agitation rate of 300 rpm, and the pH was controlled at 5.0. The temperature was maintained at 30degrees C and 37degrees C, respectively, for the recombinant S. cerevisiae and K. marxianus. The maximum productivities of ethanol were 59.0 and 53.5 g/L, respectively.  相似文献   

17.
N-ethylmaleimide (NEM)-resistant acyl-coenzyme A oxidase (ACO) has been desired for the determination of free fatty acids (FFAs). In order to meet this demand, we prepared recombinant ACO from Arthrobacter ureafaciens NBRC 12140. The coding region of the gene was 2109, encoding a protein of 703 amino acids with a predicted molecular mass of 76.5 kDa. The heterologous expression level in Escherichia coli was 520-fold higher than that in the native strain. The purified enzyme retained more than 60% activity after incubation in the presence of 10 mM NEM at 37 degrees C for 4 h, while other commercially available ACOs showed only less than 10% activities after the same NEM treatment. We presume that this is due to the presence of only three cysteines in ACO from A. ureafaciens. Site-directed mutagenesis studies and close scrutiny of the three-dimensional structures of other related ACOs suggested that these cysteines were buried in the protein and unreactive to NEM. The recombinant enzyme was used for the colorimetric determination of free fatty acid, which gave a linear calibration.  相似文献   

18.
We used the yeast MEL1 gene for secreted alpha-galactosidase to construct cartridges for the regulated expression of foreign proteins from Saccharomyces cerevisiae. The gene for a Cellulomonas fimi beta-1,4-exoglucanase was inserted into one cartridge to create a fusion of the alpha-galactosidase signal peptide to the exoglucanase. Yeast transformed with plasmids containing this construction produced active extracellular exoglucanase when grown under conditions appropriate to MEL1 promoter function. The cells also produced active intracellular enzyme. The secreted exoglucanase was N-glycosylated and was produced continuously during culture growth. It hydrolyzed xylan, carboxymethyl cellulose, 4-methylumbelliferyl-beta-d-cellobiose, and p-nitrophenyl-beta-d-cellobiose. A comparison of the recombinant S. cerevisiae enzyme with the native C. fimi enzyme showed the yeast version to have an identical K(m) and pH optimum but to be more thermostable.  相似文献   

19.
Hydrogenase from the hyperthermophilic archaeon, Pyrococcus furiosus, catalyzes the reversible activation of H(2) gas and the reduction of elemental sulfur (S degrees ) at 90 degrees C and above. The pure enzyme, modified with polyethylene glycol (PEG), was soluble (> 5 mg/mL) in toluene and benzene with t(1/2) values of more than 6 h at 25 degrees C. At 100 degrees C the PEG-modified enzyme was less stable in aqueous solution (t(1/2) approximately 10 min) than the native (unmodified) enzyme (t(1/2) approximately 1 h), but they exhibited comparable H(2) evolution, H(2) oxidation, and S degrees reduction activities at 80 degrees C. The H(2) evolution activity of the modified enzyme was twice that of the unmodified enzyme at 25 degrees C. The PEG-modified enzyme did not catalyze S degrees reduction (at 80 degrees C) in pure toluene unless H(2)O was added. The mechanism by which hydrogenase produces H(2)S appears to involve H(2)O as the proton source and H(2) as the electron source. The inability of the modified hydrogenase to catalyze S degrees reduction in a homogeneous non-aqueous phase complicates potential applications of this enzyme.  相似文献   

20.
The XYN2 gene encoding the main Trichoderma reesei QM 6a endo-beta-1,4-xylanase was amplified by PCR from first-strand cDNA synthesized on mRNA isolated from the fungus. The nucleotide sequence of the cDNA fragment was verified to contain a 699-bp open reading frame that encodes a 223-amino-acid propeptide. The XYN2 gene, located on URA3-based multicopy shuttle vectors, was successfully expressed in the yeast Saccharomyces cerevisiae under the control of the alcohol dehydrogenase II (ADH2) and phosphoglycerate kinase (PGK1) gene promoters and terminators, respectively. The 33-amino-acid leader peptide of the Xyn2 beta-xylanase was recognized and cleaved at the Kex2-like Lys-Arg residues, enabling the efficient secretion and glycosylation of the heterologous beta-xylanase. The molecular mass of the recombinant beta-xylanase was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 27 kDa. The construction of fur1 ura3 S. cerevisiae strains allowed for the autoselection of the URA3-based XYN2 shuttle vectors in nonselective complex medium. These autoselective S. cerevisiae strains produced 1,200 and 160 nkat of beta-xylanase activity per ml under the control of the ADH2 and PGK1 promoters in rich medium, respectively. The recombinant enzyme showed highest activity at pH 6 and 60 degrees C and retained more than 90% of its activity after 60 min at 50 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号