首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A thermoactive and thermostable levansucrase was purified from a newly isolated thermophilic Bacillus sp. from Thailand soil. The purification was achieved by alcohol precipitation, DEAE-Cellulose and gel filtration chromatographies. The enzyme was purified to homogeneity as determined by SDS-PAGE, and had a molecular mass of 56 kDa. This levansucrase has some interesting characteristics regarding its optimum temperature and heat stability. The optimum temperature and pH were 60 degrees C and 6.0, respectively. The enzyme was completely stable after treatment at 50 degrees C for more than 1 h, and its activity increased four folds in the presence of 5 mM Fe(2+). The optimum temperature for levan production was 50 degrees C. Contrary to other levansucrases, the one presented in this study is able to produce high molecular weight levan at 50 degrees C.  相似文献   

2.
Microbacterium sp. AL-210 producing a novel levan fructotransferase (LFTase) was screened from soil samples. The LFTase was purified to homogeneity by (NH4)2SO4 fractionation, column chromatography on Resource Q, and Superdex 200HR. The molecular weight of the purified enzyme was estimated to be approximately 46 kDa by both SDS-PAGE and gel filtration, and the enzyme's isoelectric point was pH 4.8. The major product produced from the levan hydrolysis by the enzyme reaction was identified by atmospheric pressure ionization mass spectrometry and NMR analysis as di-D-fructose-2,6':6,2'-dianhydride (DFA IV). The optimum pH and temperature for DFA IV production were 7.0 and 40 degrees C, respectively. The enzyme was stable at a pH range 7.0-8.0 and up to 40 degrees C. The enzyme activity was inhibited by FeCl2 and AgNO3. The enzyme converted the levan to DFA IV, with a conversion yield of approximately 44%. A gene encoding the LFTase (lftM) from Microbacterium sp. AL-210 was cloned and sequenced. The nucleotide sequence included an ORF of 1593 nucleotides, which is translated into a protein of 530 amino acid residues. The predicted amino acid sequence of the enzyme shared 79% of the identity and 86% of the homology with that of Arthrobacter nicotinovorans GS-9.  相似文献   

3.
A newly isolated thermophilic bacterial strain from Tunisian thermal source was identified as Bacillus sp. and was selected for its ability to produce extracellular levansucrase. Following the optimization of carbon source, nitrogen source, temperature and initial pH of the growth medium in submerged liquid cultures. In fact, sucrose was found to be a good inducer of levansucrase enzymes. The optimal temperature and pH of the levansucrase were 50°C and 6.5, respectively and its activity increased four folds in the presence of 50mM Fe(2+). This enzyme exhibited a remarkable stability and retained 100% of its original activity at 50°C for more than 1h at pH 6.5. The half-life of the enzyme was 1h at 90°C. Crude enzyme of Bacillus sp. rich in levansucrase was established for the synthesis of fructooligosaccharides and levan. Bacillus sp. could therefore be considered as a satisfactory and promising producer of thermostable levansucrases. Contrary to other levansucrases, the one presented in the current study was able to produce high levels of levan with high molecular weight at 50°C and having an important effect as a hypoglycemic agent which was demonstrated in our previous publications (Dahech et al., 2011 [25]) and as a hypo-cholesterolemic agent which will be investigated in further research.  相似文献   

4.
The activity of dye-linked d-proline dehydrogenase was found in the crude extract of a hyperthermophilic archaeon, Pyrobaculum islandicum JCM 9189. The dye-linked d-proline dehydrogenase was a membrane associated enzyme and was solubilized from the membrane fractions by treatment with Tween 20. The solubilized enzyme was purified 34-fold in the presence of 0.1% Tween 20 by four sequential chromatographies. The enzyme has a molecular mass of about 145 kDa and consisted of homotetrameric subunits with a molecular mass of about 42 kDa. The N-terminal amino acid sequence of the subunit was MKVAIVGGGIIGLFTAYHLRQQGADVVI. The enzyme retained its full activity both after incubation at 80 degrees C for 10 min and after incubation in the range of pH 4.0-10.0 at 50 degrees C for 10 min. The enzyme-catalyzed dehydrogenation of several d-amino acids was carried out using 2,6-dichloroindophenol as an electron acceptor, and d-proline was the most preferred substrate among the d-amino acids. The Michaelis constants for d-proline and 2,6-dichloroindophenol were determined to be 4.2 and 0.14 mm, respectively. Delta(1)-Pyrroline-2-carboxylate was identified as the reaction product from d-proline by thin layer chromatography. The prosthetic group of the enzyme was identified to be FAD by high-performance liquid chromatography. The gene encoding the enzyme was cloned and expressed in Escherichia coli. The nucleotide sequence of the dye-linked d-proline dehydrogenase gene was determined and encoded a peptide of 363 amino acids with a calculated molecular weight of 40,341. The amino acid sequence of the Pb. islandicum enzyme showed the highest similarity (38%) with that of the probable oxidoreductase in Sulfolobus solfataricus, but low similarity with those of d-alanine dehydrogenases from the mesophiles so far reported. This shows that the membrane-bound d-proline dehydrogenase from Pb. islandicum is a novel FAD-dependent amino acid dehydrogenase.  相似文献   

5.
Song EK  Kim H  Sung HK  Cha J 《Gene》2002,291(1-2):45-55
An extracellular levanbiohydrolase gene, levM, from Microbacterium laevaniformans ATCC 15953 was cloned and its nucleotide sequence was determined. Nucleotide sequence analysis of this gene revealed a 1863 bp open reading frame coding for a protein of 621 amino acids. The deduced amino acid sequence of the levM gene exhibited 28-47% sequence identities with levanases, levanfructotransferases, and inulinases. The LevM was overexpressed by using a T7 promoter in Escherichia coli BL21 (DE3) and purified 24-fold from culture supernatant. The molecular weight of this enzyme was 68,800 Da based on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimum pH and temperature of this enzyme for levan degradation was pH 6.0 and 30 degrees C, respectively. Thin-layer and high-performance liquid chromatography analyses proved that the enzyme produced mostly levanbiose from levan in an exo-acting manner. The recombinant enzyme also hydrolyzed inulin, 1-kestose, and nystose, indicating that the enzyme cleaves not only beta-2,6-linkage of levan but also beta-2,1-linkage of fructooligosaccharides. This is the first report on a gene encoding a levanbiohydrolase that produces levanbiose as a major degradation product.  相似文献   

6.
Leuconostoc mesenteroides B-512 FMC produces dextran and levan using sucrose. Because of the industrial importance of dextrans and oligosaccharides synthesized by dextransucrase (one of glycansucrases from L. mesenteroides), much is known about the dextransucrase, including expression and regulation of gene. However, no detailed report about levansucrase, another industrially important glycansucrase from L. mesenteroides, and its gene was available. In this paper, we report the first-time isolation and molecular characterization of a L. mesenteroides levansucrase gene (m1ft). The gene m1ft is composed of 1272-bp nucleotides and codes for a protein of 424 amino acid residues with calculated molecular mass of 47.1 kDa. The purified protein was estimated to be about 51.7 kDa including a His-tag based on SDS-PAGE. It showed an activity band at 103 kDa on a non-denaturing SDS-PAGE, indicating a dimeric form of the active M1FT. M1FT levan structure was confirmed by NMR and dot blot analysis with an anti-levan-antibody. M1FT converted 150 mM sucrose to levan (18%), 1-kestose (17%), nystose (11%) and 1,1,1-kestopentaose (7%) with the liberation of glucose. The M1FT enzyme produced erlose [O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->2)-beta-D-fructofuranoside] as an acceptor product with maltose. The optimum temperature and pH of this enzyme for levan formation were 30 degrees C and pH 6.2, respectively. M1FT levansucrase activity was completely abolished by 1 mM Hg2+ or Ag2+. The Km and Vmax values for levansucrase were calculated to be 26.6 mM and 126.6 micromol min-1 mg-1.  相似文献   

7.
Cloning and sequencing of the pho2 gene which codes for a specific p-nitrophenylphosphatase from Schizosaccharomyces pombe is described. The gene has an open contiguous reading frame of 269 amino acids corresponding to a protein with a molecular mass of 29.5 kDa and a calculated pI of 6.6. The sequence reveals four regions that share significant sequence similarity with the corresponding gene PHO13 of Saccharomyces cerevisiae. Purification of the enzyme to apparent homogeneity is reported. The amino acid composition of the purified protein matches well the values predicted from the nucleotide sequence. On SDS/polyacrylamide gels, the enzyme runs as a protein with a molecular mass of 33 kDa, and by Sephadex chromatography under nondenaturing conditions as 70 kDa. This indicates that the enzyme is a homodimer in its native form. The enzyme is not glycosylated. Its activity is stimulated by Mg2+ and inhibited by Zn2+. The available data on p-nitrophenylphosphatase do not give any clues to its biological role and its physiological substrates.  相似文献   

8.
Burkholderia sp. HY-10 isolated from the digestive tracts of the longicorn beetle, Prionus insularis, produced an extracellular lipase with a molecular weight of 33.5 kDa estimated by SDS-PAGE. The lipase was purified from the culture supernatant to near electrophoretic homogenity by a one-step adsorption-desorption procedure using a polypropylene matrix followed by a concentration step. The purified lipase exhibited highest activities at pH 8.5 and 60 degrees . A broad range of lipase substrates, from C4 to C18 rho-nitrophenyl esters, were hydrolyzed efficiently by the lipase. The most efficient substrate was rho-nitrophenyl caproate (C6). A 2485 bp DNA fragment was isolated by PCR amplification and chromosomal walking which encoded two polypeptides of 364 and 346 amino acids, identified as a lipase and a lipase foldase, respectively. The N-terminal amino acid sequence of the purified lipase and nucleotide sequence analysis predicted that the precursor lipase was proteolytically modified through the secretion step and produced a catalytically active 33.5 kDa protein. The deduced amino acid sequence for the lipase shared extensive similarity with those of the lipase family I.2 of lipases from other bacteria. The deduced amino acid sequence contained two Cystein residues forming a disulfide bond in the molecule and three, well-conserved amino acid residues, Ser131, His330, and Asp308, which composed the catalytic triad of the enzyme.  相似文献   

9.
The gene (xynA) encoding a surface-exposed, S-layer-associated endoxylanase from Thermoanaerobacterium sp. strain JW/SL-YS 485 was cloned and expressed in Escherichia coli. A 3.8-kb fragment was amplified from chromosomal DNA by using primers directed against conserved sequences of endoxylanases isolated from other thermophilic bacteria. This PCR product was used as a probe in Southern hybridizations to identify a 4.6-kb EcoRI fragment containing the complete xynA gene. This fragment was cloned into E. coli, and recombinant clones expressed significant levels of xylanase activity. The purified recombinant protein had an estimated molecular mass (150 kDa), temperature maximum (80 degrees C), pH optimum (pH 6.3), and isoelectric point (pH 4.5) that were similar to those of the endoxylanase isolated from strain JW/SL-YS 485. The entire insert was sequenced and analysis revealed a 4,044-bp open reading frame encoding a protein containing 1,348 amino acid residues (estimated molecular mass of 148 kDa).xynA was preceded by a putative promoter at -35 (TTAAT) and -10 (TATATT) and a potential ribosome binding site (AGGGAG) and was expressed constitutively in E. coli. The deduced amino acid sequence showed 30 to 96% similarity to sequences of family F beta-glycanases. A putative 32-amino-acid signal peptide was identified, and the C-terminal end of the protein contained three repeating sequences 59, 64, and 57 amino acids) that showed 46 to 68% similarity to repeating sequences at the N-terminal end of S-layer and S-layer-associated proteins from other gram-positive bacteria. These repeats could permit an interaction of the enzyme with the S-layer and tether it to the cell surface.  相似文献   

10.
The gene encoding beta-N-acetylglucosaminidase (GlcNAcaseA) was cloned using PCR with degenerate oligonucleotide primers from the partial amino acid sequence of the enzyme. The gene encoded a polypeptide of 863 amino acids with a predicted molecular mass of 97kDa. A characteristic signal peptide, which was present at the amino-terminus of the precursor protein, contained four amino acids (Ala-Gly-Cys-Ser) identical in sequence and location to the processing and modification sites of the outer membrane lipoprotein of Escherichia coli, indicating that the mature GlcNAcaseA is a lipoprotein the N-terminal cysteine residue of which would be modified by the fatty acid that anchors the protein in the membrane. The predicted amino acid sequence of GlcNAcaseA showed similarity to bacterial beta-N-acetylglucosaminidases belonging to the family 20 glycosyl hydrolases.  相似文献   

11.
Phospholipase B (PLB) from the yeast Kluyveromyces lactis was purified to homogeneity from culture medium. The enzyme was highly glycosylated with apparent molecular mass of 160-250 kDa, and had two pH optima, at pH 2.0 and pH 7.5. At acidic pH the enzyme hydrolyzed all phospholipid substrates tested here without metal ion. On the other hand, at alkaline pH the enzyme showed substrate specificity for phosphatidylcholine and lysophosphatidylcholine and required Ca2+, Fe3+, or Al3+ for the activity. The alkaline activity was increased more than 20-fold in the presence of Al3+ compared to that in the presence of Ca2+. cDNA sequence of PLB (KlPLB) was analyzed by a combination of several PCR procedures. KlPLB encoded a protein consist of 640 amino acids and the deduced amino acid sequence showed 66.7% similarity with the T. delbrueckii PLB. The amino acid sequence contained the lipase consensus sequence (G-X-S-X-G) and the catalytic aspartic acid motif. Replacement of Arg-112 or Asp-406 with alanine caused loss of the enzymatic activity at both pH. These results suggested that PLB activity are dependent on a catalytic mechanism similar to that of cytosolic phospholipase A2.  相似文献   

12.
A lambda-carrageenan-degrading Pseudoalteromonas bacterium, strain CL19, was isolated from a deep-sea sediment sample. A lambda-carrageenase from the isolate was purified to homogeneity from cultures containing lambda-carrageenan as a carbon source. This is the first report of the isolation of lambda-carrageenase together with the gene sequence for the enzyme. The molecular mass of the purified enzyme was approximately 100 kDa on both SDS-PAGE and gel-filtration chromatography, suggesting that the enzyme is a monomer. The optimal pH and temperature for activity were about 7 and 35 degrees C, respectively. The enzyme had specific activity of 253 U/mg protein. The enzyme required monovalent salts for the activity. Carbohydrates, such as sorbitol, sucrose, trehalose, improved the enzyme stability. The pattern of lambda-carrageenan hydrolysis showed that the enzyme is an endo-type lambda-carrageenase, and the final main product was a tetrasaccharide of the lambda-carrageenan ideal structure with galactose 2,6-disulfate at the reducing end, indicating the enzyme cleaves the beta-1,4 linkages of its backbone structure. Furthermore, the gene (cglA) encoding the enzyme was sequenced. It encoded a mature protein of 103 kDa (917 amino acids). Remarkably, the deduced amino acid sequence showed no similarity to any reported proteins.  相似文献   

13.
《Process Biochemistry》2014,49(5):783-790
In the present work we describe an enzymatic production method to obtain β2-6 fructose oligosaccharides (levan-type FOS) through a sequential reaction in which a bacterial endolevanase is applied to levan produced from sucrose by bacterial levansucrases. A putative gene encoding an endolevanase, designated as LevBl, was identified through a bioinformatics search, isolated from a strain of Bacillus licheniformis IBt1 from our own collection and expressed in Escherichia coli. LevB1 showed a specific activity of 1.8 U/mg protein at 35 °C in 50 mM phosphate buffer pH 6.0. A first order kinetic behavior was found when up to 150 g/L of low molecular weight levan (8.3 kDa) was used as the substrate. The product profile was determined by HPAEC-PAD and consisted of levan-type FOS with a polymerization degree between 2 and 8, with levanbiose as the major product after long reaction times. Yields of 97% of levan-type FOS were obtained when 1.0 U/mL of LevB1 reacted with 100 g/L of levan produced by the levansucrase from Bacillus subtilis. Finally, it was observed that levan-type FOS are efficiently fermented by probiotic lactic acid bacteria.  相似文献   

14.
Lactobacillus pentosus B235, which was isolated as part of the dominant microflora from a garlic containing fermented fish product, was grown in a chemically defined medium with inulin as the sole carbohydrate source. An extracellular fructan beta-fructosidase was purified to homogeneity from the bacterial supernatant by ultrafiltration, anion exchange chromatography and hydrophobic interaction chromatography. The molecular weight of the enzyme was estimated to be approximately 126 kDa by gel filtration and by SDS-PAGE. The purified enzyme had the highest activity for levan (a beta(2-->6)-linked fructan), but also hydrolysed garlic extract, (a beta(2-->1)-linked fructan with beta(2-->6)-linked fructosyl sidechains), 1,1,1-kestose, 1,1-kestose, 1-kestose, inulin (beta(2-->1)-linked fructans) and sucrose at 60, 45, 39, 12, 9 and 3%, respectively, of the activity observed for levan. Melezitose, raffinose and stachyose were not hydrolysed by the enzyme. The fructan beta-fructosidase was inhibited by p-chloromercuribenzoate, EDTA, Fe2+, Cu2+, Zn2+ and Co2+, whereas Mn2+ and Cu2+ had no effect. The sequence of the first 20 N-terminal amino acids was: Ala-Thr-Ser-Ala-Ser-Ser-Ser-Gln-Ile-Ser-Gln-Asn-Asn-Thr-Gln-Thr-Ser-Asp-Val-Val. The enzyme had temperature and pH optima at 25 degrees C and 5.5, respectively. At concentrations of up to 12% NaCl no adverse effect on the enzyme activity was observed.  相似文献   

15.
The ADP-dependent (AMP-forming) glucokinases from the hyperthermophilic archaea Pyrococcus furiosus and Thermococcus litoralis catalyze the phosphorylation of glucose using ADP as the essential phosphoryl group donor. Both enzymes were purified to homogeneity and characterized with regard to each other. The enzymes had similar enzymological properties as to substrate specificity, coenzyme specificity, optimum pH, and thermostability. However, a difference was observed in the subunit composition; while the T. litoralis enzyme is a monomer with a molecular mass of 52 kDa, the P. furiosus enzyme has a molecular mass of about 100 kDa and consists of two subunits with identical molecular masses of 47 kDa. The genes encoding these enzymes were cloned and sequenced. The gene for the P. furiosus enzyme contains an open reading frame for 455 amino acids with a molecular weight of 51,265, and that for the T. litoralis enzyme contains an open reading frame for 467 amino acids with a molecular weight of 53,621. About 59% similarity in amino acid sequence was observed between these two enzymes, whereas they did not show similarity with any ATP-dependent kinases that have been reported so far. In addition, two phosphate binding domains, and adenosine and glucose binding motifs commonly conserved in the eukaryotic hexokinase family were not observed.  相似文献   

16.
The levansucrase gene (lsxA) was cloned from the genomic DNA of Acetobacter xylinum NCI 1005, and the nucleotide sequence of the lsxA gene (1,293 bp) was determined. The deduced amino acid sequence of the lsxA gene showed 57.4% and 46.2% identity with the levansucrases from Zymomonas mobilis and Erwinia amylovora, respectively, while only 35.2% identity with that from Acetobacter diazotrophicus. The gene product of lsxA (LsxA) that was overproduced in E. coli coded for a polypeptide of molecular mass 47 kDa. The LsxA released glucose and produced polysaccharide from sucrose, the structure of which was analyzed by nuclear magnetic resonance spectroscopy and determined to be a beta-(2,6)-linked polyfructan.  相似文献   

17.
18.
Malate dehydrogenase (MDH; EC 1.1.1.37) from the thermophilic green nonsulfur bacterium Chloroflexus aurantiacus was purified by a two-step procedure involving affinity chromatography and gel filtration. The enzyme consists of identical subunits which had molecular weights of approximately 35,000. In its active form at 55 degrees C, it formed tetramers. At lower temperatures, inactive dimers and trimers existed. Antibodies against the purified enzyme were produced, and immunotitration and enzyme-linked immunosorbent assays showed that there was an immunochemical homology between the MDH from C. aurantiacus and MDHs from several other bacteria. The amino acid composition of C. aurantiacus MDH was similar to those of other MDHs. The N-terminal amino acid sequence was enriched with hydrophobic amino acids, which showed a high degree of functional similarity to amino acids at the N-terminal ends of both Escherichia coli and Thermus flavus MDHs. The activity of the native enzyme was inhibited by high concentrations of substrate and had temperature and pH optima consistent with the optimal growth conditions for the organism.  相似文献   

19.
A branching enzyme (EC 2.4.1.18) gene was isolated from an extremely thermophilic bacterium, Rhodothermus obamensis. The predicted protein encodes a polypeptide of 621 amino acids with a predicted molecular mass of 72 kDa. The deduced amino acid sequence shares 42-50% similarity to known bacterial branching enzyme sequences. Similar to the Bacillus branching enzymes, the predicted protein has a shorter N-terminal amino acid extension than that of the Escherichia coli branching enzyme. The deduced amino acid sequence does not appear to contain a signal sequence, suggesting that it is an intracellular enzyme. The R. obamensis branching enzyme was successfully expressed both in E. coli and a filamentous fungus, Aspergillus oryzae. The enzyme showed optimum catalytic activity at pH 6.0-6.5 and 65 degrees C. The enzyme was stable after 30 min at 80 degrees C and retained 50% of activity at 80 degrees C after 16 h. Branching activity of the enzyme was higher toward amylose than toward amylopectin. This is the first thermostable branching enzyme isolated from an extreme thermophile.  相似文献   

20.
An extracellular alkaline metalloprotease (MprI) from Alteromonas sp. strain O-7 was purified and characterized. The molecular mass of the purified enzyme was estimated to be 56 kDa by SDS-PAGE. The optimum pH and temperature were pH 10.0 and 60 degrees C, respectively. The gene (mprI) encoding MprI was cloned and its nucleotide sequence was analyzed. The deduced amino acid sequence of MprI showed significant similarity to metalloproteases classified into the thermolysin family. Furthermore, sequence analysis showed that another metalloprotease (MprII)-encoding gene was located downstream from mprI. The deduced amino acid sequence of MprII showed high similarity to metalloproteases of the aminopeptidase family. Similar repeated C-terminal extensions were found in both MprI and MprII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号