首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Uracil-DNA glycosylase activity from Dictyostelium discoideum   总被引:2,自引:0,他引:2  
We have isolated and partially characterized a uracil-DNA glycosylase activity from the cellular slime mold, Dictyostelium discoideum. This glycosylase has a broad pH optimum (6.5-8.5) and is fully active in 10 mM EDTA or in 5 mM Mg2+. Its molecular weight by gel filtration is about 55 000. This enzyme activity may work in concert with previously described apurinic/apyrimidinic (AP) endonuclease activities in the excision repair of uracil from the DNA of this lower eukaryote.  相似文献   

2.
The expression of uracil-DNA glycosylase was studied in human normal hematopoietic bone marrow cells and in malignant counterparts obtained from patients with chronic granulocytic leukemia. We observed that the expression of the enzyme was highest in the proliferating granulocytic compartment (myeloblasts through myelocytes) and that it was diminished in more mature cells. Furthermore, we demonstrated that uracil-DNA glycosylase activity was higher in immature red blood cells or reticulocytes than in more mature red cells. The same tendency was also demonstrated in human malignant monoblasts, which were induced to terminal maturation by phorbol ester. It can be concluded from these results that uracil-DNA glycosylase expression is equal in benign and malignant hematopoietic progenitor cells; no selectivity towards malignant vs. benign progenitors can be expected in possible chemotherapeutic approaches relying on uracil-DNA glycosylase.  相似文献   

3.
Uracil-DNA glycosylase activities in hyperthermophilic micro-organisms   总被引:1,自引:0,他引:1  
Abstract Hyperthermophiles exist in conditions which present an increased threat to the informational integrity of their DNA, particularly by hydrolytic damage. As in mesophilic organisms, specific activities must exist to restore and protect this template function of DNA. In this study we have demonstrated the presence of thermally stable uracil-DNA glycosylase activities in seven hyperthermophiles; one bacterial: Thermotoga maritima , and six archaeal: Sulfolobus solfataricus, Sulfolobus shibatae, Sulfolobus acidocaldarius, Thermococcus litoralis, Pyrococcus furiosus and Pyrobaculum islandicum . Uracil-DNA glycosylase inhibitor protein of the Bacillus subtilis bacteriophage PBS1 shows activity against all of these, suggesting a highly conserved tertiary structure between hyperthermophilic and mesophilic uracil-DNA glycosylases.  相似文献   

4.
Uracil-DNA glycosylase in the extreme thermophile Archaeoglobus fulgidus   总被引:3,自引:0,他引:3  
Uracil-DNA glycosylase (UDG) is an essential enzyme for maintaining genomic integrity. Here we describe a UDG from the extreme thermophile Archaeoglobus fulgidus. The enzyme is a member of a new class of enzymes found in prokaryotes that is distinct from the UDG enzyme found in Escherichia coli, eukaryotes, and DNA-containing viruses. The A. fulgidus UDG is extremely thermostable, maintaining full activity after heating for 1.5 h at 95 degrees C. The protein is capable of removing uracil from double-stranded DNA containing either a U/A or U/G base pair as well as from single-stranded DNA. This enzyme is product-inhibited by both uracil and apurinic/apyrimidinic sites. The A. fulgidus UDG has a high degree of similarity at the primary amino acid sequence level to the enzyme found in Thermotoga maritima, a thermophilic eubacteria, and suggests a conserved mechanism of UDG-initiated base excision repair in archaea and thermophilic eubacteria.  相似文献   

5.
An activity which released free uracil from dUMP-containing DNA was purified approximately 1,700-fold from extracts of Thermothrix thiopara, the first such activity to be isolated from extremely thermophilic bacteria. The enzyme appeared homogeneous, according to the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It had a native molecular weight of 26,000 and existed as a monomer protein in water solution. The enzyme had an optimal activity at 70 degrees C, between pH 7.5 and 9.0, and in the presence of 0.2% Triton X-100. It had no cofactor requirement and was not inhibited by EDTA, but it was sensitive to N-ethylmaleimide. The purified enzyme did not contain any nuclease that acted on native or depurinated DNA. The Arrhenius activation energy was 76 kJ/mol between 30 and 50 degrees C and 11 kJ/mol between 50 and 70 degrees C. The rate of heat inactivation of the enzyme followed first-order kinetics with a half-life of 2 min at 70 degrees C. Ammonium sulfate and bovine serum albumin protected the enzyme from heat inactivation. One T. thiopara cell contains enough activity to release about 2 X 10(8) uracil residues from DNA during one generation time at 70 degrees C.  相似文献   

6.
Uracil-DNA glycosylase in insects. Drosophila and the locust   总被引:3,自引:0,他引:3  
It has been reported that Drosophila lacks a uracil-DNA glycosylase but that a direct incising activity on uracil-containing DNA appeared developmentally only in third instar larvae. In contrast we have found by two independent assays, that uracil-DNA glycosylase exists in both Drosophila eggs as well as in third instar larvae. The first assay shows the liberation of [3H] uracil from a d(AT)n polymer randomly substituted with [3H]uracil by its synthesis in the presence of [3H] dUTP. The second fluorometric assay for uracil-DNA glycosylase depends on the unique topological properties of circular DNAs and has the advantage of detecting apyrimidinic/apurinic (AP) endonuclease activity as well. To test one other insect, locust eggs were also assayed for uracil-DNA glycosylase. The amount of uracil-DNA glycosylase correlated well with the amount of DNA in actively replicating cells.  相似文献   

7.
《Mutation research》1987,181(1):111-126
Uracil is not a normal constituent of DNA. Under natural conditions, it may appear either by deamination of cytosine residues or by incorporation of deoxyuridine monophosphate (dUMP). Visible light irradiation of BrdUrd-treated cells efficiently leads, under experimental situations, to the formation of dUMP residues in DNA. Plant cells, like other living organisms, can eliminate this potentially harmful base from DNA by an excision repair pathway, uracil-DNA glycosylase being the first enzyme acting during the incision process. Purified plant uracil-DNA glycosylase is a low molecular weight enzyme (27–29.5 kD) that specifically releases uracil present in DNA by splitting off the sugar-base bond. This enzyme is non-competitively inhibited by uracil and 6-aminouracil, but not by thymine, both in vitro and in vivo. However, other structurally related compounds do not show any inhibitory effect. This characteristic poses a number of unaswered questions regarding its mechanism of action. At the chromosome level, dUMP residues appear to be sister-chromatid exchange (SCE)-initiating events. This has been demonstrated for dUMP residue introduced either by visible light exposure of BrdUrd-treated cells or by dUMP mis-incorporation instead of dTMP in cells treated with inhibitors of thymidylate synthetase. The excision repair of uracil in plants appears to be finely regulated in different cell types depending on their proliferation rate and their development stage. Thus, high levels of uracil-DNA glycosylase do not seem to be necessarily associated with DNA replication, since non-proliferating cells, natural constituents of dormant meristems, contain enzyme levels comparable to those found in proliferating tissues, where it is modulated: the higher the cell cycle rate (and the DNA replication rate) the higher the uracil-DNA glycosylase activity. Finally, this excision repair enzyme seems to be turned off as cells enter their differentiated state.  相似文献   

8.
An Escherichia coli uracil-DNA glycosylase-defective mutant (ung-1 thyA) was more resistant than its wild-type counterpart (ung+ thyA) to the killing effect of UV light when cultured in medium containing 5-bromouracil or 5-bromo-2'-deoxyuridine (BrdUrd). The phenotype of resistance to BrdUrd photosensitization and the uracil-DNA glycosylase deficiency appeared to be 100% cotransduced by P1 phage. During growth with BrdUrd, both strains exhibited similar growth rates and 5-bromouracil incorporation into DNA. The resistant phenotype of the ung-1 mutant was observed primarily during the stationary phase. In cells carrying 5-bromouracil-substituted DNA, mutations causing resistance to rifampin and valine were induced by UV irradiation at a higher frequency in the wild type than in the ung-1 mutant. This Ung-dependent UV mutagenesis required UmuC function. These results suggest that the action of the uracil-DNA glycosylase on UV-irradiated 5-bromouracil-substituted DNA produces lethal and mutagenic lesions. The BrdUrd photosensitization-resistant phenotype allowed us to develop a new, efficient method for enriching and screening ung mutants.  相似文献   

9.
The uracil-DNA glycosylase inhibitor gene (ugi) of the Bacillus subtilis bacteriophage PBS2 has been subcloned to a 720-base pair DNA fragment contained in pZW2-0.7 and its nucleotide sequence determined. Using nucleotide deletion analysis, we have located the cloned ugi gene along with potential regulatory elements. A promoter-like region (-10 and -35 consensus sequences) similar to other B. subtilis genes and the Shine-Dalgarno sequence characteristic of Gram-positive bacteria were both identified upstream from the initiator AUG codon. A 17-nucleotide exact inverted repeat followed by runs of adenine and thymine residues was positioned almost immediately downstream of the ochre codon. The ugi gene product was identified on sodium dodecyl sulfate-polyacrylamide gels using Escherichia coli minicells containing pZW2-0.7 and by recovering uracil-DNA glycosylase inhibitor activity following electrophoresis. The ugi gene codes for an acidic polypeptide of 9,477 molecular weight (84 amino acids) whose electrophoretic mobility was greater than predicted for a protein of this size. The mode of inhibition did not appear to involve a catalytic process nor did it directly involve inhibitor-DNA interaction. Rather, the inhibitor protein was shown to bind physically to the E. coli uracil-DNA glycosylase, forming a 36,000 molecular weight complex. This complex seems to be reversible, since inhibitor activity was recovered after heat treatment of the complex. In addition, we demonstrated that the inhibitor protein is active against uracil-DNA glycosylases isolated from several diverse biological sources but inactive against E. coli deoxyuridine triphosphatase, DNA polymerase I, and DNA polymerase alpha, beta, and gamma.  相似文献   

10.
Mutagenesis induced by the alkylating agent ethyl methanesulfonate (EMS) is thought to occur primarily via mechanisms that involve direct mispairing at alkylated guanines, in particular, O6-ethyl guanine. Recent evidence indicates that alkylation of guanine at the O-6 position might enhance the deamination of cytosine residues in the complementary strand. To determine whether such deamination of cytosine could play a role in the production of mutations by EMS, the efficacy of this agent was tested in uracil-DNA glycosylase deficient (Ung) strains of Escherichia coli. The Ung- strains showed a linear response with increasing doses of EMS. This response was independent of the umuC gene product. In contrast, the Ung+ strains yielded a dose-squared response that became linear at higher doses of EMS when the cells were defective for the umuC gene product. These results support a model for mutagenesis involving the deamination of cytosines opposite O6-alkylated guanines followed by an error-prone repair event.  相似文献   

11.
Uracil-DNA glycosylase (UDG) compromises the replication strategies of diverse viruses from unrelated lineages. Virally encoded proteins therefore exist to limit, inhibit or target UDG activity for proteolysis. Viral proteins targeting UDG, such as the bacteriophage proteins ugi, and p56, and the HIV-1 protein Vpr, share no sequence similarity, and are not structurally homologous. Such diversity has hindered identification of known or expected UDG-inhibitory activities in other genomes. The structural basis for UDG inhibition by ugi is well characterized; yet, paradoxically, the structure of the unbound p56 protein is enigmatically unrevealing of its mechanism. To resolve this conundrum, we determined the structure of a p56 dimer bound to UDG. A helix from one of the subunits of p56 occupies the UDG DNA-binding cleft, whereas the dimer interface forms a hydrophobic box to trap a mechanistically important UDG residue. Surprisingly, these p56 inhibitory elements are unexpectedly analogous to features used by ugi despite profound architectural disparity. Contacts from B-DNA to UDG are mimicked by residues of the p56 helix, echoing the role of ugi’s inhibitory beta strand. Using mutagenesis, we propose that DNA mimicry by p56 is a targeting and specificity mechanism supporting tight inhibition via hydrophobic sequestration.  相似文献   

12.
Normal uracil-DNA glycosylase activity in Bloom's syndrome cells   总被引:2,自引:0,他引:2  
Cells from patients with Bloom's syndrome, a rare human disease with autosomal recessive mode of inheritance, exhibit cytological abnormalities involving DNA metabolism. Bloom's syndrome is characterized by a greatly increased cancer frequency which may reflect a specific defect in DNA repair and replication. Evidence has recently been presented of the existence in Bloom's syndrome of an abnormality of the DNA ligase involved in semiconservative DNA replication. Another abnormality, in the excision-repair pathway of Bloom's syndrome cells, is reportedly due to an aberrant immunological reactivity of the DNA-repair enzyme uracil-DNA glycosylase. In this investigation we show, however, that the catalytic activity of uracil-DNA glycosylase appears to be normal in Bloom's syndrome lymphoblastoid cells.  相似文献   

13.
The generalized mismatch repair system of Streptococcus pneumoniae (the Hex system) can eliminate base pair mismatches arising in heteroduplex DNA during transformation or by DNA polymerase errors during replication. Mismatch repair is most likely initiated at nicks or gaps. The present work was started to examine the hypothesis that strand discontinuities arising after removal of uracil by uracil DNA-glycosylase (Ung) can be utilised as strand discrimination signals. We show that mismatch repair efficiency is enhanced 3- to 6-fold when using uracil-containing DNA as donor in transformation. In order to assess the contribution of Ung to nascent strand discrimination for postreplication mismatch repair, we developed a positive selection procedure to isolate S. pneumoniae Ung- mutants. We succeeded in isolating Ung- mutants using this procedure based on chromosomal integration of uracil-containing hybrid DNA molecules. Cloning and characterization of the ung gene was achieved. Comparison of spontaneous mutation rates in strains either proficient or deficient in mismatch and/or uracil repair gave no support to the hypothesis that Ung plays a major role in targeting the Hex system to neosynthesized DNA strands. However Ung activity is responsible for the increased efficiency of mismatch repair observed in transformation with uracil-containing DNA. In addition Ung is involved in repair of bisulfite-treated transforming DNA.  相似文献   

14.
15.
Dihydropyrimidine dehydrogenase activity in human blood mononuclear cells   总被引:2,自引:0,他引:2  
Dihydropyrimidine dehydrogenase (DPD; EC 1.3.1.2) catalyzes the rate-limiting reaction in the catabolism of endogenous uracil and thymine and exogenous fluoropyrimidines. DPD activity was studied in human blood mononuclear cell supernatants utilizing a new and sensitive radiochromatographic assay. Total DPD activity showed a linear correlation with supernatant protein concentration. The affinity constants (Km) for NADPH and thymine were approximately 10 and 1 mumol/l, respectively. Maximal activity (Vmax) was observed at 0.25 mmol/l NADPH and 10 mumol/l thymine, respectively. DPD activity in normal individuals was 8.0 +/- (SD) 2.2 nmol/mg protein/h, and ranged from 4.4 to 12.3 nmol/mg/h (n = 25). This activity range was quite similar to values obtained in patients with metastatic solid tumors treated with fluorodeoxyuridine (FUdR; n = 33, p = 0.57). No correlation was found to exist between mononuclear leucocyte DPD activity and the observed toxicity of FUdR in the tested patients. A bimodal distribution of DPD activity was observed in the patients and in normal individuals. The entire study population tested could be divided into two groups with respect to DPD activity; one group with high (greater than 8 nmol/mg/h) activity and another with low (less than 8 nmol/mg/h) activity. The possibility that sex differences may have been responsible for this distribution of DPD activity could not be excluded. The findings of this study are relevant to the pharmacogenetics of fluoropyrimidines in humans.  相似文献   

16.
Werner's syndrome (WS) is an autosomal recessive disease marked by early symptoms of accelerated aging. There is evidence indicating accumulation of oxidized DNA bases to be a major factor in cellular aging. The first step of excision repair of such bases in human cells is their removal from DNA by glycosylases. 5-Hydroxymethyluracil (HMU)-DNA glycosylase excises HMU from DNA; another glycosylase removes many non-aromatic pyrimidine derivatives. Levels of glycosylases that excise oxidized pyrimidines from DNA were compared between confluent and proliferating populations of WS cells, age-matched controls, and young control cells. They were assayed by measurements of direct release of free bases from their respective DNA substrates. Specific activities of the glycosylase that releases various modified pyrimidines and of uracil-DNA glycosylase (which removes uracil from DNA) were essentially the same in all cell lines. Cell cycle variations of these enzymes also did not differ between WS and control cells. HMU-DNA glycosylase specific activity was reduced in WS cells. Reduction of HMU-DNA glycosylase has been described in senescent human WI-38 cells. Therefore, while neither WS nor senescent cells have overall deficiencies of DNA glycosylase activities, they both might have reduced excision of HMU from DNA. This indicates a possible role of HMU accumulation in the aging process.  相似文献   

17.
Genomic uracil is a DNA lesion but also an essential key intermediate in adaptive immunity. In B cells, activation-induced cytidine deaminase deaminates cytosine to uracil (U:G mispairs) in Ig genes to initiate antibody maturation. Uracil-DNA glycosylases (UDGs) such as uracil N-glycosylase (UNG), single strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and thymine-DNA glycosylase remove uracil from DNA. Gene-targeted mouse models are extensively used to investigate the role of these enzymes in DNA repair and Ig diversification. However, possible species differences in uracil processing in humans and mice are yet not established. To address this, we analyzed UDG activities and quantities in human and mouse cell lines and in splenic B cells from Ung(+/+) and Ung(-/-) backcrossed mice. Interestingly, human cells displayed ~15-fold higher total uracil excision capacity due to higher levels of UNG. In contrast, SMUG1 activity was ~8-fold higher in mouse cells, constituting ~50% of the total U:G excision activity compared with less than 1% in human cells. In activated B cells, both UNG and SMUG1 activities were at levels comparable with those measured for mouse cell lines. Moreover, SMUG1 activity per cell was not down-regulated after activation. We therefore suggest that SMUG1 may work as a weak backup activity for UNG2 during class switch recombination in Ung(-/-) mice. Our results reveal significant species differences in genomic uracil processing. These findings should be taken into account when mouse models are used in studies of uracil DNA repair and adaptive immunity.  相似文献   

18.
Ultraviolet irradiation of DNA produces a variety of pyrimidine base damages. The activities of Escherichia coli endonuclease III and a human lymphoblast endonuclease that incises ultraviolet-irradiated DNA at modified cytosine moieties were compared. Both the bacterial and human enzymes release this cytosine photoproduct as a free base. These glycosylase activities are linear with times of reaction, quantities of enzyme, and irradiation dosages of the substrates. Both enzyme activities are similarly inhibited by the addition of monovalent and divalent cations. Analysis by DNA sequencing identified loci of endonucleolytic incision as cytosines. These are neither cyclobutane pyrimidine dimers, 6-(1,2-dihydro-2-oxo-4-pyrimidinyl)-5-methyl-2,4(1H,3H)-pyrimidinediones, nor apyrimidinic sites. This cytosine photoproduct is separable from unmodified cytosine by high-performance liquid chromatography. This separation should facilitate identification of this modified cytosine and elucidation of its biological significance.  相似文献   

19.
Oxanine (Oxa) is a deaminated base lesion derived from guanine in which the N(1)-nitrogen is substituted by oxygen. This work reports the mutagenicity of oxanine as well as oxanine DNA glycosylase (ODG) activities in mammalian systems. Using human DNA polymerase beta, deoxyoxanosine triphosphate is only incorporated opposite cytosine (Cyt). When an oxanine base is in a DNA template, Cyt is efficiently incorporated opposite the template oxanine; however, adenine and thymine are also incorporated opposite Oxa with an efficiency approximately 80% of a Cyt/Oxa (C/O) base pair. Guanine is incorporated opposite Oxa with the least efficiency, 16% compared with cytosine. ODG activity was detected in several mammalian cell extracts. Among the known human DNA glycosylases tested, human alkyladenine glycosylase (AAG) shows ODG activity, whereas hOGG1, hNEIL1, or hNEIL2 did not. ODG activity was detected in spleen cell extracts of wild type age-matched mice, but little activity was observed in that of Aag knock-out mice, confirming that the ODG activity is intrinsic to AAG. Human AAG can excise Oxa from all four Oxa-containing double-stranded base pairs, Cyt/Oxa, Thy/Oxa, Ade/Oxa, and Gua/Oxa, with no preference to base pairing. Surprisingly, AAG can remove Oxa from single-stranded Oxa-containing DNA as well. Indeed, AAG can also remove 1,N(6)-ethenoadenine from single-stranded DNA. This study extends the deaminated base glycosylase activities of AAG to oxanine; thus, AAG is a mammalian enzyme that can act on all three purine deamination bases, hypoxanthine, xanthine, and oxanine.  相似文献   

20.
Xanthine oxidase activity has been revealed in human blood mononuclear cells. The enzyme is found in these cells only after solubilization. This may become the explanation for contradiction with other previous data claiming absence of xanthine oxidase in human blood mononuclears. The level of enzyme activity is 2.76 +/- 0.029 mu mol/g protein.min. The latter is readily inhibited with allopurinol and folic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号