首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
RNase P is involved in processing the 5⿲ end of pre-tRNA molecules. Bacterial RNase P contains a catalytic RNA subunit and a protein subunit. In this study, we have analyzed the residues in RNase P protein of M. tuberculosis that differ from the residues generally conserved in other bacterial RNase Ps. The residues investigated in the current study include the unique residues, Val27, Ala70, Arg72, Ala77, and Asp124, and also Phe23 and Arg93 which have been found to be important in the function of RNase P protein components of other bacteria. The selected residues were individually mutated either to those present in other bacterial RNase P protein components at respective positions or in some cases to alanine. The wild type and mutant M. tuberculosis RNase P proteins were expressed in E. coli, purified, used to reconstitute holoenzymes with wild type RNA component in vitro, and functionally characterized. The Phe23Ala and Arg93Ala mutants showed very poor catalytic activity when reconstituted with the RNA component. The catalytic activity of holoenzyme with Val27Phe, Ala70Lys, Arg72Leu and Arg72Ala was also significantly reduced, whereas with Ala77Phe and Asp124Ser the activity of holoenzyme was similar to that with the wild type protein. Although the mutants did not suffer from any binding defects, Val27Phe, Ala70Lys, Arg72Ala and Asp124Ser were less tolerant towards higher temperatures as compared to the wild type protein. The Km of Val27Phe, Ala70Lys, Arg72Ala and Ala77Phe were >2-fold higher than that of the wild type, indicating the substituted residues to be involved in substrate interaction. The study demonstrates that residues Phe23, Val27 and Ala70 are involved in substrate interaction, while Arg72 and Arg93 interact with other residues within the protein to provide it a functional conformation.  相似文献   

2.
An Mn2+-activated phosphoprotein phosphatase of Mr = 80,000 from rabbit muscle catalyzes the dephosphorylation of skeletal muscle proteins that are phosphorylated by either phosphorylase kinase or cAMP-dependent protein kinase. Phosphorylase or glycogen synthase labeled by phosphorylase kinase at seryl residues 14 or 7, respectively, are both dephosphorylated by the phosphatase. Phosphorylase a and glycogen synthase compete with one another for the phosphatase. The phosphatase discriminates between different sites labeled by the cAMP-dependent protein kinase: glycogen synthase phosphorylated either to 1.0 or 1.8 mol phosphate/mol, or phosphorylase kinase phosphorylated on its β-subunit serve as substrates for the phosphatase, but the phosphorylase kinase α-subunit, the phosphorylated phosphatase inhibitor 1, or casein do not. Histone fraction IIA, phosphorylated by the catalytic subunit, was a poor substrate even at a concentration of 100 μm. Phosphorylation of the α-subunit of phosphorylase kinase had no influence on the kinetics of dephosphorylation of the β-subunit. Thus, the Mr = 80,000 phosphatase meets the functional definition of a protein phosphatase 1 [Cohen, P. (1978) Curr. Top. Cell. Regul.14, 117–196]. Furthermore, from a comparison of the known phosphorylated sites of these proteins, it appears that the phosphatase discriminates between different sites present in the phosphoproteins tested on the basis of the Km values for the reactions. It displays a preferential activity toward proteins with a primary structure wherein basic residues are two positions amino-terminal from the phosphoserine, AgrLysX-YSer(P) or LysArgX-YSer(P), rather and one residue away, ArgArgX-Ser(P).  相似文献   

3.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

4.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

5.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leum-Pro-Glu-Ala-Leun (m=0-4, n=0-3). Neither Pro-Glu-Ala-Leu (m=0) nor Leu-Pro-Glu-Ala (n=0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leum-Pro-Glu-Ala-Leu increased with the increase of m=1 to 2 and 3, but was however, essentially same with the increase of m=3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leun increased with the increase of n=0 to 1 and 2, but was essentially same with the increase of n=2 to 3. Then, it was concluded that cucumisin has a S5-S3′ subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1′ position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1′ positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

6.
The substrate specificity of protein kinase C has been examined using a series of synthetic peptide analogs of glycogen synthase, ribosomal protein S6, and the epidermal growth factor receptor. The glycogen synthase analog peptide Pro1-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala10 was phosphorylated at Ser7 with a Km of 40.3 microM. Peptide phosphorylation was strongly dependent on Arg4. When lysine was substituted for Arg4 the Km was increased approximately 20-fold. Addition of basic residues on either the NH2-terminal or COOH-terminal side of the phosphorylation site of the glycogen synthase peptide improved the kinetics of peptide phosphorylation. The analog Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys-Lys was phosphorylated with a Km of 4.1 microM. Substitution of Ser7 with threonine increased the apparent Km to 151 microM. The truncated peptide Pro1-Leu-Ser-Arg-Thr-Leu-Ser-Val8 was phosphorylated with similar kinetic constants to the parent peptide, however, deletion of Val8 increased the apparent Km to 761 microM. The ribosomal peptide S6-(229-239) was phosphorylated with a Km of approximately 0.5 microM predominantly on Ser236 and is one of the most potent synthetic peptide substrates reported for a protein kinase. The apparent Km for S6 peptide phosphorylation was increased by either deletion of the NH2-terminal 3 residues Ala229-Arg-231 or by substitution of Arg238 on the COOH-terminal side of the phosphorylation site with alanine. This analog peptide, [Ala238]S6-(229-239) was phosphorylated with an approximate 6-fold reduction in Vmax and a switch in the preferred site of phosphorylation from Ser236 to Ser235. These results support the concept that basic residues on both sides of the phosphorylation site can have an important influence on the kinetics of phosphorylation and site specificity of protein kinase C.  相似文献   

7.
The galectin family is a representative soluble lectin group, which is responsible for the modulation of various cell functions. Although the carbohydrate-binding specificity of galectins has been well-studied, the relationship between protein structure and specificity remains to be elucidated. We previously reported the characteristics of a Xenopus laevis skin galectin, xgalectin-Va, which had diverged from galectin-1. The carbohydrate selectivity of xgalectin-Va was different from that of human galectin-1 and xgalectin-Ib (a Xenopus laevis galectin-1 homolog). In this study, we clarified the key residues for this selectivity by site-directed mutagenesis. Substitution of two amino acids of xgalectin-Va, Val56Gly/Lys76Arg, greatly enhanced the binding ability to N-acetyllactosamine and conferred significant T-cell growth inhibition activity, although the wild type had no activity. These two residues, Gly54 and Arg74 in galectin-1, would cooperatively contribute to the N-acetyllactosamine recognition. The loop region between the S4 and S5 β-strands was involved in the binding to the TF-antigen disaccharide. The loop substitution successfully changed the carbohydrate selectivity of xgalectin-Va and xgalectin-Ib.  相似文献   

8.
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1) is essential for replication of episomal EBV DNAs and maintenance of latency. Multifunctional EBNA-1 is phosphorylated, but the significance of EBNA-1 phosphorylation is not known. Here, we examined the effects on nuclear translocation of Ser phosphorylation of the EBNA-1 nuclear localization signal (NLS) sequence, 379Lys-Arg-Pro-Arg-Ser-Pro-Ser-Ser386. We found that Lys379Ala and Arg380Ala substitutions greatly reduced nuclear transport and steady-state levels of green fluorescent protein (GFP)-EBNA1, whereas Pro381Ala, Arg382Ala, Pro384Ala, and Glu378Ala substitutions did not. Microinjection of modified EBNA-1 NLS peptide-inserted proteins and NLS peptides cross-linked to bovine serum albumin (BSA) showed that Ala substitution for three NLS Ser residues reduced the efficiency of nuclear import. Similar microinjection analyses demonstrated that phosphorylation of Ser385 accelerated the rate of nuclear import, but phosphorylation of Ser383 and Ser386 reduced it. However, transfection analyses of GFP-EBNA1 mutants with the Ser-to-Ala substitution causing reduced nuclear import efficiency did not result in a decrease in the nuclear accumulation level of EBNA-1. The results suggest dynamic nuclear transport control of phosphorylated EBNA-1 proteins, although the nuclear localization level of EBNA-1 that binds to cellular chromosomes and chromatin seems unchanged. The karyopherin alpha NPI-1 (importin alpha5), a nuclear import adaptor, bound more strongly to Ser385-phosphorylated NLS than to any other phosphorylated or nonphosphorylated forms. Rch1 (importin alpha1) bound only weakly and Qip1 (importin alpha3) did not bind to the Ser385-phosphorylated NLS. These findings suggest that the amino-terminal 379Lys-Arg380 is essential for the EBNA-1 NLS and that Ser385 phosphorylation up-regulates nuclear transport efficiency of EBNA-1 by increasing its binding affinity to NPI-1, while phosphorylation of Ser386 and Ser383 down-regulates it.  相似文献   

9.
Phosphorylation of clupeine sulfate by purified rat brain calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was studied. In the absence of Ca2+, phosphatidylserine and diolein markedly stimulated its phosphorylation. However Ca2+ did not stimulate but inhibit this phosphorylation about 30% in the presence of phospholipids. Random polymer (Arg, Ser) 3:1 and (Lys, Ser) 3:1 could be phosphorylated by protein kinase C. In the presence of phospholipids Ca2+ is not needed for the phosphorylation of polymer (Arg, Ser) 3:1, while Ca2+ is necessary for polymer (Lys, Ser) 3:1. Non-requirement of Ca2+ on clupeine phosphorylation by protein kinase C is briefly discussed.  相似文献   

10.
The substrate specificity of the different forms of the polycation-stimulated (PCS, type 2A) protein phosphatases and of the active catalytic subunit of the ATP, Mg-dependent (type 1) phosphatase (AMDC) was investigated, using synthetic peptides phosphorylated by either cyclic-AMP-dependent protein kinase or by casein kinase-2. The PCS phosphatases are very efficient toward the Thr(P) peptides RRAT(P)VA and RRREEET(P)EEE when compared with the Ser(P) analogues RRAS(P)VA and RRREEES(P)EEEAA. Despite their distinct sequence, both Thr(P) peptides are excellent substrates for the PCSM and PCSH1 phosphatases, being dephosphorylated faster than phosphorylase a. The slow dephosphorylation of RRAS(P)VA by the PCS phosphatases could be increased substantially by the insertion of N-terminal (Arg) basic residues. In contrast with the latter, the AMDC phosphatase shows very poor activity toward all the phosphopeptides tested, without preference for either Ser(P) or Thr(P) peptides. However, N-terminal basic residues also favor the dephosphorylation of otherwise almost inert substrates by the AMDC phosphatase. Hence, while the dephosphorylation of Thr(P) substrates by the PCS phosphatases is highly favored by the nature of the phosphorylated amino acid, phosphatase activity toward Ser(P)-containing peptides may require specific determinants in the primary structure of the phosphorylation site.  相似文献   

11.
12.
Polymorphisms in nucleotide and base excision repair genes are associated with the variability in the risk of developing lung cancer. In the present study, we investigated the polymorphisms of following selected DNA repair genes: XPC (Lys939Gln), XPD (Lys751Gln), hOGG1 (Ser326Cys) and XRCC1 (Arg399Gln), and the risks they present towards the development of lung cancer with the emphasis to gender differences within the Slovak population. We analyzed 761 individuals comprising 382 patients with diagnosed lung cancer and 379 healthy controls. Genotypes were determined by polymerase chain reaction/restriction fragment length polymorphism method. We found out statistically significant increased risk for lung cancer development between genders. Female carrying XPC Gln/Gln, XPC Lys/Gln+Gln/Gln and XRCC1 Arg/Gln, XRCC1 Arg/Gln+Gln/Gln genotypes had significantly increased risk of lung cancer corresponding to OR = 2.06; p = 0.04, OR = 1.66; p = 0.04 and OR = 1.62; p = 0.04, OR = 1.69; p = 0.02 respectively. In total, significantly increased risk of developing lung cancer was found in the following combinations of genotypes: XPD Lys/Gln+XPC Lys/Lys (OR = 1.62; p = 0.04), XRCC1 Gln/Gln+hOGG1 Ser/Ser (OR = 2.14; p = 0.02). After stratification for genders, the following combinations of genotype were found to be significant in male: XPD Lys/Gln+XPC Lys/Lys (OR = 1.87; p = 0.03), XRCC1 Arg/Gln+XPC Lys/Lys (OR = 4.52; p = 0.0007), XRCC1 Arg/Gln+XPC Lys/Gln (OR = 5.44; p < 0.0001). In female, different combinations of the following genotypes were found to be significant: XRCC1 Arg/Gln+hOGG1 Ser/Ser (OR = 1.98; p = 0.04), XRCC1 Gln/Gln+hOGG1 Ser/Ser (OR = 3.75; p = 0.02), XRCC1 Arg/Gln+XPC Lys/Gln (OR = 2.40; p = 0.04), XRCC1 Arg/Gln+XPC Gln/Gln (OR = 3.03; p = 0.04). We found out decreased cancer risk in genotype combinations between female patients and healthy controls: XPD Lys/Lys+XPC Lys/Gln (OR = 0.45; p = 0.02), XPD Lys/Gln+XPC Lys/Lys (OR = 0.32; p = 0.005), XPD Lys/Gln+XPC Lys/Gln (OR = 0.48; p = 0.02). Our results did not show any difference between pooled smokers and non-smokers in observed gene polymorphisms in the association to the lung cancer risk. However, gender stratification indicated the possible effect of heterozygous constitution of hOGG1 gene (Ser/Cys) on lung cancer risk in female non-smokers (OR = 0.20; p = 0.01) and heterozygous constitution of XPC gene (Lys/Gln) in male smokers (OR = 2.70; p = 0.01).  相似文献   

13.
Signal peptide peptidases (SPPs) are enzymes involved in the initial degradation of signal peptides after they are released from the precursor proteins by signal peptidases. In contrast to the eukaryotic enzymes that are aspartate peptidases, the catalytic mechanisms of prokaryotic SPPs had not been known. In this study on the SPP from the hyperthermophilic archaeon Thermococcus kodakaraensis (SppA(Tk)), we have identified amino acid residues that are essential for the peptidase activity of the enzyme. DeltaN54SppA(Tk), a truncated protein without the N-terminal 54 residues and putative transmembrane domain, exhibits high peptidase activity, and was used as the wild-type protein. Sixteen residues, highly conserved among archaeal SPP homologue sequences, were selected and replaced by alanine residues. The mutations S162A and K214A were found to abolish peptidase activity of the protein, whereas all other mutant proteins displayed activity to various extents. The results indicated the function of Ser(162) as the nucleophilic serine and that of Lys(214) as the general base, comprising a Ser/Lys catalytic dyad in SppA(Tk). Kinetic analyses indicated that Ser(184), His(191) Lys(209), Asp(215), and Arg(221) supported peptidase activity. Intriguingly, a large number of mutations led to an increase in activity levels of the enzyme. In particular, mutations in Ser(128) and Tyr(165) not only increased activity levels but also broadened the substrate specificity of SppA(Tk), suggesting that these residues may be present to prevent the enzyme from cleaving unintended peptide/protein substrates in the cell. A detailed alignment of prokaryotic SPP sequences strongly suggested that the majority of archaeal enzymes, along with the bacterial enzyme from Bacillus subtilis, adopt the same catalytic mechanism for peptide hydrolysis.  相似文献   

14.
Site-directed mutagenesis of rat hepatic neutral cytosolic cholesteryl ester hydrolase (rhncCEH) was used to substitute acidic, basic or neutral amino acid residues for Ser506, required for activation by protein kinase A. The substitution of acidic Asp506 resulted in esterase activities with cholesteryl oleate, p-nitrophenylcaprylate (PNPC) and p-nitrophenylacetate (PNPA) equivalent to those of native rhncCEH with Ser506. The substitution of 2 acidic residues (Asp505/506), emulating the 2 negative charges of phosphoserine, resulted in a 10-fold greater cholesterol esterase activity than that of native rhncCEH, similar to the activity of rhncCEH treated with protein kinase A. In contrast to mutants with Ser506, protein kinase A did not increase the specific activities of mutants with Asp505/506. The substitution of basic (Lys506) or neutral (Asn506) residues abolished activity with cholesteryl oleate but not PNPC or PNPA. The substitution of neutral Gln for basic residues Lys496/Arg503 also abolished cholesterol esterase activity but not PNPC- and PNPA-esterase activities. These structure-activity relationships are modeled by homology with a recently reported crystal structure for the homologous human triacylglycerol hydrolase. The results suggest that the cholesterol esterase activity of carboxylesterases is enhanced by interactions between one or more basic residues on helix alpha16 (residues 485-503) and acidic groups at residues 505-506 in the adjacent surface loop.  相似文献   

15.
The complex formed by porcine pancreatic kallikrein A with the bovine pancreatic trypsin inhibitor (PTI) has been crystallized at pH 4 in tetragonal crystals of space group P41212 with one molecule per asymmetric unit. Its crystal structure has been solved applying Patterson search methods and using a model derived from the bovine trypsin-PTI complex (Huber et al., 1974) and the structure of porcine pancreatic kallikrein A (Bode et al., 1983). The kallikrein-PTI model has been crystallographically refined to an R-value of 0·23 including X-ray data to 2·5 Å.The root-mean-square deviation, including all main-chain atoms, is 0·45 Å and 0·65 Å for the PTI and for the kallikrein component, respectively, compared with the refined models of the free components. The largest differences are observed in external loops of the kallikrein molecule surrounding the binding site, particularly in the C-terminal part of the intermediate helix around His172. Overall, PTI binding to kallikrein is similar to that of the trypsin complex. In particular, the conformation of the groups at the active site is identical within experimental error (in spite of the different pH values of the two structures). Ser195 OG is about 2·5 Å away from the susceptible inhibitor bond Lys15 C and forms an optimal 2·5 Å hydrogen bond with His57 NE.The PTI residues Thr11 to Ile18 and Val34 to Arg39 are in direct contact with kallikrein residues and form nine intermolecular hydrogen bonds. The reactive site Lys15 protrudes into the specificity pocket of kallikrein as in the trypsin complex, but its distal ammonium group is positioned differently to accommodate the side-chain of Ser226. Ser226 OG mediates the ionic interaction between the ammonium group and the carboxylate group of Asp189. Model-building studies indicate that an arginine side-chain could be accommodated in this pocket. The PTI disulfide bridge 14–38 forces the kallikrein residue Tyr99 to swing out of its normal position. Model-building experiments show that large hydrophobic residues such as phenylalanine can be accommodated at this (S2) site in a wedge-shaped hydrophobic cavity, which is formed by the indole ring of Trp215 and by the phenolic side-chain of Tyr99, and which opens towards the bound inhibitor/substrate chain. Arg17 in PTI forms a favorable hydrogen bond and van der Waals' contacts with kallikrein residues, whereas the additional hydrogen bond formed in the trypsin-PTI complex between Tvr39 OEH and Ile19 N is not possible The kallikrein binding site offers a qualitative explanation of the unusual binding and cleavage at the N-terminal Met-Lys site of kininogen. Model-building experiments suggest that the generally restricted capacity of kallikrein to bind protein inhibitors with more extended binding segments might be explained by steric hindrance with some extruding external loops surrounding the kallikrein binding site (Bode et al., 1983).  相似文献   

16.
A 30-kDa fragment of Ca2+/calmodulin-dependent protein kinase II (30K-CaMKII) is a constitutively active protein Ser/Thr kinase devoid of autophosphorylation activity. We have produced a chimeric enzyme of 30K-CaMKII (designated CX40-30K-CaMKII), in which the N-terminal 40 amino acids of Xenopus Ca2+/calmodulin-dependent protein kinase I (CX40) were fused to the N-terminal end of 30K-CaMKII. Although CX40-30K-CaMKII exhibited essentially the same substrate specificity as 30K-CaMKII, it underwent significant autophosphorylation. Surprisingly, its autophosphorylation site was found to be Tyr-18 within the N-terminal CX40 region of the fusion protein, although it did not show any Tyr kinase activity toward exogenous substrates. Several lines of evidence suggested that the autophosphorylation occurred via an intramolecular mechanism. These data suggest that even typical Ser/Thr kinases such as 30K-CaMKII can phosphorylate Tyr residues under certain conditions. The possible mechanism of the Tyr residue autophosphorylation is discussed.  相似文献   

17.
Cholera toxin (CT) and Escherichia coli heat-labile enterotoxin (LT) are structurally and functionally related and share the same primary receptor, the GM1 ganglioside. Despite their extensive similarities, these two toxins exhibit distinct ligand specificities, with LT being more promiscuous than CT. Here, we have attempted to rationalize the broader binding specificity of LT and the subtle differences between the binding characteristics of LTs from human and porcine origins (mediated by their B subunit pentamers, hLTB and pLTB, respectively). The analysis is based on two crystal structures of pLTB in complexes with the pentasaccharide of its primary ligand, GM1, and with neolactotetraose, the carbohydrate determinant of a typical secondary ligand of LTs, respectively. Important molecular determinants underlying the different binding specificities of LTB and CTB are found to be contributed by Ser95, Tyr18 and Thr4 (or Ser4 of hLTB), which together prestabilize the binding site by positioning Lys91, Glu51 and the adjacent loop region (50-61) containing Ile58 for ligand binding. Glu7 and Ala1 may also play an important role. Many of these residues are closely connected with a recently identified second binding site, and there appears to be cross-talk between the two sites. Binding to N-acetyllactosamine-terminated receptors is further augmented by Arg13 (present in pLT and some hLT variants), as previously predicted.  相似文献   

18.
19.
Reversible protein phosphorylation is the most common and important regulatory modification of proteins. Litter is known about exactly how protein phosphorylation affects protein local conformation. This study explores the effect of phosphorylation on the local secondary structure of the peptide, which would have implications for understanding the structural properties of kinase targets since these consist of the amino acid sequences immediately adjacent to the phosphorylated site as well as the phosphorylated amino acid itself. To this end ten pentapeptides (five phosphorylated), which represent variations of the consensus sequence for the cyclic-AMP dependent protein kinase, were synthesized and studied using NMR spectroscopy. The NMR experiments with downfield shifts of these protons upon peptide phosphorylation as well as relatively low shifts upon a temperature change, are consistent with the existence of transient hydrogen bonds between the phosphate group on pSer4 and both the Arg1 εH and the pSer4 NH in a peptide of the sequence Ac-RKGpSS-NH2. Furthermore, pH titrations, which would be expected to deprotonate the phosphate, result in the expected upfield shift of pSer4 side chain resonances and also show a striking downfield shift of pSer4 NH compared with other NHs and also a downfield shift of Arg1 εH. Similar experimental observations were identified on Ac-RKGpTS-NH2 peptide, but not on Ac-RKGpYS-NH2 peptide. Conformational searches using a MCMM conformational modeling program resulted in peptide conformations within which these hydrogen bonds were formed. These findings point to a possible structural explanation for the effect of preceding Arg residues on the Ser and Thr phosphorylation specificity of protein kinases.  相似文献   

20.
The effect of phosphorylation on the basicities of amines in histone H3 peptides and their acetylation kinetics is probed with a mild chemical acetylating agent. Phosphorylation of Ser‐10 lowers the rate of chemical acetylation of Lys‐9, Lys‐14, and Lys‐18 by methyl acetyl phosphate in that order consistent with a higher pKa of these Lys residues induced by phosphorylation; basicities increase up to 3 pKa units as a function of distance from Ser‐10 phosphate. Enzymic acetylation of Lys residues with high pKa values in nucleosomes is also expected to be enhanced by phosphorylation, consistent with the known mechanism involving binding of protonated amines to N‐acetyltransferases; fetal hemoglobin has a related linkage of increased basicity at a specific site, its acetylation, and a resulting decrease in subunit interaction strength. In the absence of a phosphate on Ser‐10, the amines of Lys‐9, Lys‐14, and Lys‐18 have lowered pKa values. Chemical acetylation of glycine and glycinamide have analogous kinetic profiles to the histone peptides but the phosphate inductive effect in histone H3 is more potent since the linkage between phosphorylation and acetylation is propagated with a range extending 9–10 amino acids in either direction from the phosphorylation site enhancing protonation of amino groups. We conclude that lysine amine basicities in histone tails are not static but inducible and variable due to a dynamic and immediate interaction between phosphorylation/acetylation that may contribute to inactive heterochromatin by compaction through such Ser phosphate–Lys amine electrostatic interactions and their relaxation by acetylation in euchromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号