首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coat protein II (COPII)–coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein–coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking.  相似文献   

2.
An increasing number of diseases have been mapped to genes coding for ion channel proteins, including the gap junction proteins, connexins. Here, we report on the identification of an amino acid sequence underlying the behavior of a non-functional mutant connexin46 (CX46) associated with congenital cataracts. The mutant protein, CX46fs380, is 31 amino acids longer than CX46 and contains 87 aberrant amino acids in its C terminus. When expressed in mammalian cells, the mutant CX46 was not found at gap junctional plaques, but it showed extensive co-localization with markers for ERGIC and Golgi. The severe reductions in function and formation of gap junctional plaques were transferred to other connexins by creating chimeras containing the last third (or more) of the aberrant C terminus of the CX46 mutant. This sequence also impaired trafficking of a CD8 chimera. Site-directed mutagenesis of a diphenylalanine restored appositional membrane localization and function. These results suggest a novel mechanism in which a mutation causes disease by generating a motif that leads to retention within the synthetic/secretory pathway.  相似文献   

3.
Prenylated Rab acceptors (PRAs) bind to prenylated Rab proteins and possibly aid in targeting Rabs to their respective compartments. In Arabidopsis, 19 isoforms of PRA1 have been identified and, depending upon the isoforms, they localize to the endoplasmic reticulum (ER), Golgi apparatus and endosomes. Here, we investigated the localization and trafficking of AtPRA1.B6, an isoform of the Arabidopsis PRA1 family. In colocalization experiments with various organellar markers, AtPRA1.B6 tagged with hemagglutinin (HA) at the N-terminus localized to the Golgi apparatus in protoplasts and transgenic plants. The valine residue at the C-terminal end and an EEE motif in the C-terminal cytoplasmic domain were critical for anterograde trafficking from the ER to the Golgi apparatus. The N-terminal region contained a sequence motif for retention of AtPRA1.B6 at the Golgi apparatus. In addition, anterograde trafficking of AtPRA1.B6 from the ER to the Golgi apparatus was highly sensitive to the HA:AtPRA1.B6 level. The region that contains the sequence motif for Golgi retention also conferred the abundance-dependent trafficking inhibition. On the basis of these results, we propose that AtPRA1.B6 localizes to the Golgi apparatus and its ER-to-Golgi trafficking and localization to the Golgi apparatus are regulated by multiple sequence motifs in both the C- and N-terminal cytoplasmic domains.  相似文献   

4.
The Golgi complex and ER are dynamically connected by anterograde and retrograde trafficking pathways. To what extent and by what mechanism outward‐bound cargo proteins escape retrograde trafficking has been poorly investigated. Here, we analysed the behaviour of several membrane proteins at the ER/Golgi interface in live cells. When Golgi‐to‐plasma membrane transport was blocked, vesicular stomatitis virus glycoprotein (VSVG), which bears an ER export signal, accumulated in the Golgi, whereas an export signal‐deleted version of VSVG attained a steady state determined by the balance of retrograde and anterograde traffic. A similar behaviour was displayed by EGF receptor and by a model tail‐anchored protein, whose retrograde traffic was slowed by addition of VSVG's export signal. Retrograde trafficking was energy‐ and Rab6‐dependent, and Rab6 inhibition accelerated signal‐deleted VSVG's transport to the cell surface. Our results extend the dynamic bi‐directional relationship between the Golgi and ER to include surface‐directed proteins, uncover an unanticipated role for export signals at the Golgi complex, and identify recycling as a novel factor that regulates cargo transport out of the early secretory pathway.  相似文献   

5.
Neurons can specifically internalize macromolecules, such as trophic factors, lectins, toxins, and other pathogens. Upon internalization in terminals, proteins can move retrogradely along axons, or, upon internalization at somatodendritic domains, they can move into an anterograde axonal transport pathway. Release of internalized proteins from neurons after either retrograde or anterograde axonal transport results in transcytosis and trafficking of proteins across multiple synapses. Recent studies of binding properties of several such proteins suggest that pathogens and lectins may utilize existing transport machineries designed for trafficking of trophic factors. Specific pathways may protect trophic factors, pathogens, and toxins from degradation after internalization and may target the trophic or pathogenic cargo for transcytosis after either retrograde or anterograde transport along axons. Elucidating the molecular mechanisms of sorting steps and transport pathways will further our understanding of trophic signaling and could be relevant for an understanding and possible treatment of neurological diseases such as rabies, Alzheimer's disease, and prion encephalopathies. At present, our knowledge is remarkably sparse about the types of receptors used by pathogens for trafficking, the signals that sort trophins or pathogens into recycling or degradation pathways, and the mechanisms that regulate their release from somatodendritic domains or axon terminals. This review intends to draw attention to potential convergences and parallels in trafficking of trophic and pathogenic proteins. It discusses axonal transport/trafficking mechanisms that may help to understand and eventually treat neurological diseases by targeted drug delivery.  相似文献   

6.
Proteomics characterization of abundant Golgi membrane proteins   总被引:15,自引:0,他引:15  
A mass spectrometric analysis of proteins partitioning into Triton X-114 from purified hepatic Golgi apparatus (84% purity by morphometry, 122-fold enrichment over the homogenate for the Golgi marker galactosyl transferase) led to the unambiguous identification of 81 proteins including a novel Golgi-associated protein of 34 kDa (GPP34). The membrane protein complement was resolved by SDS-polyacrylamide gel electrophoresis and subjected to a hierarchical approach using delayed extraction matrix-assisted laser desorption ionization mass spectrometry characterization by peptide mass fingerprinting, tandem mass spectrometry to generate sequence tags, and Edman sequencing of proteins. Major membrane proteins corresponded to known Golgi residents, a Golgi lectin, anterograde cargo, and an abundance of trafficking proteins including KDEL receptors, p24 family members, SNAREs, Rabs, a single ARF-guanine nucleotide exchange factor, and two SCAMPs. Analytical fractionation and gold immunolabeling of proteins in the purified Golgi fraction were used to assess the intra-Golgi and total cellular distribution of GPP34, two SNAREs, SCAMPs, and the trafficking proteins GBF1, BAP31, and alpha(2)P24 identified by the proteomics approach as well as the endoplasmic reticulum contaminant calnexin. Although GPP34 has never previously been identified as a protein, the localization of GPP34 to the Golgi complex, the conservation of GPP34 from yeast to humans, and the cytosolically exposed location of GPP34 predict a role for a novel coat protein in Golgi trafficking.  相似文献   

7.
Monocrotaline (MCT)-induced pulmonary hypertension (PH) in the rat is a widely used experimental model. We have previously shown that MCT pyrrole (MCTP) produces loss of caveolin-1 (cav-1) and endothelial nitric oxide synthase from plasma membrane raft microdomains in pulmonary arterial endothelial cells (PAEC) with the trapping of these proteins in the Golgi organelle (the Golgi blockade hypothesis). In the present study, we investigated the mechanisms underlying this intracellular trafficking block in experiments in cell culture and in the MCT-treated rat. In cell culture, PAEC showed trapping of cav-1 in Golgi membranes as early as 6 h after exposure to MCTP. Phenotypic megalocytosis and a reduction in anterograde trafficking (assayed in terms of the secretion of horseradish peroxidase derived from exogenously transfected expression constructs) were evident within 12 h after MCTP. Cell fractionation and immunofluorescence techniques revealed the marked accumulation of diverse Golgi tethers, soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs), and soluble NSF attachment proteins (SNAPs), which mediate membrane fusion during vesicular trafficking (GM130, p115, giantin, golgin 84, clathrin heavy chain, syntaxin-4, -6, Vti1a, Vti1b, GS15, GS27, GS28, SNAP23, and alpha-SNAP) in the enlarged/circumnuclear Golgi in MCTP-treated PAEC and A549 lung epithelial cells. Moreover, NSF, an ATPase required for the "disassembly" of SNARE complexes subsequent to membrane fusion, was increasingly sequestered in non-Golgi membranes. Immunofluorescence studies of lung tissue from MCT-treated rats confirmed enlargement of perinuclear Golgi elements in lung arterial endothelial and parenchymal cells as early as 4 days after MCT. Thus MCT-induced PH represents a disease state characterized by dysfunction of Golgi tethers, SNAREs, and SNAPs and of intracellular vesicular trafficking.  相似文献   

8.
Numerous components of signaling pathways involved in key cellular processes reside on the Golgi complex. Here, we will focus on the roles of signaling proteins that regulate cargo trafficking along the anterograde and retrograde pathways. Emphasis will also be put on the effects of these regulatory proteins on the maintenance of the structure and function of the Golgi, and in particular on the phosphorylation of key components of the transport machinery. These pathways position the Golgi complex as a central hub in the regulation of cell signaling. To date, however, the activation and coordination of these signaling molecules remain a mystery. Being able to describe the interplay between several of these signaling pathways and secretion, and the flow of information through these pathways, will help us to understand how the secretory machinery works and how it interacts with other cellular functions. This will also advance our understanding of how the secretory pathway functions under physiological circumstances, and how its dysregulation can initiate pathological conditions.  相似文献   

9.
We previously reported the disruption of caveolae/rafts, dysfunction of Golgi tethers, N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptor proteins (SNAREs), and SNAPs, and inhibition of anterograde trafficking in endothelial cells in culture and rat lung exposed to monocrotaline pyrrole (MCTP) as a prelude to the development of pulmonary hypertension. We have now investigated 1) whether this trafficking block affects subcellular localization and function of endothelial nitric oxide (NO) synthase (eNOS) and 2) whether Golgi blockade and eNOS sequestration are observed after hypoxia and senescence. Immunofluorescence data revealed that MCTP-induced "megalocytosis" of pulmonary arterial endothelial cells (PAEC) was accompanied by a loss of eNOS from the plasma membrane, with increased accumulation in the cytoplasm. This cytoplasmic eNOS was sequestered in heterogeneous compartments and partially colocalized with Golgi and endoplasmic reticulum (ER) markers, caveolin-1, NOSTRIN, and ER Tracker, but not Lyso Tracker. Hypoxia and senescence also produced enlarged PAEC, with dysfunctional Golgi and loss of eNOS from the plasma membrane, with sequestration in the cytoplasm. Live-cell imaging of caveolar and cytoplasmic NO with 4,5-diaminofluorescein diacetate (DAF-2DA) as probe showed a marked loss of caveolar NO after MCTP, hypoxia, and senescence. Although ionomycin stimulated DAF-2DA fluorescence in control PAEC, this ionophore decreased DAF-2DA fluorescence in MCTP-treated and senescent PAEC, suggesting localization of eNOS in an aberrant cytoplasmic compartment that was readily discharged by Ca(2+)-induced exocytosis. Thus monocrotaline, hypoxia, and senescence produce a Golgi blockade in PAEC, leading to sequestration of eNOS away from its functional caveolar location and providing a mechanism for the often-reported reduction in pulmonary arterial NO levels in experimental pulmonary hypertension, despite sustained eNOS protein levels.  相似文献   

10.
We used multiple approaches to investigate the coordination of trans and medial Rab proteins in the regulation of intra‐Golgi retrograde trafficking. We reasoned that medially located Rab33b might act downstream of the trans Golgi Rab, Rab6, in regulating intra‐Golgi retrograde trafficking. We found that knockdown of Rab33b, like Rab6, suppressed conserved oligomeric Golgi (COG) complex‐ or Zeste White 10 (ZW10)‐depletion induced disruption of the Golgi ribbon in HeLa cells. Moreover, efficient GTP‐restricted Rab6 induced relocation of Golgi enzymes to the endoplasmic reticulum (ER) was Rab33b‐dependent, but not vice versa, suggesting that the two Rabs act sequentially in an intra‐Golgi Rab cascade. In support of this hypothesis, we found that overexpression of GTP‐Rab33b induced the dissociation of Rab6 from Golgi membranes in vivo. In addition, the transport of Shiga‐like toxin B fragment (SLTB) from the trans to cis Golgi and ER required Rab33b. Surprisingly, depletion of Rab33b had little, if any, immediate effect on cell growth and multiplication. Furthermore, anterograde trafficking of tsO45G protein through the Golgi apparatus was normal. We suggest that the Rab33b/Rab6 regulated intra‐Golgi retrograde trafficking pathway must coexist with other Golgi trafficking pathways. In conclusion, we provide the first evidence that Rab33b and Rab6 act to coordinate a major intra‐Golgi retrograde trafficking pathway. This coordination may have parallels with Rab conversion/cascade events that regulate endosome, phagosome and exocytic processes.  相似文献   

11.
Recently, we reported that two siblings presenting with the clinical syndrome congenital disorders of glycosylation (CDG) have mutations in the gene encoding Cog7p, a member of the conserved oligomeric Golgi (COG) complex. In this study, we analyzed the localization and trafficking of multiple Golgi proteins in patient fibroblasts under a variety of conditions. Although the immunofluorescent staining pattern of several Golgi proteins was indistinguishable from normal, the staining of endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC)-53 and the vesicular-soluble N-ethylmaleimide-sensitive factor attachment protein receptors GS15 and GS28 was abnormal, and the steady-state level of GS15 was greatly decreased. Retrograde transport of multiple Golgi proteins to the ER in patient fibroblasts via brefeldin A-induced tubules was significantly slower than occurs in normal fibroblasts, whereas anterograde protein trafficking was much less affected. After prolonged treatment with brefeldin A, several Golgi proteins were detected in clusters that colocalize with the microtubule-organizing center in patient cells. All of these abnormalities were normalized in COG7-corrected patient fibroblasts. These results serve to better define the role of the COG complex in facilitating protein trafficking between the Golgi and ER and provide a diagnostic framework for the identification of CDG defects involving trafficking proteins.  相似文献   

12.
Min MK  Kim SJ  Miao Y  Shin J  Jiang L  Hwang I 《Plant physiology》2007,143(4):1601-1614
ADP ribosylation factor (Arf) GTPase-activating proteins (GAPs) promote the hydrolysis of GTP bound to Arfs to GDP, which plays a pivotal role in regulating Arfs by converting the active GTP-bound forms of these proteins into their inactive GDP-bound forms. Here, we investigated the biological role of AGD7, an Arf GAP homolog, in Arabidopsis (Arabidopsis thaliana). We show that AGD7 bears a highly conserved N-terminal region and a unique C-terminal region, interacts with Arf1 both in vitro and in vivo, and stimulates Arf1 GTPase activity in a phosphatidic acid-dependent manner in vitro. In plant cells, AGD7 localized to the Golgi complex, where its overexpression was found to inhibit the Golgi localization of gamma-subunit of coat proteins and promote the relocation of Golgi proteins into the endoplasmic reticulum in both protoplasts and transgenic plants. Furthermore, overexpression of AGD7 inhibited anterograde trafficking of proteins from the endoplasmic reticulum. We propose that AGD7 functions as a GAP for Arf1 in the Golgi complex and plays a critical role in protein trafficking by controlling Arf1 activity.  相似文献   

13.
The transport and sorting of lipids from the sites of their synthesis to their appropriate destinations are fundamental for membrane biogenesis. In the synthesis of sphingolipids in mammalian cells, ceramide is newly produced at the endoplasmic reticulum (ER), and transported from the ER to the trans Golgi regions, where it is converted to sphingomyelin. CERT has been identified as a key factor for the ER-to-Golgi trafficking of ceramide. CERT contains several functional domains including (i) a START domain capable of catalyzing inter-membrane transfer of ceramide, (ii) a pleckstrin homology domain, which serves to target the Golgi apparatus by recognizing phosphatidylinositol 4-monophosphate, and (iii) a short peptide motif named FFAT motif which interacts with the ER-resident membrane protein VAP. CERT is preferentially distributed to the Golgi region in cells, and Golgi-targeted CERT appears to retain the activity to interact with VAP. On the basis of these results, it has been proposed that CERT extracts ceramide from the ER and carries it to the Golgi apparatus in a non-vesicular manner and that a particularly efficient cycle of CERT movement for trafficking of ceramide may proceed at membrane contact sites between the ER and the Golgi apparatus.  相似文献   

14.
Picornaviruses carry a small number of proteins with diverse functions that subvert and exploit the host cell. We have previously shown that three coxsackievirus B3 (CVB3) proteins (2B, 2BC, and 3A) target the Golgi complex and inhibit protein transit. Here we investigate these effects in more detail and evaluate the distribution of major histocompatibility complex (MHC) class I molecules, which are critical mediators of the CD8(+) T-cell response. We report that concomitant with viral protein synthesis, MHC class I surface expression is rapidly downregulated during infection. However, this phenomenon may not result solely from inhibition of anterograde trafficking; we propose a new mechanism whereby the CVB3 2B and 2BC proteins upregulate the internalization of MHC class I (and possibly other surface proteins), perhaps by focusing of endocytic vesicles at the Golgi complex. Thus, our findings indicate that CVB3 carries at least three nonstructural proteins that directionally complement one another; 3A disrupts the Golgi complex to inhibit anterograde transport, while 2B and/or 2BC upregulates endocytosis, rapidly removing proteins from the cell surface. Taken together, these effects may render CVB3-infected cells invisible to CD8(+) T cells and untouchable by many antiviral effector molecules. This has important implications for immune evasion by CVB3.  相似文献   

15.
Autophagy is a cellular process that degrades subcellular constituents, and is conserved from yeast to mammals. Although autophagy is believed to be essential for living cells, cells lacking Atg5 or Atg7 are healthy, suggesting that a non‐canonical degradation pathway exists to compensate for the lack of autophagy. In this study, we show that the budding yeast Saccharomyces cerevisiae, which lacks Atg5, undergoes bulk protein degradation using Golgi‐mediated structures to compensate for autophagy when treated with amphotericin B1, a polyene antifungal drug. We named this mechanism Golgi membrane‐associated degradation (GOMED) pathway. This process is driven by the disruption of PI(4)P‐dependent anterograde trafficking from the Golgi, and it also exists in Atg5‐deficient mammalian cells. Biologically, when an Atg5‐deficient β‐cell line and Atg7‐deficient β‐cells were cultured in glucose‐deprived medium, a disruption in the secretion of insulin granules from the Golgi occurred, and GOMED was induced to digest these (pro)insulin granules. In conclusion, GOMED is activated by the disruption of PI(4)P‐dependent anterograde trafficking in autophagy‐deficient yeast and mammalian cells.  相似文献   

16.
Bidirectional traffic between the Golgi apparatus and the endosomal system sustains the functions of the trans-Golgi network (TGN) in secretion and organelle biogenesis. Export of cargo from the TGN via anterograde trafficking pathways depletes the organelle of sorting receptors, processing proteases, SNARE molecules, and other factors, and these are subsequently retrieved from endosomes via the retrograde pathway. Recent studies indicate that retrograde trafficking is vital to early metazoan development, nutrient homeostasis, and for processes that protect against Alzheimer's and other neurological diseases.  相似文献   

17.
Phosphatidylinositol is the parent lipid for the synthesis of seven phosphorylated inositol lipids and each of them play specific roles in numerous processes including receptor-mediated signalling, actin cytoskeleton dynamics and membrane trafficking. PI synthesis is localised to the endoplasmic reticulum (ER) whilst its phosphorylated derivatives are found in other organelles where the lipid kinases also reside. Phosphorylation of PI to phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) at the plasma membrane and to phosphatidylinositol 4-phosphate (PI4P) at the Golgi are key events in lipid signalling and Golgi function respectively. Here we review a family of proteins, phosphatidylinositol transfer proteins (PITPs), that can mobilise PI from the ER to provide the substrate to the resident kinases for phosphorylation. Recent studies identify specific and overlapping functions for the three soluble PITPs (PITPα, PITPβ and PITPNC1) in phospholipase C signalling, neuronal function, membrane trafficking, viral replication and in cancer metastases.  相似文献   

18.
Previous studies demonstrated that sphingosine-1-phosphate (S1P) phosphohydrolase 1 (SPP-1), which is located mainly in the endoplasmic reticulum (ER), regulates sphingolipid metabolism and apoptosis (H. Le Stunff et al., J. Cell Biol. 158:1039-1049, 2002). We show here that the treatment of SPP-1-overexpressing cells with S1P, but not with dihydro-S1P, increased all ceramide species, particularly the long-chain ceramides. This was not due to inhibition of ceramide metabolism to sphingomyelin or monohexosylceramides but rather to the inhibition of ER-to-Golgi trafficking, determined with the fluorescent ceramide analog N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-d-erythro-sphingosine (DMB-Cer). Fumonisin B1, an inhibitor of ceramide synthase, prevented S1P-induced elevation of all ceramide species and corrected the defect in ER transport of DMB-Cer, readily allowing its detection in the Golgi. In contrast, ceramide accumulation had no effect on either the trafficking or the metabolism of 6-([N-(7-nitrobenzo-2-oxa-1,3-diazol-4-yl)amino]hexanoyl)-sphingosine, which rapidly labels the Golgi even at 4 degrees C. Protein trafficking from the ER to the Golgi, determined with vesicular stomatitis virus ts045 G protein fused to green fluorescent protein, was also inhibited in SPP-1-overexpressing cells in the presence of S1P but not in the presence of dihydro-S1P. Our results suggest that SPP-1 regulates ceramide levels in the ER and thus influences the anterograde membrane transport of both ceramide and proteins from the ER to the Golgi apparatus.  相似文献   

19.
Fragmentation of the Golgi ribbon is a common feature of many neurodegenerative diseases but little is known about the causes of this alteration. In Parkinson’s disease, it is believed to be the consequence of an ER–Golgi transport imbalance and/or of cytoskeleton alterations. In the present study, we analyze the mechanisms involved in Golgi fragmentation in differentiated PC12 cells treated with 6-hydroxydopamine or methamphetamine as cellular models of Parkinson’s disease. Our data demonstrate that Golgi fragmentation precedes and might trigger the aggregation of α-synuclein and the formation of inclusions, alterations in anterograde and retrograde transport between the endoplasmic reticulum and Golgi complex, and cytoskeleton damage. In contrast, fragmentation is directly related with alterations in the levels of Rab1, 2 and 8 and the SNARE protein syntaxin 5. Thus, overexpression of Rab1 and 8 and depletion of Rab2 and syntaxin 5 rescue the Golgi morphology. In conclusion, the homeostasis of a limited number of Rab and SNARE proteins is important for understanding the cytopathology of Parkinson’s disease.  相似文献   

20.
The signal recognition particle (SRP) is required for protein translocation into the endoplasmic reticulum (ER). With RNA interference we reduced its level about ten-fold in mammalian cells to study its cellular functions. Such low levels proved insufficient for efficient ER-targeting, since the accumulation of several proteins in the secretory pathway was specifically diminished. Although the cells looked unaffected, they displayed noticeable and selective defects in post-ER membrane trafficking. Specifically, the anterograde transport of VSV-G and the retrograde transport of the Shiga toxin B-subunit were stalled at the level of the Golgi whereas the endocytosed transferrin receptor failed to recycle to the plasma membrane. Endocytic membrane trafficking from the plasma membrane to lysosomes or Golgi was undisturbed and major morphological changes in the ER and the Golgi were undetectable at low resolution. Selective membrane trafficking defects were specifically suppressed under conditions when low levels of SRP became sufficient for efficient ER-targeting and are therefore a direct consequence of the lower targeting capacity of cells with reduced SRP levels. Selective post-ER membrane trafficking defects occur at SRP levels sufficient for survival suggesting that changes in SRP levels and their effects on post-ER membrane trafficking might serve as a mechanism to alter temporarily the localization of selected proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号