首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid-rate paired associative stimulation (rPAS) involves repeat pairing of peripheral nerve stimulation and Transcranial magnetic stimulation (TMS) pulses at a 5 Hz frequency. RPAS over primary motor cortex (M1) operates with spike-timing dependent plasticity such that increases in corticospinal excitability occur when the nerve and TMS pulse temporally coincide in cortex. The present study investigates the effects of rPAS over primary somatosensory cortex (SI) which has not been performed to date. In a series of experiments, rPAS was delivered over SI and M1 at varying timing intervals between the nerve and TMS pulse based on the latency of the N20 somatosensory evoked potential (SEP) component within each participant (intervals for SI-rPAS: N20, N20-2.5 ms, N20 + 2.5 ms, intervals for M1-rPAS: N20, N20+5 ms). Changes in SI physiology were measured via SEPs (N20, P25, N20-P25) and SEP paired-pulse inhibition, and changes in M1 physiology were measured with motor evoked potentials and short-latency afferent inhibition. Measures were obtained before rPAS and at 5, 25 and 45 minutes following stimulation. Results indicate that paired-pulse inhibition and short-latency afferent inhibition were reduced only when the SI-rPAS nerve-TMS timing interval was set to N20-2.5 ms. SI-rPAS over SI also led to remote effects on motor physiology over a wider range of nerve-TMS intervals (N20-2.5 ms – N20+2.5 ms) during which motor evoked potentials were increased. M1-rPAS increased motor evoked potentials and reduced short-latency afferent inhibition as previously reported. These data provide evidence that, similar to M1, rPAS over SI is spike-timing dependent and is capable of exerting changes in SI and M1 physiology.  相似文献   

2.
Direct and far-field recorded somatosensory evoked potentials (SEPs) obtained from 2 patients during neurosurgical procedures are presented. A previous report (Møller et al. 1986) has suggested that the P14 component of the SEP following median nerve stimulation is generated at the cuneate nucleus. The present data suggest that the scalp recorded P14 component (scalp-noncephalic electrode derivation) is generated rostral to the junction of the cervical cord and the medulla.  相似文献   

3.
Somatosensory evoked potentials following lesions of the claustrum   总被引:1,自引:0,他引:1  
Ipsi- and contralateral cortical somatosensory evoked potentials (SEP) were recorded following median nerve stimulation in 12 patients with unilateral brain lesions and in 5 healthy subjects. Computed tomographic scans of brain were performed on admission. In all patients with lesions of the claustrum there was absence of SEP contralateral to the side of the lesion and ipsilateral to the stimulated nerve. This phenomenon did not appear in our material following lesions involving other structures e.g. thalamus or somatosensory cortex. Our observations suggest that the claustrum may influence deeply the contralateral somatosensory cortex. This may be due to the fact that a large part of the claustrum is involved in transmission of the sensory information from receptors to the somatosensory cortex.  相似文献   

4.
We recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction), which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90–160 ms) was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation). By contrast, the late SEP (550 ms post proprioceptive stimulation onset) was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation). This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of proprioceptive cortical processing results from a decreased weight of proprioception in the absence of balance constraints in microgravity.  相似文献   

5.
Scalp somatosensory evoked potentials (SEPs) were recorded after electrical stimulation of the spinal cord in humans. Stimulating electrodes were placed at different vertebral levels of the epidural space over the midline of the posterior aspect of the spinal cord. The wave form of the response differed according to the level of the stimulating epidural electrodes. Cervical stimulation elicited an SEP very similar to that produced by stimulation of upper extremity nerves, e.g., bilateral median nerve SEP, but with a shorter latency. Epidural stimulation of the lower thoracic cord elicited an SEP similar to that produced by stimulation of lower extremity nerves. The results of upper thoracic stimulation appeared as a mixed upper and lower extremity type of SEP. The overall amplitudes of SEPs elicited by the epidural stimulation were higher than SEPs elicited by peripheral nerve stimulation. In 4 patients the CV along the spinal cord was calculated from the difference in latencies of the cortical responses to stimulation at two different vertebral levels. The CVs were in the range of 45–65 m/sec. The method was shown to be promising for future study of spinal cord dysfunctions.  相似文献   

6.
In 7 awake patients with neuropathic lower extremity pain, spinal somatosensory evoked potentials (SEP) were elicited from the non-painful leg by electrical stimulation of the peroneal nerve and mechanical stimulation of the hallux ball. Recording was made epidurally in the thoraco-lumbar region by means of an electrode temporarily inserted for trial of pain-suppressing stimulation.In response to peroneal nerve stimulation, two major SEP complexes were found. The first complex consisted, as has been described earlier, of an initial positivity (P12), a spike-like negativity (N14), a slow negativity (N16) and a slow positivity (P23). The second complex consisted of a slow biphasic wave, conceivably mediated by a supraspinal loop. Both complexes had a similar longitudinal distribution with amplitude maxima at the T12 vertebral body.The SEP evoked by mechanical hallux ball stimulation had a relatively small amplitude, and there was no significant second complex. The relationship between stimulus intensity and SEP amplitude was negatively accelerating.The longitudinal distribution of spinal SEP was compated with the somatotopic distribution of paresthesiae induced by stimulation through the epidural electrode. It was found that stimulation applied at the level of maximal SEP generally induced paresthesiae in the corresponding peripheral region. Therefore, spinal SEP may be used as a guide for optimal positioning of a spinal electrode for therapeutic stimulation when implanted under general anesthesia.An attempt was made to record the antidromic potential in the peroneal nerve elicited from the dorsal columns by epidural stimulation. The antidromic response was, however, very sensitive to minimal changes of stimulus strength and body position of the patient, and was also contaminated by simultaneously evoked muscular reflex potentials.Thus, peripheral responses evoked by epidural stimulation appeared too unreliable to be useful for the permanent implantation of a spinal electrode for therapeutic stimulation.  相似文献   

7.
Three different interfering conditions were studied during the recording of pre- and postcentral somatosensory evoked potentials (SEPs) following median nerve stimulation at the wrist in 16 normal subjects: active finger movement (MVT), light superficial massage (LSM) and deep muscular massage (DMM) of the hand. Special attention was focused on selective effects on individual SEP components. The frontal N30 component showed the most significant amplitude reduction during the three interfering conditions (76.4% of reduction in MVT, 36.4% in DMM and 32.9% in LSM). In contrast the frontal N23 was not significantly changed and the preceding P22 component was only reduced in the MVT condition.Postcentral N20 was unchanged by the three conditions while P27 was clearly gated by movement but not significantly by LSM and DMM. The three interfering conditions enhanced the parietal N32 and had no significant effect on the parietal P45.An important point was the interindividual variability of these effects and it appeared that group average wave forms would therefore be confusing.The peak latency of some SEP components was changed during the interfering conditions. The most important effect was an increase of postcentral P45 latency which was found to be related to the amplitude enhancement of N32.  相似文献   

8.
Electric activity in the brain which is time-locked to a given stimulation of the somatosensory system can be recorded as a somatosensory evoked potential (SEP). We investigated whether a galvanic stimulation of the tail base in Atlantic salmon (Salmo salar) would elicit a SEP in the telencephalon. The telencephalon is central in learning and memory, and activity here may be a prerequisite for processing of external stimuli on a cognitive or emotional level. Anaesthetized salmon (n = 11) were subjected to craniotomy and a recording electrode was inserted into the telencephalon. The fish were given stimulations of four intensities, i.e., 2, 5, 10 and 20 mA. A SEP was elicited in the contralateral dorsal telencephalon for all intensities. This result agrees with findings in other fish species. Furthermore, there was a significant difference between the maximum peak amplitude and mean amplitude of the SEP elicited by putative non-noxious (2 mA) and putative noxious (20 mA) stimulation intensities (P < 0.01). The stronger stimulation intensities also tend to introduce longer-latencies components in the SEP. The results added to the body of literature indicates that the exteroceptive senses are represented by processing within the telencephalon of the fish.  相似文献   

9.
The neural generators of the somatosensory evoked potentials (SEPs) elicited by electrical stimulation of the median nerve were studied in man and in rhesus monkeys. Recordings from the cuneate nucleus were compared to the far-field potentials recorded from electrodes placed on the scalp. It was found that the shape of the response from the surface of the human cuneate nucleus to stimulation of the median nerve is similar to that of the response recorded more caudally in the dorsal column, i.e., an initially small positivity followed by a negative wave that is in turn followed by a slow positive wave. The beginning of the negative wave coincides in time with the N14 peak in the SEP recorded from the scalp, and its latency is 13 msec. The response from the cuneate nucleus in the rhesus monkey has a similar shape and its negative peak appears with the same latency as the positive peak in the vertex response that has a latency of 4.5 msec; the peak negativity has a latency of about 6 msec and thus coincides with P6.2 in the vertex recording. Depth recordings from the cuneate nucleus and antidromic stimulation of the dorsal column fibers in the monkey provide evidence that the early components of the response from the surface of the cuneate nucleus are generated by the dorsal column fibers that terminate in the nucleus.The results support the hypothesis that the P14 peak in the human SEP is generated by the termination of the dorsal column fibers and that the cuneate nucleus itself contributes little to the far-field potentials.  相似文献   

10.
Peripheral electrical stimulation (PES) is a common clinical technique known to induce changes in corticomotor excitability; PES applied to induce a tetanic motor contraction increases, and PES at sub-motor threshold (sensory) intensities decreases, corticomotor excitability. Understanding of the mechanisms underlying these opposite changes in corticomotor excitability remains elusive. Modulation of primary sensory cortex (S1) excitability could underlie altered corticomotor excitability with PES. Here we examined whether changes in primary sensory (S1) and motor (M1) cortex excitability follow the same time-course when PES is applied using identical stimulus parameters. Corticomotor excitability was measured using transcranial magnetic stimulation (TMS) and sensory cortex excitability using somatosensory evoked potentials (SEPs) before and after 30 min of PES to right abductor pollicis brevis (APB). Two PES paradigms were tested in separate sessions; PES sufficient to induce a tetanic motor contraction (30–50 Hz; strong motor intensity) and PES at sub motor-threshold intensity (100 Hz). PES applied to induce strong activation of APB increased the size of the N20-P25 component, thought to reflect sensory processing at cortical level, and increased corticomotor excitability. PES at sensory intensity decreased the size of the P25-N33 component and reduced corticomotor excitability. A positive correlation was observed between the changes in amplitude of the cortical SEP components and corticomotor excitability following sensory and motor PES. Sensory PES also increased the sub-cortical P14-N20 SEP component. These findings provide evidence that PES results in co-modulation of S1 and M1 excitability, possibly due to cortico-cortical projections between S1 and M1. This mechanism may underpin changes in corticomotor excitability in response to afferent input generated by PES.  相似文献   

11.
The topography of the middle-latency N110 after radial nerve stimulation suggested a generator in SII. To support this hypothesis, we have tried to identify a homologous component in the tibial nerve SEP (somatosensory evoked potential). Evoked potentials following tibial nerve stimulation (motor+sensory threshold) were recorded with 29 electrodes (bandpass 0.5–500 Hz, sampling rate 1000 Hz). For comparison, the median nerve was stimulated at the wrist. Components were identified as peaks in the global field power (GFP). Map series were generated around GFP peaks and amplitudes were measured from electrodes near map maxima. With median nerve stimulation, we recorded a negativity with a maximum in temporal electrode positions and 106±12 ms peak latency (mean±SD), comparable to the N110 following radial nerve stimulation. After tibial nerve stimulation the latency of a component with the same topography was 131±11 ms (N130). Both N110 and N130 were present ipsi- as well as contralaterally. Amplitudes were significantly higher on the contralateral than the ipsilateral scalp for both median (3.1±2.4 μV vs. 1.7±1.6 μV) and tibial nerve (1.9±1.2 μV vs. 0.6+1 μV). The topography of the N130 can be explained by a generator in the vicinity of SII. The latency difference between median and tibial nerve stimulation is related to the longer conduction distance (cf. N20 and P40). The smaller ipsilateral N130 is consistent with the bilateral body representation in SII.  相似文献   

12.
The autotriggered signal was presented with a varying delay. SEP obtained without movement of the thumb (control series), SEP of autotriggered stimuli and movement-related brain potentials (MRBP) without stimuli were registered. The EEG was recorded from C3 + 2 and C3 = 2. The following results were obtained: the amplitude of all components diminished when the stimulation was autotriggered compared to the control series; the suppression was most pronounced with a stimulus delay about 150-200 ms; the effect of the suppression did not disappear up to 500 ms after the beginning of the movement.  相似文献   

13.
An excitatory potential generated in response to stimulation by a current pulse has been studied on an artificial membrane composed of a Nuclepore filter impregnated with sorbitan monooleate. An excitatory potential response accompanying a fall in the resistance of the membrane was found to occur above a threshold value of the pulse height for current stimulation. The relation between the pulse width of current stimulation and the threshold for the generation of an excitatory potential response has also been examined.  相似文献   

14.
痛觉诱发电位的研究进展   总被引:4,自引:0,他引:4  
Qi YW  Luo F 《生理科学进展》2004,35(1):19-24
痛觉诱发电位的研究在过去的几十年内取得了重要进展 ,出现了许多用于被试的诱发明确疼痛感的刺激技术 ,并与诱发电位方法学联合应用 ,已经成为脑映像学研究中重要的组成部分。本文从刺激技术、痛觉诱发电位成分分析和偶极子源分析等方面出发 ,讨论了痛觉诱发电位的研究进展  相似文献   

15.
Somatosensory evoked potentials (SEPs) to median and posterior tibial stimulation were obtained in 22 patients with syringomyelia. All patients had magnetic resonance imaging (MR) which defined the maximum transverse diameter of the syrinx as well as its longitudinal extension. SEP was abnormal in 16 (72%) patients. Median and posterior tibial SEPs were abnormal in 11 and 15 patients respectively. Both tests were abnormal in 10 patients. Ten patients showed absence of one or more central potentials (P/N13, N20, N22) and 7 patients demonstrated increased conduction times (N9–N20, P/N13–N20, N22–P40). The mean maximum transverse diameter of the syrinx was 7.5 mm in patients with normal SEPs and 16.2 mm in patients with abnormal SEPs. Abnormal SEP was observed in all 5 patients with loss of position sense, in 9 of 13 (69%) with loss of superficial pain and temperature, and 1 of 2 patients with motor deficit only. Central SEP abnormalities were observed in 3 of 5 patients with sensory deficits indistinguishable from a peripheral neuropathy and in 2 patients in the asymptomatic extremity. Three of 4 patients with syringomyelia and Chiari malformation had a normal SEP.  相似文献   

16.
Studies were conducted on 25 cats to document the discharge rates of alpha motoneurons during stimulation of the sciatic nerve at frequencies from 100 to 10,000 pulses per second (pps). In addition, the feasibility of using high-frequency pulse trains to block the conduction of action potentials was investigated. Two cuff electrodes were placed around the proximal portion of the left sciatic nerve, and recordings of antidromic potentials were taken from single fibers of the L7 ventral root. When stimulating through the more proximal electrode, discharge rates were generally equal to or were subharmonics of the stimulation rate up to 1,000 pps. Firing often decreased in rate during 3-min runs. At 2,000-10,000 pps, fibers responded briefly at rates of several hundred per second but stopped firing within seconds after stimulus initiation. After cessation of response to the high-frequency pulse train, action potentials generated at 50 pps at the more distal electrode did not propagate to the recording electrodes. The 'electrical block' so induced was maintained for up to 20 min, and recovery following termination of the pulse train was complete within 1 s.  相似文献   

17.
In order to assess the effects of weak-field magnetic stimulation on brain electrical activity in epileptics, three patients suffering from mesial temporal lobe epilepsy (MTLE) were exposed to DC magnetic fields of 0.9 and 1.8 millitesla (mT). The EEG activity was recorded simultaneously from intracranial electrodes inserted through the foramen ovale (FO) and scalp electrodes. Significant enhancement of interictal epileptiform activity was observed in two patients, while in one patient, magnetic stimulation resulted in the cessation of interictal spike/wave trains.  相似文献   

18.
The hippocampus plays an important role in learning and memory. Synaptic plasticity in the hippocampus, short-term and long-term, is postulated to be a neural substrate of memory trace. Paired-pulse stimulation is a standard technique for evaluating a form of short-term synaptic plasticity in rodents. However, evidence is lacking for paired-pulse responses in the primate hippocampus. In the present study, we recorded paired-pulse responses in the dentate gyrus of monkeys while stimulating to the medial part of the perforant path at several inter-pulse intervals (IPIs) using low and high stimulus intensities. When the stimulus intensity was low, the first pulse produced early strong depression (at IPIs of 10-30 ms) and late slight depression (at IPIs of 100-1000 ms) of field excitatory postsynaptic potentials (fEPSPs) generated by the second pulse, interposing no depression IPIs (50-70 ms). When the stimulus intensity was high, fEPSPs generated by the second pulse were depressed by the first pulse at all IPIs except for the longest one (2000 ms). Population spikes (PSs) generated by the second pulse were completely blocked or strongly depressed at shorter IPIs (10-100 or 200 ms, respectively), while no depression or slight facilitation occurred at longer IPIs (500-2000 ms). Administration of diazepam slightly increased fEPSPs, while it decreased PSs produced by the first pulse. It also enhanced the facilitation of PSs produced by the second stimulation at longer IPIs. The present results, in comparison with previous studies using rodents, indicate that paired-pulse responses of fEPSPs in the monkey are basically similar to those of rodents, although paired-pulse responses of PSs in the monkey are more delayed than those in rodents and have a different sensitivity to diazepam.  相似文献   

19.
The growth rate of Weibel instability in a plasma interacting with a high-frequency pulse with a duration less or comparable with the electron mean free time is determined. The growth rate is shown to decrease with decreasing pulse duration. It is found that instability can develop after the short pulse is switched off and the generated magnetic field no longer affects electron motion in the high-frequency field.  相似文献   

20.
We investigated the effects of pulsed magnetic stimulation on tumor development processes and immune functions in mice. A circular coil (inner diameter = 15 mm, outer diameter = 75 mm) was used in the experiments. Stimulus conditions were pulse width = 238 micros, peak magnetic field = 0.25 T (at the center of the coil), frequency = 25 pulses/s, 1,000 pulses/sample/day and magnetically induced eddy currents in mice = 0.79-1.54 A/m(2). In an animal study, B16-BL6 melanoma model mice were exposed to the pulsed magnetic stimulation for 16 days from the day of injection of cancer cells. A tumor growth study revealed a significant tumor weight decrease in the stimulated group (54% of the sham group). In a cellular study, B16-BL6 cells were also exposed to the magnetic field (1,000 pulses/sample, and eddy currents at the bottom of the dish = 2.36-2.90 A/m(2)); however, the magnetically induced eddy currents had no effect on cell viabilities. Cytokine production in mouse spleens was measured to analyze the immunomodulatory effect after the pulsed magnetic stimulation. tumor necrosis factor (TNF-alpha) production in mouse spleens was significantly activated after the exposure of the stimulus condition described above. These results showed the first evidence of the anti-tumor effect and immunomodulatory effects brought about by the application of repetitive magnetic stimulation and also suggested the possible relationship between anti-tumor effects and the increase of TNF-alpha levels caused by pulsed magnetic stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号