首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutagenicity and cytotoxicity of cis-diamminedichloroplatinum (II) (cisplatin) at doses of 5, 10 and 20 micrograms/ml in Chinese hamster ovary (CHO) cells have been examined. A morphological characterization of several cell types induced by cisplatin was carried out. The frequencies of both cells with micronuclei and binucleate cells as a time-dependent parameter have also been studied. Whilst the number of cells with micronuclei was found to decrease with time, the number of binucleate cells increased. The possible kinetic mechanism for the production of binucleate cells and cells with micronuclei is discussed. A morphometric analysis was also performed. The nuclear area in both treated and control nuclei was measured with the IBAS image analysis system. The results of this analysis show that a continuous reduction in the nuclear size in the control cells is produced. However the size of the treated cells increased after treatment.  相似文献   

2.
We examined the role of prostaglandins or prostaglandin-producing cells in the regulation of proliferation and generation of specific cytotoxicity in one-way mixed lymphocyte cultures of mouse spleen cells. Cultures treated with indomethacin or other prostaglandin synthesis inhibitors resulted in enhanced proliferation and cytotoxicity. The level of prostaglandins produced in vitro, as measured by RIA, was 10?8M and was found to be completely blocked by indomethacin. Adding back 10?8M PG restored baseline (control) proliferative responses. Kinetics of the enhanced MLC response were unchanged from controls as were the specificities of the cytotoxic cells. Cells from indomethacin-treated cultures were more efficient at killing targets than those from control cultures. Prostaglandins appear to have a preferential effect on the induction of cytotoxic cells.  相似文献   

3.
We have examined the relationship between checkpoint adaptation (mitosis with damaged DNA) and micronuclei. Micronuclei in cancer cells are linked to genomic change, and may induce chromothripsis (chromosome shattering). We measured the cytotoxicity of the cancer drug cisplatin in M059K (glioma fibroblasts, IC50 15 μM). Nearly 100% of M059K cells were positive for histone γH2AX staining after 48 h treatment with a cytotoxic concentration of cisplatin. The proportion of micronucleated cells, as confirmed by microscopy using DAPI and lamin A/C staining, increased from 24% to 48%, and the total micronuclei in surviving cells accumulated over time. Promoting entry into mitosis with a checkpoint inhibitor increased the number of micronuclei in cells whereas blocking checkpoint adaptation with a Cdk inhibitor reduced the number of micronuclei. Interestingly, some micronuclei underwent asynchronous DNA replication, relative to the main nuclei, as measured by deoxy-bromo-uracil (BrdU) staining. These micronuclei stained positive for histone γH2AX, which was linked to DNA replication, suggesting that micronuclei arise from checkpoint adaptation and that micronuclei may continue to damage DNA. By contrast the normal cell line WI-38 did not undergo checkpoint adaptation when treated with cisplatin and did not show changes in micronuclei number. These data reveal that the production of micronuclei by checkpoint adaptation is part of a process that contributes to genomic change.  相似文献   

4.
In order to better characterize the ochratoxin A (OTA)-induced DNA damage and to further investigate factors which may modulate dose-effect relationships in cells, the induction of micronuclei was studied in V79 Chinese hamster fibroblast cells and in primary cultures of porcine urothelial bladder epithelial cells (PUBEC). OTA was able to induce micronuclei in PUBEC and V79 cells at concentrations below those which were overtly cytotoxic. OTA concentrations between 0.03 and 1 μM caused a dose-dependent increase of micronuclei in V79 cells (up to 3-fold compared to controls); but the lowest tested concentration of 0.01 μM OTA did not induce a higher frequency of micronuclei than in the solvent control, indicative of an apparent threshold. Clear evidence for genotoxic effects was also found in PUBEC cultures treated with OTA concentrations of 1 μM and more, although the dose-effect relationship in PUBEC was more variable for several freshly isolated cell batches, pointing to differences in susceptibility to OTA between bladder cells from different donor animals. The chromosomal genotoxicity of OTA demonstrated in this study is in general accord with previous findings on the induction of clastogenic effects and oxidative DNA damage by OTA. In both cases, the shape of the dose-response curve at very low OTA concentrations supports the existence of a threshold for its genotoxicity. Presented at the 28th Mykotoxin-Workshop, Bydgoszcz, Poland, May 29–31, 2006  相似文献   

5.
《Mutation Research Letters》1990,243(3):173-178
The clastogenic effect of the anticancer drug cis-diamminedichloroplatinum(II) (cisplatin) on meiotic prophase in primary spermatocytes and on spermatologonial stem cells of male (101/E1 × C3H/E1)F1 mice was studied. The intraperitoneal doses of cisplatin tested were 5.0, 7.5 and 10.0 mg/kg. Chromosomal aberrations were examined at diakinesis-metaphase 1 of meiosis 1–13 days after treatment, representing cells treated at diplotene, pachytene, zygotene, leptotene an preleptotene. Reciprocal translocations were evaluated 63–70 days after treatment, representing treated stem-cell spermatogonia.Cisplatin had a toxic effect in zygotene to preleptotene of meiosis, as indicated by the significant reduction in testicular weight. At diplotene, pachytene and zygotene no enhancement of aberrations was found. An increase in aberrant cells was observed during leptotene with preleptotene being the most sensitive stage. The dose-response relationship for aberrant cells was linear on day 13 after treatment. It is concluded that, like mitomycin C (Alder, 1976), cisplatin primarily caused aberrations during the premeiotic phase of DNA synthesis. No significant increase of translocation multivalents was found after treatment of stem-cell spermatogonia.  相似文献   

6.
Evidence is mounting that the occurrence of the CD44pos/CD24neg/low cell population, which contains potential breast cancer (BC) stem cells, could explain BC clinical resistance to HER2-targeted therapies. We investigated whether de novo refractoriness to the anti-HER2 monoclonal antibody trastuzumab (Tzb; Herceptin) may relate to the dynamic regulation of the mesenchymal CD44pos/CD24neg/low phenotype in HER2-positive BC. We observed that the subpopulation of Tzb-refractory JIMT-1 BC cells exhibiting CD44pos/CD24neg/low-surface markers switched with time. Low-passage JIMT-1 cell cultures were found to spontaneously contain ∼10% of cells bearing the CD44pos/CD24neg/low immunophenotype. Late-passage (>60) JIMT-1 cultures accumulated ∼80% of CD44pos/CD24neg/low cells and closely resembled the CD44pos/CD24neg/low-enriched (∼85%) cell population constitutively occurring in HER2-negative MDA-MB-231 mesenchymal BC cells. Dynamic expression of mesenchymal markers was not limited to CD44/CD24 because high-passages of JIMT-1 cells exhibited also reduced expression of the HER2 protein and over-secretion of pro-invasive/metastatic chemokines and metalloproteases. Accordingly, late-passage JIMT-1 cells displayed an exacerbated migratogenic phenotype in plastic, collagen, and fibronectin substrates. Intrinsic genetic plasticity to efficiently drive the emergence of the CD44pos/CD24neg/low mesenchymal phenotype may account for de novo resistance to HER2 targeting therapies in basal-like BC carrying HER2 gene amplification.  相似文献   

7.
摘要 目的:探究丙戊酸(Valproic acid, VPA)协同顺铂抑制乳腺癌和结直肠癌细胞增殖。方法:首先使用Western blot 检测 VPA 对Acetyl-Histone H3蛋白水平的影响,使用Cell Counting Kit-8(CCK-8)法检测 VPA 对乳腺癌和结直肠癌细胞的细胞活力的影响。其次单药顺铂、VPA 和联合用药处理乳腺癌细胞 MDA-MB-231 和结直肠癌细胞 HCT-15,使用 IncuCyte 动态检测细胞生长过程和生长终点。结果:发现VPA 可抑制组蛋白去乙酰化酶的功能,升高Acetyl-Histone H3的蛋白水平,VPA 可抑制乳腺癌细胞和结直肠癌细胞增殖,且对 VPA 的药物敏感性相似;顺铂和 VPA 连用后可显著抑制乳腺癌和结直肠癌细胞增殖和活力。结论:本文发现 VPA 抑制组蛋白去乙酰化酶发挥抑制乳腺癌和结直肠癌细胞生长的新机制,并可以与顺铂连用提高抗肿瘤效果和药物敏感性,为同时患有癫痫和肿瘤的人群提供新的治疗思路。  相似文献   

8.
Resistance to cisplatin-based chemotherapy is a major cause of treatment failure in advanced bladder cancer (BC) patients. There is increasing evidence that microRNAs are involved in the development and progression of BC. However, little is known about the function of microRNAs in predicting the effect of adjuvant chemotherapy on BC survival and regulating response to cisplatin. To address this issue, we employed RT-qPCR to evaluate the clinical significance of miR-203 expression in 108 tissues of BC patients receiving cisplatin-based adjuvant chemotherapy, and performed in vitro studies to explore chemotherapeutic sensitivity to cisplatin in miR-203 overexpressing BC cells. We found miR-203 levels were significantly lower in BC progression group than non-progression group (P<0.001). ROC curve analysis illustrated miR-203 could significantly distinguish progressed patients from those without progression (P<0.001), yielding an area under the ROC curve of 0.839 (95% CI, 0.756–0.903). Moreover, low miR-203 expression correlated with shortened progression free survival (PFS) and overall survival (OS) of BC patients, and was an independent prognostic factor. Overexpression of miR-203 in 5637 and T24 BC cells could decrease cell viability, enhance cisplatin cytotoxicity, and promote apoptosis. Western blotting and luciferase reporter assay showed Bcl-w and Survivin were direct downstream targets of miR-203. There was also a significant inverse association between miR-203 and Bcl-w or Survivin expression in BC tissues (r = -0.781, -0.740, both P<0.001). In conclusion, decreased miR-203 predicts progression and poor prognosis for BC patients treated with cisplatin-based chemotherapy while miR-203 overexpression can enhance cisplatin sensitization by promoting apoptosis via directly targeting Bcl-w and Survivin.  相似文献   

9.
Background aimsThe ability to expand and maintain bone marrow (BM)-derived mesenchymal stem cells (MSC) in vitro is an important aspect of their therapeutic potential. Despite this, the exact composition of stromal cell types within these cultures and the potential effects of non-stem cells on the maintenance of MSC are poorly understood.MethodsC57BL/6J BM stroma was investigated as a model to determine the relationship between MSC and non-multipotent cells in vitro. Whole BM and single-cell derived cultures were characterized using flow cytometry and cell sorting combined with multipotent differentiation. Proliferation of individual stromal populations was evaluated using BrdU.ResultsAt a single-cell level, MSC were distinguished from committed progenitors, and cells lacking differentiation ability, by the expression of CD105 (CD105+). A 3-fold reduction in the percentage of CD105+ cells was detected after prolonged culture and correlated with loss of MSC. Depletion of CD105+ cells coincided with a 10–20% increase in the frequency of proliferating CD105? cells. Removal of CD105? stroma caused increased proliferation in CD105+ cells, which could be diminished by conditioned media from parent cultures. Comparison of the multipotent differentiation potential in purified and non-purified CD105+ cells determined that MSC were detectable for at least 3 weeks longer when cultured in the absence of CD105? cells.ConclusionsThis work identifies a simple model for characterizing the different cellular components present in BM stromal cultures and demonstrates that stromal cells lacking multipotent differentiating capacity greatly reduce the longevity of MSC.  相似文献   

10.
Summary Fibrinolytic activity was studied in a number of different established as well as secondary human cell cultures derived from both malignant and normal tissues. The ability to degrade [125I]-labeled fibrin was found to be characteristic of some malignant cultures as well as some normal cultures, and to be dependent upon the presence of serum. For the most part, this activity was detected in cultures with a relatively shortin vitro passage history (<30 passages). Low passaged colon and rectal carcinoma cells, HCT-8 and HRT-18, as well as normal rectal, colon and foreskin fibroblasts were positive for fibrinolytic activity, while long established (>100 passages) cultures of malignant cells (colon carcinoma, HeLa, Hep-2, KB) as well as normal cells (HEI, AV3) were negative. It is proposed that although some normal cells synthesize plasminogen activators, the fibrinolytic capability of both malignant and normal cells may be lost on prolongedin vitro cultivation.  相似文献   

11.
The influence of the human tumor suppressor PTEN on sensitivity of tumor cells to cytostatic drugs was studied. Rat ras-transformed (N-ras Asp12 ) fibroblasts were stably transfected with a full-size PTEN gene. Transfected clone was characterized by an enhanced expression of PTEN and a more normal phenotype in comparison with the parental cells. The effect of transient transfection with PTEN on the sensitivity of several malignant cell lines to the cytostatic drugs colchicine and adriablastine was studied. These drugs differ from each other in action mechanisms and intracellular targets. The tumor cell lines tested in this study included parental cell lines and stable sublines possessing drug resistance due to overexpression of P-glycoprotein. In all cell lines, introduction of exogenous PTEN caused a decrease in proliferation rates. This indicated that transgene was active. The chemosensitivity of some drug-resistant sublines was changed after PTEN transfection, but the drug sensitivity of parental cell lines remained unaffected. The effect of PTEN overexpression on chemosensitivity of malignant cells to cytostatic drugs was found to depend both on their mechanisms of action and on the origin of transfected cells. Our data suggest that PTEN is involved into the molecular mechanisms of drug resistance in cells studied.  相似文献   

12.
Summary Strain cultures of the cervical carcinoma HeLa (Puck-clone), human fetal intestinal epithelium (Henle) and adult human skin (NCTC clonal 2414) were used in Rose chambers for gamma irradiation at 2000 r and 4000 r from a Cobalt60 source.Phase contrast, time-lapse cinematographic records generally made from one to 5 days following irradiation yielded a total of more than 6000 feet of 16 mm film records for analysis.Cell enlargement was regularly observed. Telo-reduplication, including a second division is reported. Multinucleation arising from cells with single and multiple nuclei producing one or two daughter cells with numerous micronuclei was found for all three strains.It is believed that these mitotic anomalies represented a quantitative rather than a qualitative difference between irradiated and control cultures.The method permits an accurate assessment of the divisional potentialities of living cells during long periods of life in vitro under experimental conditions.This research was supported by the USAF under Contract No. AF 18(600)-1263, monitored by the School of Aviation Medicine, USAF, Randolph Air Force Base, Texas.Captain, USAF (MSC).  相似文献   

13.
Recent evidence demonstrated that endothelial cells initiate signaling events that enhance tumor cell survival, proliferation, invasion, and tumor recurrence. Under this new paradigm for cellular crosstalk within the tumor microenvironment, the origin of endothelial cells and tumor cells may have a direct impact on the pathobiology of cancer. The purpose of this pilot study was to evaluate the effect of endothelial cell species (i.e. murine or human) on xenograft tumor growth and response to therapy. Tumor xenografts vascularized either with human or with murine microvascular endothelial cells were engineered, side-by-side, subcutaneously in the dorsum of immunodefficient mice. When tumors reached 200 mm3, mice were treated for 30 days with either 4 mg/kg cisplatin (i.p.) every 5 days or with 40 mg/kg sunitinib (p.o.) daily. Xenograft human tumors vascularized with human endothelial cells grow faster than xenograft tumors vascularized with mouse endothelial cells (P<0.05). Notably, human tumors vascularized with human endothelial cells exhibited nuclear translocation of p65 (indicative of high NF-kB activity), and were more resistant to treatment with cisplatin or sunitinib than the contralateral tumors vascularized with murine endothelial cells (P<0.05). Collectively, these studies suggest that the species of endothelial cells has a direct impact on xenograft tumor growth and response to treatment with the chemotherapeutic drug cisplatin or with the anti-angiogenic drug sunitinib.  相似文献   

14.
Periostin is frequently upregulated in human cancers including gastric cancer and implicated in cancer cell proliferation, invasion, and epithelial–mesenchymal transition. This study was undertaken to investigate the effects of periostin overexpression on the chemosensitivity of gastric cancer cells. We constructed a stable cell line overexpressing periostin in SGC-7901 human gastric cancer cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed that periostin had no influence on the proliferation of SGC-7901 cells. Compared to empty vector-transfected cells, overexpression of periostin rendered SGC-7901 cells more resistant to cisplatin or 5-fluorouracil (5-FU)-induced apoptosis, accompanying with less release of cytochrome c from mitochondria and diminished cleavage of caspase-3 and poly (ADP-ribose) polymerase. Periostin-overexpressing cells treated with cisplatin or 5-FU showed significantly (p < 0.05) decreased expression of Bax and p53 proteins and increased expression of Bcl-2 protein, when compared to drug-treated mock counterparts. Restoration of p53 expression by delivering wild-type p53 gene resulted in a marked increase in drug-induced apoptosis in periostin-overexpressing SGC-7901 cells. Periostin overexpression elevated the phosphorylation of Akt. Pretreatment of periostin-overexpressing cells with an Akt inhibitor, MK-2206, partially rescued periostin-mediated inhibition of p53 expression and drug resistance. Taken together, our data indicate that periostin confers protection against cisplatin or 5-FU-induced apoptosis in SGC-7901 cells, likely through modulating the Akt/p53 pathway, and thus represents a potential therapeutic target in gastric cancer.  相似文献   

15.
The juices of grapes (Vitis labrusca L.) are similar to the fruit itself because the main constituents of the fruit are present in the juice. However, their quality characteristics may be modified by the harsh technological processes used for the production of integral food, such as production systems of raw materials and post-harvest treatment of grapes with ultraviolet (UV) irradiation. Therefore, the present study analyzed juices produced naturally (by liquefying the fruit) or by the technological process of extraction by steam distillation (90°C) of grapes from organic and conventional production systems that were untreated or treated with UV type C (65.6 J/m2 for 10 minutes). Using cultures of Rattus norvegicus hepatoma cells (HTC) in vitro, cytotoxic effects were assayed by the MTT test and by calculating the cytokinesis blocked proliferation index (CBPI), and mutagenic effects were measured by the cytokinesis block micronucleus assay. The results of the MTT assay and the CBPIs indicated that none of the juices were cytotoxic, including those that induced cell proliferation. The results of the micronucleus assay showed that none of the juices were mutagenic. However, the average number of micronuclei was lower in the juices produced from organic grapes, and cell proliferation, soluble acids and phenolic compounds were significantly higher. Compared with the natural juices, the integral juices of conventional grapes showed a higher average number of micronuclei as well as lower stimulation of cell proliferation and lower levels of bioactive compounds. The results demonstrate a beneficial effect of UV-C irradiation of post-harvest grapes in stimulating the synthesis of nutraceutical compounds without generating cytotoxic or mutagenic substances. Taken together, our findings support the consumption of grape juice and the application of food production techniques that enhance its nutritional value and promote its production, marketing and consumption.  相似文献   

16.
Breast cancer (BC) is the leading cancer in the world in terms of incidence and mortality in women. However, the mechanism by which BC develops remains largely unknown. The increase in cytosolic free Ca2+ can result in different physiological changes including cell growth and death. Orai isoforms are highly Ca2+ selective channels. In the present study, we analyzed Orai3 expression in normal and cancerous breast tissue samples, and its role in MCF‐7 BC and normal MCF‐10A mammary epithelial cell lines. We found that the expression of Orai3 mRNAs was higher in BC tissues and MCF‐7 cells than in normal tissues and MCF‐10A cells. Down‐regulation of Orai3 by siRNA inhibited MCF‐7 cell proliferation and arrested cell cycle at G1 phase. This phenomenon is associated with a reduction in CDKs 4/2 (cyclin‐dependent kinases) and cyclins E and D1 expression and an accumulation of p21Waf1/Cip1 (a cyclin‐dependent kinase inhibitor) and p53 (a tumor‐suppressing protein). Orai3 was also involved in MCF‐7 cell survival. Furthermore, Orai3 mediated Ca2+ entry and contributed to intracellular calcium concentration ([Ca2+]i). In MCF‐10A cells, silencing Orai3 failed to modify [Ca2+]i, cell proliferation, cell‐cycle progression, cyclins (D1, E), CDKs (4, 2), and p21Waf1/Cip1 expression. Our results provide strong evidence for a significant effect of Orai3 on BC cell growth in vitro and show that this effect is associated with the induction of cell cycle and apoptosis resistance. Our study highlights a possible role of Orai3 as therapeutic target in BC therapy. J. Cell. Physiol. 226: 542–551, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
In order to determine the cytotoxic or cytoprotective effect of the synthetic isoflavonoid genistein, we studied its effect on HeLa tumor cells, which contain estrogen alpha receptors and do not contain estrogen beta receptors. It was shown that the genistein concentration (IC 50 = 0.2 mM) at which the half maximal inhibition of the HeLa cell viability is achieved is ten times higher than the concentrations of tamoxifen and cisplatin, which are reference agents with a cytotoxic effect. At micromolar concentrations (0.1–10 µM) genistein decreased the cytotoxic effects of cisplatin and tamoxifen. We found the reduced Bax mRNA expression and increased Bcl-2 mRNA expression during incubation of the cells with genistein, which also indicates its cytoprotective anti-apoptotic effect. Genistein, even in high concentrations, had no effect on the membrane potential and calcium capacity of isolated mitochondria and did not activate the opening of the Ca2+-induced mitochondrial pore. Thus, the data show a protective effect of the isoflavonoid genistein on tumor cells.  相似文献   

18.
肺腺癌A549/DDP细胞周期变化及其多药耐药性   总被引:3,自引:2,他引:1  
用Fura-2/AM标记药物敏感的肺腺癌细胞A549和抗顺铂药物的肺腺癌细胞A549/DDP两种细胞胞内游离Ca2+,用碘化丙锭(PI)标记细胞DNA,检测其胞内Ca2+的变化及两种细胞增殖能力和细胞周期.实验结果表明,抗药性细胞株A549/DDP胞浆内游离Ca2+的浓度仅为药物敏感细胞株A549的1/3左右,同时前者的细胞增殖能力较后者明显增强,而且细胞周期也明显缩短.当用BAPTA-AM和EGTA或A23187和Thapsigargin处理细胞以降低或升高其胞内自由Ca2+浓度时可改变细胞的生长周期,二者也呈现明显差别.这些结果表明,对顺铂产生耐药性的人肺腺癌A549/DDP细胞胞内Ca2+浓度的降低,可能影响细胞的增殖,缩短细胞的生长周期,特别是影响起决定作用的G1期,从而有利于肿瘤细胞多药耐药特性的维持.  相似文献   

19.
Onion (Allium cepa) and bean (Vicia faba) root tip cells containing many micronuclei, derived from x-ray-induced chromosome fragments, were exposed to H3-thymidine and H3-cytidine to determine the ability of such fragments to undergo DNA and RNA synthesis. Only a few micronuclei in onion and many in bean roots synthesize nucleic acid simultaneously with their main nuclei. A few micronuclei labeled with H3-thymidine undergo mitotic chromosome condensation along with the main nuclei, while the unlabeled ones never do so. The onset of nucleic acid synthesis as well as mitosis in micronuclei appears to be under generalized cellular control. Although all chromosomes and chromosome fragments at telophase give a positive reaction for a silver stainable nucleolar fraction, in the subsequent interphase only some micronuclei, derived from such chromosome fragments, are found to maintain nucleoli; others lose them with time. Those micronuclei which maintain nucleoli, perhaps due to the presence of specific chromosomal regions, are also active in DNA and RNA synthesis. These results are compatible with the concept that nucleoli and associated chromosome regions play an important role in the primary biosynthetic processes of the cell.  相似文献   

20.
This paper contains observations and experiments which collectively demonstrate a requirement for cell-cell interactions among limb bud mesenchyme cells during chondrogenic differentiation. Limb bud cells isolated from brachypodismH (bpH) and wild-type mouse embyros between Thieler stage 16–17 and midstage 21 were compared with respect to their abilities to undergo chondrogenic differentiation in high-density micromass cultures. Nodules formed by dissociated Day 12 (stage 20) bpH limb bud cells have been reported previously to be abnormally reduced in size and number, and delayed in formation. We corroborate these results, but find that bpH cultures prepared from earlier-stage limb buds (between stages 16–17 and early stage 21) are progressively more like wild-type cultures. Stage 16–17 bpH cultures at 72 hr actually contain normal numbers of and size nodules, while stage 18 bpH cultures are intermediate between stages 16–17 and stage 21 in nodule formation. On the other hand, we also find that the initial rate of aggregate formation is normal even in bpH cultures prepared from stage 20 cultures in which nodule formation is not normal. Preparation of cultures composed primarily of early stage 21 bpH limb bud cells mixed with small quantities (e.g., 5%) of stage 16–17 wild-type limb bud cells showed significant increases in cartilage nodule formation over control cultures composed only of early stage 21 bpH cells. Greater proportions of wild-type cells obtained from embryos older than stages 16–17 were required for the same degree of normalization, supporting the hypothesis that a specific cell type, whose proportion decreases normally in the limb bud over time, is required to increase in vitro chondrogenesis by bpH cells. Additionally, cultures containing stage 23 chick limb cells and early stage 21 bpH cells at a ratio of 1:20 contained wild-type levels of nodules per square millimeter of culture. Thus, bpH cells appear to respond to chondrogenic inductive signals from normal limb mesenchyme cells. In order to test for the ability of bpH limb bud mesenchyme to induce chondrogenesis, stage 16–17 bpH and wild-type limb bud cells, which form identical numbers of aggregates and nodules in culture, were each mixed with early stage 21 bpH cells at ratios of 1:20, 1:10, and 1:3. Although low proportions of wild-type stage 17 cells significantly increased the number of aggregates and nodules in these mixed cultures, low proportions of bpH stage 16–17 cells did not. It is, therefore, concluded that the primary defect of the bpH mutation is likely to reside in the reduced ability of a specific mesenchyme cell subpopulation to provide an inductive stimulus for chondrogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号