首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α and β tubulin genes were cloned from the Capsicum annuum leaves using rapid amplification of cDNA ends (RACE)-PCR. Nucleotide sequence analysis revealed that 1,353 bp Capsicum annuum α?β-tubulin (CAnm α?β-TUB) encodes a protein of 450 amino acids (aa) each. The recombinant α?β tubulin was overexpressed mainly as an inclusion body in Escherichia coli BL21 (DE3), upon induction with 0.2 mM isopropyl-β-D-thiogalactopyranoside (IPTG), and its content was as high as 50% of the total protein content. Effective fusion protein purification and refolding are described. The average yields of α and β tubulin were 2.0 and 1.3 mg/l of culture respectively. The apparent molecular weight of each tubulin was estimated to be 55 kDa by SDS-polyacrylamide gel electrophoresis (PAGE). The tubulin monomers were found to be assembly competent using a standard dimerization assay, and also retained antigenicity with anti-His/T7 antibodies. The purified tubulins were polymerized to microtubule-like structures in the presence of 2 mM guanosine 5′-triphosphate (GTP).  相似文献   

2.
IgG FcRs are important mediators of immunity and play a key role during Ab-based immunotherapy. Within the leukocyte IgG receptor family, only FcγRI is capable of IgG binding with high affinity. FcγRI exists as a complex of a ligand binding α-chain and an FcR γ-chain. The receptors' α-chain can, furthermore, elicit several functions independent of the ITAM-bearing FcR γ-chain. Functional implications of high-affinity IgG binding and mechanisms underlying FcR γ-chain-independent signaling remain unclear to this day. In this paper, we provide an overview of past literature on FcγRI and address the implications of recently described interactions between cytosolic proteins and the FcγRI α-chain, as well as cytokine-enhanced FcγRI immune complex binding. Furthermore, an analysis of potential polymorphisms within the FCGR1A gene is provided.  相似文献   

3.
Development of protective immunity against Plasmodium falciparum is partially mediated through binding of malaria-specific IgG to Fc gamma (γ) receptors. Variations in human FcγRIIA-H/R-131 and FcγRIIIB-NA1/NA2 affect differential binding of IgG sub-classes. Since variability in FcγR may play an important role in severe malarial anemia (SMA) pathogenesis by mediating phagocytosis of red blood cells and triggering cytokine production, the relationship between FcγRIIA-H/R131 and FcγRIIIB-NA1/NA2 haplotypes and susceptibility to SMA (Hb?相似文献   

4.
A soluble oxalate oxidase activity has been detected in homogenate of ripened fruits of strawberry (Fragaria ananassa), as confirmed by the stoichiometric relationship between the disappearance of oxalate and utilization of dissolved O2, and generation of H2O2. The enzyme was purified up to apparent homogeneity and had a Mr of 119 kDa with two identical subunits. Km for oxalate was found to be 1.67×10?3 M, and Vmax of 0.741 mmoles ml?1min?1. It retained 76% of its initial activity, when heated at 60°C for 30 min. The enzyme was found to be glycoprotein in nature. The significant increase in the enzyme activity of ripened fruits compared to that in pre-ripened fruit, and decrease in oxalate level (?0.927 correlation with oxalate oxidase) with advancement of ripening indicated the physiological role of enzyme in fruit ripening.  相似文献   

5.
Li X  Pei J  Wu G  Shao W 《Biotechnology letters》2005,27(18):1369-1373
For the first time, a β-glucosidase gene from the edible straw mushroom, Volvariella volvacea V1-1, has been over-expressed in E. coli. The gene product was purified by chromatography showing a single band on SDS-PAGE. The recombinant enzyme had a molecular mass of 380 kDa with subunits of 97 kDa. The maximum activity was at pH 6.4 and 50 °C over a 5 min assay. The purified enzyme was stable from pH 5.6–8.0, had a half life of 1 h at 45 °C. The β-glucosidase had a Km of 0.2 mM for p-nitrophenyl-β-D-glucopyranoside.  相似文献   

6.
Fc engineering is a promising approach to enhance the antitumor efficacy of monoclonal antibodies (mAbs) through antibody-dependent cell-mediated cytotoxicity (ADCC). Glyco- and protein-Fc engineering have been employed to enhance FcγR binding and ADCC activity of mAbs; the drawbacks of previous approaches lie in their binding affinity to both FcγRIIIa allotypes, the ratio of activating FcγR binding to inhibitory FcγR binding (A/I ratio) or the melting temperature (TM) of the CH2 domain. To date, no engineered Fc variant has been reported that satisfies all these points. Herein, we present a novel Fc engineering approach that introduces different substitutions in each Fc domain asymmetrically, conferring optimal binding affinity to FcγR and specificity to the activating FcγR without impairing the stability. We successfully designed an asymmetric Fc variant with the highest binding affinity for both FcγRIIIa allotypes and the highest A/I ratio compared with previously reported symmetrically engineered Fc variants, and superior or at least comparable in vitro ADCC activity compared with afucosylated Fc variants. In addition, the asymmetric Fc engineering approach offered higher stability by minimizing the use of substitutions that reduce the TM of the CH2 domain compared with the symmetric approach. These results demonstrate that the asymmetric Fc engineering platform provides best-in-class effector function for therapeutic antibodies against tumor antigens.  相似文献   

7.
8.

Objectives

Fc receptors (FcR) interacting with immune complexes (ICs) is a central event in the immune pathogenesis of rheumatoid arthritis (RA). Here we asked if a specific FcR is linked to RA pathogenesis and if FcR activities relate to disease and treatment outcome in early RA.

Material and Methods

Twenty autoantibody-positive RA patients and 33 HC were included. The patients were evaluated before and after treatment with methotrexate and prednisolone. At follow-up, the EULAR response criteria were applied to determine the individual treatment outcomes. Serum immunoglobulin levels were measured and the expression of FcR for IgG (FcγR) and IgA (FcαR) on peripheral blood monocytes were determined by flow cytometry. The monocytic FcγR function was evaluated by human IgG1 and IgG3 IC-binding and TNFα stimulated release. Plasma levels of soluble FcRs (sFcRs) were determined with ELISA.

Results

The IgG1 and IgG3 levels were elevated in the RA sera. The RA monocytes expressed more CD64 and cell surface-bound IgG than HC monocytes, and showed an impaired FcγR function as reflected by changes in IC-binding and decreased IC-stimulated TNFα secretion. These findings correlated significantly with different disease activity markers. Furthermore, sFcRs were elevated in the patient plasma, and sCD64 was specific for RA (compared with a reference group of patients with active psoriatic arthritis). Following treatment, immunoglobulins and sFcR levels were reduced, whereas membrane CD64 was only decreased in patients with good response to treatment.

Conclusions

Early RA patients display increased membrane and soluble CD64 and an impaired FcγR function correlating with joint disease activity. Beneficial responses of anti-rheumatic treatment in patients reduce CD64. These data suggest sCD64 as an important objective biomarker in RA.  相似文献   

9.
Fc受体(FcR)是一种表达在免疫细胞表面的受体分子, 由多亚基构成, 通过与免疫球蛋白(Ig)的Fc段结合引起包括炎症因子释放和吞噬作用等体液和细胞免疫反应。研究采用RACE技术首次克隆得到了虹鳟FcγR的α亚基基因(FcγRα)和γ亚基基因(FcRγ)的cDNA序列, 采用生物信息学软件对FcγRα和FcRγ的序列进行了特征分析, 实时荧光定量PCR检测了其在不同组织和细胞亚群中以及在Poly (I鲶C)和LPS刺激后头肾中的表达。结果显示:FcγRα的cDNA全长1677 bp, 开放阅读框为954 bp, 编码317个氨基酸; FcγRα由信号肽和2个Ig样结构域构成, 但没有跨膜区和胞内区。FcRγ亚基存在2种形式, 分别命名为FcRγ1和FcRγ2(包含FcRγ2a和FcRγ2b两个剪接异构体), 它们均由信号肽、跨膜区和胞内的免疫受体酪氨酸活化基序(ITAM)构成。氨基酸序列相似性分析表明虹鳟FcγRα与斑点叉尾鮰FcRI相同率最高(30%), 虹鳟FcRγ1和FcRγ2a/2b与哺乳动物FcRγ相同率最高可达40%。组织表达显示FcγRα、FcRγ1和FcRγ2a/2b在头肾、脾脏和血液中表达较高; 细胞亚群表达显示FcγRα、FcRγ1和FcRγ2a/2b在髓样细胞群中表达最高; LPS和Poly (I鲶C)刺激后,FcγRα、FcRγ1和FcRγ2a/2b在头肾中的表达显著上调, 这表明FcγR在机体抗细菌和抗病毒免疫中可能发挥重要作用。  相似文献   

10.
Identification of the genetic basis of systemic lupus erythematosus (SLE) may contribute to the discovery of effective drugs before renal involvement. Our aim of this study was to estimate the association between Fc gamma receptor (FcγR) polymorphisms and SLE and renal involvement in Egyptian patients. FcγRIIB and FcγRIIA R131H gene polymorphisms were genotyped in 180 Egyptian adults. Genotyping for FcγRIIA R131H was performed using allele-specific PCR and FcγRIIB-Ile232 Thr polymorphism was genotyped using polymerase chain reaction restriction fragment length polymorphism (PCR–RFLP). The study showed that the homozygous genotype (Thr/Thr) of FcγRIIB significantly increased in all SLE patients (90 patients) and in SLE patients complicated with nephritis (61 patients). The Thr allele was significantly associated with an increased risk of the disease in all the patients and in patients complicated with nephritis. Our study demonstrated an association of FcγRIIB polymorphisms with SLE and lupus nephritis and a lack of association of FcγRIIA polymorphisms with SLE in the Egyptian patients.  相似文献   

11.
12.
《ImmunoMethods》1994,4(1):65-71
The low-affinity Fc receptor for IgE (FcϵRII/CD23) and its soluble form (sCD23, IgE-binding factor) have multiple functions, and enhanced levels of these are associated with various immunological diseases. We established two sensitive ELISA systems using enzyme-conjugated mAb and biotinylated mAb. The detection limits of the ELISA systems were 0.03 and 1.0 ng/ml, which showed good correlation in the range 1.0-10 ng/ml. In the ELISA system using enzyme-conjugated mAb, the average sCD23 concentration in 303 normal healthy volunteers was 1.4 ± 0.3 ng/ml. In the ELISA system using biotinylated mAb, sCD23 levels in normal healthy volunteers showed almost the same values. In patients with autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, Sjögren syndrome, progressive systemic sclerosis, and mixed connective tissue disease, the sCD23 levels were significantly higher than those in normal individuals. Furthermore, in Epstein-Barr virus-related disorders after liver transplantation with immunosuppression, plasma levels of sCD23 rapidly Increased to more than 12 ng/ml when clinical symptoms were evident. In addition, the sCD23 values remained high, although elevated GOT levels gradually decreased to standard values and EBV hepatitis improved. These data suggest that sCD23 levels are a sensitive marker of autoimmune diseases and EBV-related disorders in addition to allergic disorders. The ELISA system for sCD23 may be an additional diagnostic tool in estimating the clinical courses of these diseases.  相似文献   

13.
Immunoglobulin G (IgG) antibodies are an integral part of the adaptive immune response that provide a direct link between humoral and cellular components of the immune system. Insights into relationships between the structure and function of human IgGs have prompted molecular engineering efforts to enhance or eliminate specific properties, such as Fc-mediated immune effector functions. Human IgGs have an N-glycosylation site at Asn297, located in the second heavy chain constant region (CH2). The composition of the Fc glycan can have substantial impacts on Fc gamma receptor(FcγR) binding. The removal of the glycan through enzymatic deglycosylation or mutagenesis of the N-linked glycosylation site has been reported to "silence" FcγR-binding and effector functions, particularly with assays that measure monomeric binding. However, interactions between IgGs and FcγRs are not limited to monomeric interactions but can be influenced by avidity, which takes into account the sum of multimeric interactions between antigen-engaged IgGs and FcγRs. We show here that under in vitro conditions, which allowed avidity binding, aglycosylated IgGs can bind to one of the FcγRs, FcγRI, and mediate effector functions. These studies highlight how the valency of a molecular interaction (monomeric binding versus avidity binding) can influence antibody/FcγR interactions such that avidity effects can translate very low intrinsic affinities into significant functional outcomes.  相似文献   

14.
α-N-Acetylgalactosaminidase (αNAGAL, EC 3.2.1.49) purified from chicken liver has been used in seroconversion of human erythrocytes. Blood group A, defined by the terminal α-linkedN-acetylgalactosamine, can be cleavedin vitroby αNAGAL, resulting in the underlying penultimate blood group H (O) epitope structure. In order to produce sufficient quantities of recombinant αNAGAL (rαNAGAL) for such studies, we expressed the cDNA encoding chicken liver αNAGAL inPichia pastoris,a methylotrophic yeast strain. The αNAGAL coding sequence was cloned into theEcoRI site of the vector pPIC 9 such that the protein was in the same reading frame as the secretion signal of yeast α-mating factor derived from the vector. AfterP. pastoristransformation, colonies were screened for high-level expression of rαNAGAL based on enzyme activity. As a result of methanol induction of high-density cell cultures in a fermentor, enzymatically active rαNAGAL was produced and secreted into the culture medium. The recombinant enzyme was purified over 150-fold by chromatography on a cation exchange column followed by an affinity column. Its homogeneity was confirmed by Coomassie blue-stained SDS–PAGE, Western blot, and N-terminal sequencing. The purified rαNAGAL has a molecular mass of approximately 50 kDa while its native counterpart has a molecular mass of 43 kDa. This discrepancy in size was eliminated by endoglycosidase treatment, suggesting that the recombinant protein was hyperglycosylated by the hostP. pastoriscells. rαNAGAL was further characterized in terms of specific activity, pH profile, kinetic parameters, and thermostability by comparing with αNAGAL purified from chicken liver. The data presented here suggest that by overexpressing rαNAGAL inP. pastorisand purifying with affinity chromatography one can readily obtain the quantity of enzyme needed for seroconversion studies.  相似文献   

15.

Background

Health status, dyspnea and psychological status are important clinical outcomes in chronic obstructive pulmonary disease (COPD). However, forced expiratory volume in one second (FEV1) measured by spirometry, the standard measurement of airflow limitation, has only a weak relationship with these outcomes in COPD. Recently, in addition to spirometry, impulse oscillometry (IOS) measuring lung resistance (R) and reactance (X) is increasingly being used to assess pulmonary functional impairment.

Methods

We aimed to identify relationships between IOS measurements and patient-reported outcomes in 65 outpatients with stable COPD. We performed pulmonary function testing, IOS, high-resolution computed tomography (CT), and assessment of health status using the St. George's Respiratory Questionnaire (SGRQ), dyspnea using the Medical Research Council (MRC) scale and psychological status using the Hospital Anxiety and Depression Scale (HADS). We then investigated the relationships between these parameters. For the IOS measurements, we used lung resistance at 5 and 20 Hz (R5 and R20, respectively) and reactance at 5 Hz (X5). Because R5 and R20 are regarded as reflecting total and proximal airway resistance, respectively, the fall in resistance from R5 to R20 (R5-R20) was used as a surrogate for the resistance of peripheral airways. X5 was also considered to represent peripheral airway abnormalities.

Results

R5-R20 and X5 were significantly correlated with the SGRQ and the MRC. These correlation coefficients were greater than when using other objective measurements of pulmonary function, R20 on the IOS and CT instead of R5-R20 and X5. Multiple regression analyses showed that R5-R20 or X5 most significantly accounted for the SGRQ and MRC scores.

Conclusions

IOS measurements, especially indices of peripheral airway function, are significantly correlated with health status and dyspnea in patients with COPD. Therefore, in addition to its simplicity and non-invasiveness, IOS may be a useful clinical tool not only for detecting pulmonary functional impairment, but also to some extent at least estimating the patient's quality of daily life and well-being.  相似文献   

16.
17.
 The mouse Fcgr1 gene encoding the high-affinity IgG receptor (FcγRI) exists as two known alleles, FcγRI-BALB and FcγRI-NOD, and these alleles exhibit functional differences. To determine whether other alleles exist in mouse strains, Fcgr1 coding regions from 35 strains of mice were sequenced and a further five alleles were identified. The FcγRI-BALB and NOD alleles are now designated the "a" and "d" alleles, respectively. Analysis of the five new alleles revealed that although no polymorphisms were observed in the two leader exons, nucleotide and subsequent amino acid changes were observed in the exons encoding the extracellular domains, and transmembrane and cytoplasmic tail. The cDNA of the seven alleles (a–g) were isolated and transiently transfected into COS cells, and IgG-binding studies were performed. Receptors encoded by four of the five new alleles (b, c, f, g) bound IgG2a with high affinity, displaying IgG binding characteristics similar to the a allele (previously FcγRI-BALB). The d allele (previously FcγRI-NOD) and the e allele [derived from Mus spretus (SPRET/Ei)] encoded receptors which showed broader specificity by binding monomeric IgG2a, IgG2b, and IgG3. Received: 26 May 1999 / Revised: 25 October 1999  相似文献   

18.
Abstract

An immunomodulatory peptide was isolated from bovine placenta water‐soluble extract and purified by consecutive chromatography on DEAE Sepharose CL‐6B, Sephadex G‐25, and Sephasil C18 column using lymphocyte proliferation assay to identify the active fractions. The immunomodulatory peptide showed a dose‐dependent stimulating effect on lymphocyte proliferation. The isoelectric point of the immunodulatory peptide was determined to be 3.82 by capillary isoelectric focusing electrophoresis. The molecular mass of the immunomodulatory peptide was determined to be 2133.52 Da by mass spectrometry. The first 10 amino acid sequence of the immunomodulatory peptide was Tyr‐X‐Phe‐Leu‐Gly‐Leu‐Pro‐Gly‐X‐Thr. This immunomodulatory peptide showed no significant homology with other immunomodulatory peptides. Additionally, it was thermostable, retaining about 60% of immune activity after incubating at 80°C for 30 min.  相似文献   

19.
The cDNAs coding for Mortierella vinacea α-galactosidases I and II were expressed in Saccharomyces cerevisiae under the control of the yeast GAL10 promoter. The recombinant enzymes purified to homogeneity from the culture filtrate were glycosylated, and had properties identical to those of the native enzymes except for improving the heat stability of α-galactosidase II and decreasing the specific activities of both enzymes.  相似文献   

20.
Enteropeptidase (EC 3.4.21.9) is the glycoprotein enzyme in the small intestine that triggers the activation of the zymogens in pancreatic juice by converting trypsinogen into trypsin. Because of its physiological significance, there have been many studies on the expression, purification, and characterization of enteropeptidase from different species. The baculovirus expression system has been commonly used in research communities and scientific industries for the production of high levels of recombinant proteins, which require posttranslational modifications for functional activity. In the present study, we isolated bovine enteropeptidase catalytic subunit gene from Bos taurus indicus (GenBank accession no. KC756844), and cloned it in pFast Bac HT “A” baculovirus expression donor vector, under the polyhedrin promoter. Recombinant bovine enteropeptidase was expressed in SF-9 insect cells with high expression levels. Recombinant enteropeptidase was purified using Ni-NTA affinity chromatography. A 6-mg quantity of pure active protein was obtained from 100 mL culture using this approach. Its activity and kinetic parameters were determined by cleavage of its fluorogenic substrate Gly-(Asp) 4-Lys-β-naphthylamide. The recombinant bovine enteropeptidase showed a K m value of 0.75 ± 0.02 mM with K cat 25 ± 1 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号