首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文由1741个叫声的分析,给出了蟋蟀的鸣声特征和黑蝉叫声的影响.雄蟋招引声的每个单次叫声(SC)平均含有7.6个节拍,每个含有2个脉冲列组,每组含有4个主要的调幅脉冲列.每个SC的声长、间隔和平均重复周期(?)及节拍速(?)分别为1.285-1.325s,0.755—0.746s和2.078s及每秒7.6个节拍.鸣声谱的主峰频率(MPF)和MPF下降20db的带宽分别为5223±79Hz和(4498±82)—(5656±68)Hz.正在歌唱的蟋蟀鸣声基本上不受黑蝉自鸣声的影响,但黑蝉的前置自鸣声对蟋蟀鸣声波形有一定的影响.黑蝉的惊叫声不仅对蟋蟀鸣声波形有明显影响,而且时间特性有一定影响,即(?)约缩短一半,(?)的变差明显扩大.但对频率特性都无影响.  相似文献   

2.
Crickets produce stridulated sounds by rubbing their forewings together. The calling song of the cricket species Eneoptera guyanensis Chopard, 1931 alternates two song sections, at low and high dominant frequencies, corresponding to two distinct sections of the stridulatory file. In the present study we address the complex acoustic behavior of E. guyanensis by integrating information on the peculiar morphology of the stridulatory file, the acoustic analysis of its calling song and the forewing movements during sound production. The results show that even if E. guyanensis matches the normal cricket functioning for syllable production, the stridulation involves two different closing movements, corresponding to two types of syllables, allowing the plectrum to hit alternately each differentiated section of the file. Transition syllables combine high and low frequencies and are emitted by a complete forewing closure over the whole file. The double-teeth section of the stridulatory file may be used as a multiplier for the song frequency because of the morphological multiplication due to the double teeth, but also because of an increase of wing velocity when this file section is used. According to available phylogenetic and acoustic data, this complex stridulation may have evolved in a two-step process.  相似文献   

3.
Waveform and spectral analysis were made on the call song of the cricket, Acheta domesticus. Sounds produced by unrestrained male crickets were led directly to a computer where discrete Fourier transforms were performed on selected segments of the call song. The findings revealed essentially pure tone carrier frequencies which result from the rate at which the individual teeth of the pars stridens are struck by the plectrum. An electrophysiologically determined audiogram showed good agreement with the dominant frequency of the call song, but was less sensitive and more broadly tuned than hearing curves of most fiels crickets.  相似文献   

4.
Acoustic frequency (pitch) cues are known to be important in the recognition of conspecific song in a number of songbird species. Mountain chickadees (Poecile gambeli) and black-capped chickadees (Poecile atricapillus) are sympatric over parts of their ranges and their species-typical songs share many features. I examined the acoustic characteristics of song of these two congeners in a region of sympatry in southern Alberta, Canada. As reported for other populations in allopatry, black-capped chickadees emphasized relative frequency cues in song production. In particular, variation in the ratios between note frequencies was significantly less than variation in the note frequencies themselves. In contrast, songs of mountain chickadees did not have constant frequency ratios and contained an introductory acoustic element absent in black-capped chickadee song. Both species may rely on song note frequency or the presence of this introductory acoustic element when differentiating between conspecific song and heterospecific song. Song measures for chickadees in sympatry were similar to measures in allopatry, providing little evidence for character displacement in song production.  相似文献   

5.
The male of the African cave cricket Phaeophilacris spectrum (Saltatoria: Grylloidea: Phalangopsidae) possesses tegmina without stridulatory organs, and both females and males lack tympanal organs. Therefore acoustic communication in the usual sense, which is typical for most crickets, is absent in this species. However, adaptations of the wing articulation allow the males to flick their wings forward over their heads. During courtship these movements are performed in series of 4–5 wing-flicks at a rate of 8–12 Hz (called wing-flick series = WFS) which elicit low-frequency air movements. Such signals may have taken over the functional significance of an acoustic ‘courtship song’. A quantitative analysis of the cricket's behaviour showed that in terms of frequency and total duration, ‘wing-flick series’ and ‘rocking’ behaviour are the most prominent signals of the male's courtship display. Moreover, analysis of the spatial relationships between male and female demonstrates that the wing-flicking is directed towards the female. The response of a female to a wing-flicking, courting male seems mainly to be calmed down and to reach a passive, receptive state, necessary for subsequent copulation. Females confronted with a male's courtship display exhibited a significantly higher threshold to disturbing stimuli than uncourted ones.  相似文献   

6.
In choosing a breeding partner, females in many animal species select between available males on the basis of several signalling traits. Some theoretical models of signalling evolution predict that multiple ornaments convey specific information on different aspects of male quality, such as current nutritional condition. We investigated the effect of nutrition on the calling song of male field crickets Gryllus campestris. This song is a multicomponent sexually selected signal. Adult males were kept on one of three feeding regimes, which resulted in significant differences in body condition between experimental groups. We found significant increases in calling rate and chirp rate and a significant decrease in interchirp duration with increasing food level. Other song characters, such as chirp duration, syllable number, chirp intensity and carrier frequency, were not affected by the food treatment. Furthermore, carrier frequency was correlated with harp area, which is an index of structural size in adult males. The calling song of the field cricket may thus serve as a multicomponent sexual signal, which contains discrete information on past growth and juvenile development as well as present nutritional condition. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

7.
The relationship between body size and vocalization parameters has been studied in many animal species. In insect species, however, the effect of body size on song frequency has remained unclear. Here we analyzed the effect of body size on the frequency spectra of mating songs produced by the two-spotted cricket, Gryllus bimaculatus. We recorded the calling songs and courtship songs of male crickets of different body sizes. The calling songs contained a frequency component that peaked at 5.7 kHz. On the other hand, courtship songs contained two frequency components that peaked at 5.8 and 14.7 kHz. The dominant frequency of each component in both the calling and courtship songs was constant regardless of body size. The size of the harp and mirror regions in the cricket forewings, which are the acoustic sources of the songs, correlated positively with body size. These findings suggest that the frequency contents of both the calling and courtship songs of the cricket are unaffected by whole body, harp, or mirror size.  相似文献   

8.
Various characteristics of a long‐distance acoustic signal have been shown to vary to different degrees. It has been suggested that female preferences based on stable song parameters are stabilising or weakly directional, and preferences based on variable parameters are strongly directional. We tested this hypothesis based on a short‐distance signal (courtship song) produced by the field cricket, Gryllus bimaculatus. We studied the degree of variability of different courtship song parameters and the behavioural importance of several parameters using synthesised song models in playback experiments. We found that most of the courtship song elements of G. bimaculatus were quite variable (coefficient of variation, CV, in the range of 20–53%). The most variable parameter of the courtship song was the relative amplitude of two elements: high‐amplitude ticks and low‐amplitude pulses. Because songs containing only ticks (of rare occurrence) appeared to be more effective than songs with both ticks and pulses (of frequent occurrence), we consider female preferences to be directional. Alteration of less variable traits, such as the carrier frequency and duration of ticks (CV = 20–25%), had a different effect on female responsiveness. The synthesised songs with different carrier frequencies of ticks were as attractive to females as the positive control (courtship of muted males accompanied by playback of the recorded song). Altering the duration of ticks had a crucial effect on the female response rate, decreasing female responsiveness to the level observed in the negative control (courtship of muted males). Thus, we did not find a strong relationship between the variability of individual song parameters and their potential importance in song recognition and the evaluation of male quality. The partial inconsistency of our results with the data of other authors may be due to different patterns of past and current selection on long‐distance and short‐distance acoustic signals.  相似文献   

9.
The processing and categorization of conspecific and heterospecific acoustic signals is an important task of the central nervous system. In orthopteran species, carrier frequency (besides temporal cues) is one of the major discriminators. In the bush cricket species Ancistrura nigrovittata Brunner von Wattenwyl (Phaneropteridae, Barbitistini), ultrasound has potentially different meanings and may elicit vastly different behaviours depending on the context it is perceived in. In the present study, data are presented of the morphology and neuronal responses of three local brain neurones (LBNs) that respond best to ultrasound. All neurones show dense arborizations in the lateral protocerebrum, where ascending interneurones terminate. The LBN2 and LBN9 neurones are entirely restricted to one side of the brain, whereas LBN5 crosses the midline, thereby linking both hemispheres. The response maxima for LBN2 overlap closely with the peak carrier frequencies found in a species‐specific duet, which consists of sonic (16 kHz, male), as well as ultrasonic (24–28 kHz, female) sound. By contrast, LBN9 responds only to ultrasound in the range of the female reply, whereas the male song induces exceptionally long‐lasting inhibition. The LBN5 neurone shows strongest spike activity to a broad range of ultrasonic frequencies, as long as the pulse duration remains short. All three brain neurones respond to ultrasound in a unique way and may be involved in the shaping of different behavioural outcomes.  相似文献   

10.
Various auditory interneurons of the duetting bush cricket Ancistrura nigrovittata with axons ascending to the brain are presented. In this species, more intersegmental sound-activated neurons have been identified than in any other bush cricket so far, among them a new type of ascending neuron with posterior soma in the prothoracic ganglion (AN4). These interneurons show not only morphological differences in the prothoracic ganglion and the brain, but also respond differently to carrier frequencies, intensity and direction. As a set of neurons, they show graded differences for all of these parameters. A response type not described among intersegmental neurons of crickets and other bush crickets so far is found in the AN3 neuron with a tonic response, broad frequency tuning and little directional dependence. All neurons, with the exception of AN3, respond in a relatively similar manner to the temporal patterns of the male song: phasically to high syllable repetitions and rhythmically to low syllable repetitions. The strongest coupling to the temporal pattern is found in TN1. In contrast to behavior the neuronal responses depend little on syllable duration. AN4, AN5 and TN1 respond well to the female song. AN4 (at higher intensities) and TN1 respond well to a complete duet.  相似文献   

11.
本工作对北京地区非洲蝼蛄的鸣声结构作了详细分析;明确了在声通讯中起重要作用的参量并以其引诱力最强的召唤信号进行了声引诱实验。在成虫活动高峰期——晚间2小时38分钟内,平均一个声诱捕器捕获蝼蛄556只,最多的一个诱捕922只。  相似文献   

12.
Acoustically-signaling animals such as crickets may experience interference from environmental noise, a particular concern given the rise in anthropogenic or other novel sources of sound. We examined the potential for acoustic interference of female phonotaxis to calling song in the Pacific field cricket (Teleogryllus oceanicus) by invasive coqui frogs (Eleutherodactylus coqui) in Hawaii. The frogs were introduced to Hawaii from Puerto Rico in the 1980s. When female crickets were exposed to male calling songs with and without simultaneous broadcast of a coqui chorus, they were equally likely to move toward the cricket song, regardless of the location of the frog sound (ground level or above ground). Unlike some species of frogs and birds, T. oceanicus do not appear to experience acoustic interference from an introduced signaler, even though the introduced species’ calls subjectively seem to be masking the crickets’ songs.  相似文献   

13.
Although the strength and form of sexual selection on song in male crickets have been studied extensively, few studies have examined selection on the morphological structures that underlie variation in males’ song, particularly in wild populations. Geometric morphometric techniques were used to measure sexual selection on the shape, size and symmetry of both top and bottom tegmina in wild populations of sagebrush crickets, a species in which nuptial feeding by females imposes an unambiguous phenotypic marker on males. The size of the tegmina negatively covaried with song dominant frequency and positively covaried with song pulse duration. Sexual selection was more intense on the bottom tegmen, conceivably because it interacts more freely with the subtegminal airspace, which may play a role in song amplification. An expanded coastal/subcostal region was one of the phenotypes strongly favoured by disruptive selection on the bottom tegmen, an adaptation that may form a more effective seal with the thorax to prevent noise cancellation. Directional selection also favoured increased symmetry in tegminal shape. Assuming more symmetrical males are better able to buffer against developmental noise, the song produced by these males may make them more attractive to females. Despite the strong stabilizing selection documented previously on the dominant frequency of the song, stabilizing selection on the resonator that regulates dominant frequency was surprisingly absent. Nonetheless, wing morphology had an important influence on song structure and appears to be subject to significant linear and nonlinear sexual selection through female mate choice.  相似文献   

14.
Females of the parasitoid fly Emblemasoma auditrix find their host cicada (Okanagana rimosa) by its acoustic signals. In laboratory experiments, fly phonotaxis had a mean threshold of about 66 dB SPL when tested with the cicada calling song. Flies exhibited a frequency dependent phonotaxis when testing to song models with different carrier frequencies (pulses of 6 ms duration and a repetition rate of 80 pulses s(-1)). However, the phonotactic threshold was rather broadly tuned in the range from 5 kHz to 11 kHz. Phonotaxis was also dependent on the temporal parameters of the song models: repetition rates of 60 pulses s(-1) and 80 pulses s and pulse durations of 5-7 ms resulted in the highest percentages of phonotaxis performing animals coupled with the lowest threshold values. Thus, parasitoid phonotaxis is adapted especially to the temporal parameters of the calling song of the host. Choice experiments revealed a preference of a song model with 9 kHz carrier frequency (peak energy of the host song) compared with 5 kHz carrier frequency (electrophysiologically determined best hearing frequency). However, this preference changed with the relative sound pressure level of both signals. When presented simultaneously, E. auditrix preferred 5-kHz signals, if they were 5 dB SPL louder than the 9-kHz signal.  相似文献   

15.
MM Rothbart  RM Hennig 《PloS one》2012,7(9):e43975
In Europe, several species of crickets are available commercially as pet food. Here we investigated the calling song and phonotactic selectivity for sound patterns on the short and long time scales for one such a cricket, Gryllus spec., available as "Gryllus assimilis", the Steppengrille, originally from Ecuador. The calling song consisted of short chirps (2-3 pulses, carrier frequency: 5.0 kHz) emitted with a pulse period of 30.2 ms and chirp rate of 0.43 per second. Females exhibited high selectivity on both time scales. The preference for pulse period peaked at 33 ms which was higher then the pulse period produced by males. Two consecutive pulses per chirp at the correct pulse period were already sufficient for positive phonotaxis. The preference for the chirp pattern was limited by selectivity for small chirp duty cycles and for chirp periods between 200 ms and 500 ms. The long chirp period of the songs of males was unattractive to females. On both time scales a mismatch between the song signal of the males and the preference of females was observed. The variability of song parameters as quantified by the coefficient of variation was below 50% for all temporal measures. Hence, there was not a strong indication for directional selection on song parameters by females which could account for the observed mismatch. The divergence of the chirp period and female preference may originate from a founder effect, when the Steppengrille was cultured. Alternatively the mismatch was a result of selection pressures exerted by commercial breeders on low singing activity, to satisfy customers with softly singing crickets. In the latter case the prominent divergence between male song and female preference was the result of domestication and may serve as an example of rapid evolution of song traits in acoustic communication systems.  相似文献   

16.
The noise filter hypothesis predicts that species using higher sound frequencies should be more tolerant of noise pollution, because anthropogenic noise is more intense at low frequencies. Recent work analysed continental‐scale data on anthropogenic noise across the USA and found that passerine species inhabiting more noise‐polluted areas do not have higher peak song frequency but have more complex songs. However, this metric of song complexity is of ambiguous interpretation, because it can indicate either diverse syllables or a larger frequency bandwidth. In the latter case, the finding would support the noise filter hypothesis, because larger frequency bandwidths mean that more sound energy spreads to frequencies that are less masked by anthropogenic noise. We reanalysed how passerine song predicts exposure to noise using a more thorough dataset of acoustic song measurements, and showed that it is large frequency bandwidths, rather than diverse syllables, that predict the exposure of species to noise pollution. Given that larger bandwidths often encompass higher maximum frequencies, which are less masked by anthropogenic noise, our result suggests that tolerance to noise pollution might depend mostly on having the high‐frequency parts of song little masked by noise, thus preventing acoustic communication from going entirely unnoticed at long distances.  相似文献   

17.
ABSTRACT. Both sexes of the speckled bush cricket, Leptophyes punctatissima (Bosc) (Tettigoniidae) produce sound by stridulation. The sound is used in courtship. The male sings for periods throughout the day and night, and there is a peak of activity in the early afternoon. The female sings only in response to a male chirp. The male increases his rate of singing if he receives replies from a female. After 3 days isolation from male song, the female replies most readily to male song mimics of short duration (10 ms) whose carrier frequency is 30 or 45 kHz. Females that have been isolated from male song for 10 days respond less readily than those isolated for 3 days. The short duration of the songs of both sexes reduces their value as locating signals. This disadvantage may be outweighed by the fact that a short signal reduces the chance of a predator detecting the singer by acoustic or visual cues.  相似文献   

18.

Introduction

Urbanization can considerably impact animal ecology, evolution, and behavior. Among the new conditions that animals experience in cities is anthropogenic noise, which can limit the sound space available for animals to communicate using acoustic signals. Some urban bird species increase their song frequencies so that they can be heard above low-frequency background city noise. However, the ability to make such song modifications may be constrained by several morphological factors, including bill gape, size, and shape, thereby limiting the degree to which certain species can vocally adapt to urban settings. We examined the relationship between song characteristics and bill morphology in a species (the house finch, Haemorhous mexicanus) where both vocal performance and bill size are known to differ between city and rural animals.

Results

We found that bills were longer and narrower in more disturbed, urban areas. We observed an increase in minimum song frequency of urban birds, and we also found that the upper frequency limit of songs decreased in direct relation to bill morphology.

Conclusions

These findings are consistent with the hypothesis that birds with longer beaks and therefore longer vocal tracts sing songs with lower maximum frequencies because longer tubes have lower-frequency resonances. Thus, for the first time, we reveal dual constraints (one biotic, one abiotic) on the song frequency range of urban animals. Urban foraging pressures may additionally interact with the acoustic environment to shape bill traits and vocal performance.
  相似文献   

19.
Auditory interneurone responses in the mesothoracic ganglion of the cricket Gryllus bimaculatus were investigated with special regard to temporal features of the calling song. Units representing five response types were found. One type codes verse syllables and intensity. The second codes syllables of highfrequency verses. The third responds as a pulse marker. The fourth shows adaptation and the response pattern depends on the verse frequency. The fifth fires a burst at verse onset.Responses of mesothoracic units recorded in two other cricket species do not differ markedly from those of Gryllus bimaculatus. Particularly, no tuning is found to species-specific differences in their calling songs.The stimulus direction can affect the threshold in different ways: dependence at all frequencies, dependence only between 3 and 6 kHz, and independence are found. The dependence is mainly expressed by a higher threshold for contralateral sounds.The mesothoracic branching of a few neurones was demonstrated by extracellular CoS-staining. These cells pass through the ganglion as connective fibres giving off small branches into the ventro-medial and dorso-medial neuropiles.  相似文献   

20.
Abstract.  Males of Tibicina cicada species produce a sustained and monotonous calling song by tymbal activity. This acoustic signal constitutes the first step in pair formation, attracting females at long range, and is involved in male–male interactions. The specificity of this signal was investigated for the first time for seven species and one subspecies of Tibicina occurring in France. This analysis was achieved by describing tymbal anatomy, tymbal mechanism and calling song structure. Male calling songs are emitted following the same general scheme: tymbals are activated alternately and the successive buckling of the sclerotized ribs that they bear produces a regular succession of groups of pulses. The structural and mechanical properties shared by Tibicina species and subspecies lead to a considerable uniformity of the signal shape. Nevertheless, a principal component analysis applied to eight temporal and three frequency parameters revealed differences between the signals of the species studied. In particular, calling songs differed in groups of pulse rate and/or in peak of the second frequency band (carrier frequency). These acoustic differences are probably linked to differences in the numbers of tymbal ribs and body size. Groups of pulse rate and/or peak of the second frequency band could encode specific information. However, Tibicina calling songs may not act as distinct specific-mate recognition systems and may not play a leading role in the mating isolation process; rather, they might merely belong to a complex set of specific spatial, ecological, ethological and morphological characters that ensure syngamy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号