首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toothed whales echolocating in the wild generate clicks with low repetition rates to locate prey but then produce rapid sequences of clicks, called buzzes, when attempting to capture prey. However, little is known about the factors that determine clicking rates or how prey type and behaviour influence echolocation-based foraging. Here we study Blainville's beaked whales foraging in deep water using a multi-sensor DTAG that records both outgoing echolocation clicks and echoes returning from mesopelagic prey. We demonstrate that the clicking rate at the beginning of buzzes is related to the distance between whale and prey, supporting the presumption that whales focus on a specific prey target during the buzz. One whale showed a bimodal relationship between target range and clicking rate producing abnormally slow buzz clicks while attempting to capture large echoic targets, probably schooling prey, with echo duration indicating a school diameter of up to 4.3m. These targets were only found when the whale performed tight circling manoeuvres spending up to five times longer in water volumes with large targets than with small targets. The result indicates that toothed whales in the wild can adjust their echolocation behaviour and movement for capture of different prey on the basis of structural echo information.  相似文献   

2.
Presented here is the first comprehensive and updated compilation of history, distribution, and findings of Stejneger's beaked whales (Mesoplodon stejnegeri) in Alaska. Stejneger's beaked whales are a poorly understood, elusive, deep-diving cetacean species found in the North Pacific Ocean. Since Stejneger's beaked whale strandings data in Alaska through 1994 were last published, 35 additional strandings have been documented. Twenty-seven animals stranded in the Aleutian Islands, seven stranded in Southcentral Alaska, and one animal stranded on St. Lawrence Island. Twenty-two carcasses were necropsied, but only four were fresh. Seventeen of the 22 died during mass stranding events and cause of death could not be definitively determined. Barotrauma was suspected in three cases and infectious disease possibly complicated by barotrauma occurred in two cases. We documented an expansion of strandings into the northern Bering Sea, characterized a sex bias, examined stomach contents that included macroplastic, and identified parasites not previously associated with Stejneger's beaked whales. Also included are data on the largest known mass stranding of Stejneger's beaked whales, which occurred on Adak Island in 2018. The history, distribution, and findings presented here are central to further our understanding of this species.  相似文献   

3.
    

Aim

Understanding cetacean species' distributions and population structure over space and time is necessary for effective conservation and management. Geographic differences in acoustic signals may provide a line of evidence for population-level discrimination in some cetacean species. We use acoustic recordings collected over broad spatial and temporal scales to investigate whether global variability in echolocation click peak frequency could elucidate population structure in Blainville's beaked whale (Mesoplodon densirostris), a cryptic species well-studied acoustically.

Location

North Pacific, Western North Atlantic and Gulf of Mexico.

Time period

2004–2021.

Major taxa studied

Blainville's beaked whale.

Methods

Passive acoustic data were collected at 76 sites and 150 cumulative years of data were analysed to extract beaked whale echolocation clicks. Using an automated detector and subsequent weighted network clustering on spectral content and interclick interval of clicks, we determined the properties of a primary cluster of clicks with similar characteristics per site. These were compared within regions and across ocean basins and evaluated for suitability as population-level indicators.

Results

Spectral averages obtained from primary clusters of echolocation clicks identified at each site were similar in overall shape but varied in peak frequency by up to 8 kHz. We identified a latitudinal cline, with higher peak frequencies occurring in lower latitudes.

Main conclusions

It may be possible to acoustically delineate populations of Blainville's beaked whales. The documented negative correlation between signal peak frequency and latitude could relate to body size. Body size has been shown to influence signal frequency, with lower frequencies produced by larger animals, which are subsequently more common in higher latitudes for some species, although data are lacking to adequately investigate this for beaked whales. Prey size and depth may shape frequency content of echolocation signals, and larger prey items may occur in higher latitudes, resulting in lower signal frequencies of their predators.  相似文献   

4.
Seamounts may influence the distribution of marine mammals through a combination of increased ocean mixing, enhanced local productivity and greater prey availability. To study the effects of seamounts on the presence and acoustic behaviour of cetaceans, we deployed a high-frequency acoustic recording package on the summit of Cross Seamount during April through October 2005. The most frequently detected cetacean vocalizations were echolocation sounds similar to those produced by ziphiid and mesoplodont beaked whales together with buzz-type signals consistent with prey-capture attempts. Beaked whale signals occurred almost entirely at night throughout the six-month deployment. Measurements of prey presence with a Simrad EK-60 fisheries acoustics echo sounder indicate that Cross Seamount may enhance local productivity in near-surface waters. Concentrations of micronekton were aggregated over the seamount in near-surface waters at night, and dense concentrations of nekton were detected across the surface of the summit. Our results suggest that seamounts may provide enhanced foraging opportunities for beaked whales during the night through a combination of increased productivity, vertical migrations by micronekton and local retention of prey. Furthermore, the summit of the seamount may act as a barrier against which whales concentrate prey.  相似文献   

5.
Automatic click detectors and full-bandwidth sound recorders are widely used in passive acoustic monitoring of small cetaceans. Detection of these signals depends on a variety of factors, including signal to noise ratio. Passive acoustic monitoring is often used to study impact of underwater noise on small cetaceans, but as detection probability is affected by changes in signal to noise ratio, variable noise levels may affect conclusions drawn from these experiments. Therefore, we examine how different detectors and filters perform in varying ocean noise conditions. C-PODs and full-bandwidth recorders (Wildlife Acoustics, SM2M+) were deployed at two stations in an environment with fluctuating ambient noise for 42 days. Noise level and harbour porpoise (Phocoena phocoena) click trains simultaneously recorded on both loggers were compared. Overall, we found that porpoise click detections by the algorithm used to analyse full-band recorder data (Pamguard) paralleled detections by the C-POD. However, Pamguard detected significantly more clicks than the C-POD. A decrease in detections was seen for both loggers with increasing noise in the band 20 –160 kHz, in particular for levels above 100 dB re 1μPa rms. We also found that the Pamguard detection function changed the least over varying noise conditions when compared to the C-POD detectors. This study sheds light on the fact that inference of animal presence/absence or density that are based on echolocation cues (here, Porpoise Positive Minutes) shall account for the acoustic environments where probability of detecting signals may be affected by variability in ambient noise levels.  相似文献   

6.
    
Male Megaptera novaeangliae produce complex and structured songs which are shared at the population level. Song patterns are culturally transmitted and evolve progressively through time, both over the breeding season and among years. The songs also undergo periods of relatively rapid change, termed “revolutions.” Acoustic monitoring was conducted from 2016 to 2018 in Reunion and throughout 2018 in Madagascar to assess spatiotemporal variation in song structures and population connectivity. A total of 46 high-quality song samples were selected, representing 2,760 min of recordings in Reunion. In Madagascar, 12 samples representing 240 min of recordings were analyzed. Analysis of songs revealed 11 phrases and their variants. Low levels of temporal variations were observed over the breeding season. Songs recorded in June were very similar to those recorded in September. Greater variation was observed between years, and some phrases identified in 2018 may have evolved from phrases recorded in 2017. More variants were described for each phrase type in 2018 compared to 2016. All themes recorded in Reunion were shared with Madagascar, suggesting a high degree of population connectivity during the breeding season.  相似文献   

7.
    
Seamounts are considered hot spots of biodiversity and can aggregate pelagic predators and their prey. Passive acoustic monitoring was conducted over 3 mo in 2012 to document the occurrence of odontocetes near a seamount chain in the central equatorial Pacific in relation to oceanographic changes over time. Beaked whale echolocation signals were most frequently encountered. The main beaked whale signal was an unknown type, BW38, which resembled signals produced by Blainville's beaked whales. It had high occurrence during high sea surface temperature and low sea surface salinity. Cuvier's beaked whales were the second most detected. They had an opposite pattern and were encountered more often when sea surface temperature was low and net primary productivity was high. Risso's dolphins and short‐finned pilot whales had high acoustic densities, and echolocated predominantly at night. Risso's dolphins occurred more often during low sea surface height deviation. False killer whales were less frequently detected and mostly occurred during the day. Sperm whale detections were fewer than expected and associated with high chlorophyll a. Short duration Kogiidae encounters occurred on average every third day. These types of long‐term site studies are an informative tool to comparatively assess species composition, relative abundance, and relationship to oceanographic changes.  相似文献   

8.
Although Hubbs' beaked whale (Mesoplodon carlhubbsi) was previously known from over 60 strandings on both sides of the North Pacific, it had been identified alive in the wild only once, off Oregon in 1994. In September 2021, we conducted a search effort for beaked whales off the coast of Oregon using a towed hydrophone array and a visual search team. Approximately 350 km off the Columbia River mouth, we detected the vocalizations of an unidentified mesoplodont whale; we stopped our vessel and waited in the area until two unidentified juvenile Mesoplodon surfaced and stayed near our vessel for almost 2 hr. During that time, we took numerous photographs and videos, made behavioral observations, and recorded their vocalizations. The DNA sequence from a biopsy sample identified them as M. carlhubbsi. In this paper, we discuss our biological observations, including color patterning and acquired markings, behavioral observations, and describe for the first time the acoustic characteristics of this species. We confirm that M. carlhubbsi is the source of a previously unidentified acoustic signal known as BW37V, and we update what is known about the at-sea distribution of this species based on previous recordings and observational records.  相似文献   

9.
    
The oceanographic conditions of the Southern California Bight (SCB) dictate the distribution and abundance of prey resources and therefore the presence of mobile predators, such as goose-beaked whales (Ziphius cavirostris). Goose-beaked whales are deep-diving odontocetes that spend a majority of their time foraging at depth. Due to their cryptic behavior, little is known about how they respond to seasonal and interannual changes in their environment. This study utilizes passive acoustic data recorded from two sites within the SCB to explore the oceanographic conditions that goose-beaked whales appear to favor. Utilizing optimum multiparameter analysis, modeled temperature and salinity data are used to identify and quantify these source waters: Pacific Subarctic Upper Water (PSUW), Pacific Equatorial Water (PEW), and Eastern North Pacific Central Water (ENPCW). The interannual and seasonal variability in goose-beaked whale presence was related to the variability in El Niño Southern Oscillation events and the fraction and vertical distribution of the three source waters. Goose-beaked whale acoustic presence was highest during the winter and spring and decreased during the late summer and early fall. These seasonal increases occurred at times of increased fractions of PEW in the California Undercurrent and decreased fractions of ENPCW in surface waters. Interannual increases in goose-beaked whale presence occurred during El Niño events. These results establish a baseline understanding of the oceanographic characteristics that correlate with goose-beaked whale presence in the SCB. Furthering our knowledge of this elusive species is key to understanding how anthropogenic activities impact goose-beaked whales.  相似文献   

10.
  总被引:2,自引:0,他引:2  
We investigate diel variation in beaked whale diving behavior using data from time–depth recorders deployed on six Blainville's ( Mesoplodon densirostris) (255 h) and two Cuvier's ( Ziphius cavirostris ) (34 h) beaked whales. Deep foraging dives (>800 m) occurred at similar rates during the day and night for Blainville's beaked whales, and there were no significant diel differences in ascent rates, descent rates, or mean or maximum depths or durations for deep dives. Dive to mid-water depths (100–600 m) occurred significantly more often during the day (mean = 1.59 h−1) than at night (mean = 0.26 h−1). Series of progressively shallower \"bounce\" dives were only documented to follow the deep, long dives made during the day; at night whales spent more time in shallow (<100 m) depths. Significantly slower ascent rates than descent rates were found following deep foraging dives both during the day and night. Similar patterns were found for the Cuvier's beaked whales. Our results suggest that so-called \"bounce\" dives do not serve a physiological function, although the slow ascents may. This diel variation in behavior suggests that beaked whales may spend less time in surface waters during the day to avoid near-surface, visually oriented predators such as large sharks or killer whales ( Orcinus orca ).  相似文献   

11.
    
The United States and Canada employ dynamic management strategies to improve conservation outcomes for the endangered North Atlantic right whale (Eubalaena glacialis). These strategies rely on near real-time knowledge of whale distribution generated from visual surveys and opportunistic sightings. Near real-time passive acoustic monitoring (PAM) systems have been operational for many years but acoustic detections of right whales have yet to be incorporated in dynamic management because of concerns over uncertainty in the location of acoustically detected whales. This rationale does not consider whale movement or its contribution to location uncertainty following either visual or acoustic detection. The goal of this study was to estimate uncertainties in right whale location following acoustic and visual detection and identify the timescale at which the uncertainties become similar owing to post-detection whale movement. We simulated whale movement using an autocorrelated random walk model parameterized to approximate three common right whale behavioral states (traveling, feeding, and socializing). We then used a Monte Carlo approach to estimate whale location over a 96-hr period given the initial uncertainty from the acoustic and visual detection methods and the evolving uncertainties arising from whale movement. The results demonstrated that for both detection methods the uncertainty in whale location increases rapidly following the initial detection and can vary by an order of magnitude after 96 hr depending on the behavioral state of the whale. The uncertainties in whale location became equivalent between visual and acoustic detections within 24–48 hr depending on whale behavior and acoustic detection range parameterization. These results imply that using both visual and acoustic detections provides enhanced information for the dynamic management of this visually and acoustically cryptic and highly mobile species.  相似文献   

12.
  总被引:1,自引:0,他引:1  
The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is an endangered freshwater porpoise subspecies unique to the Yangtze River basin. Seasonal variations in local distribution of the animal, as well as fish presence, sand dredging, ship navigation, and bridges were examined as potential factors affecting the occurrence of the animals. Passive acoustic surveys were performed regularly from May 2007 to August 2010, near the conjunction of the Yangtze River and Poyang Lake. The distribution of the porpoises was seasonally site‐specific. In May and August, the animals were detected more often at river junctions than in the lake, but vice versa from November to February. The rate of the porpoise detection was significantly higher in areas of fish presence than in areas of absence. The number of porpoises detected did not differ significantly between the sand dredging operation and the prohibition period (in 2008), although the number of vessels obviously declined in 2008. Ship traffic and bridges also did not appear to affect the presence of porpoises. These results showed the relative importance of the various environmental factors, which is important for conservation of not only Yangtze finless porpoise but also endangered isolated cetaceans.  相似文献   

13.
<正>中国大陆沿岸属大陆棚水域,常见的齿鲸物种以近岸型的海豚科(Delphinidae)、小抹香鲸科(Kogiidae)及鼠海豚科(Phocaenidae)动物为主(王丕烈,2012),而喙鲸科(Ziphiidae)发现纪录相对较少,近年来仅由王丕烈等(2011)针对喙鲸科的中喙鲸属(Mesoplodon)标本进行检视校正,认为中国大陆沿岸存在柏氏中喙鲸  相似文献   

14.
Multiple sightings of a distinctive but unidentified species of beaked whale have been made in the eastern tropical Pacific. The unidentified whale has two color morphs: a conspicuously marked black and white form (judged to be larger), and a uniformly gray-brown form. Maximum length estimates have been 5–5.5 m. Other features include a relatively flat head, with a small, distinct melon; a moderately long beak; and a low, wide-based, triangular dorsal fin. On most animals the trailing edge of the dorsal fin is only slightly falcate and often appears straight. On the black and white morph, a broad white or cream-colored swathe originates immediately posterior to the dorsal surface of the head and runs posterio-ventrally on either side of the animal. The prevalence of scarring on the black and white animals suggests sexual dimorphism and that these larger, more conspicuously marked animals are adult males, while the smaller, browner, unscarred animals are females and young. Possibilities for identification include: 1) a well-marked race of a known Mesoplodon sp., 2) Mesoplodon (Indopacetus) pacificus or 3) an undescribed species.  相似文献   

15.
Sounds produced by northern bottlenose whales ( Hyperoodon ampullatus ) recorded in the Gully, a submarine canyon off Nova Scotia, consisted predominately of clicks. In 428 min of recordings no whistles were heard which could unequivocally be attributed to bottlenose whales. There were two major types of click series, initially distinguished by large differences in received amplitude. Loud clicks (produced by nearby whales socializing at the surface) were rapid, with short and variable interclick intervals (mean 0.07 sec; CV 71%). The frequency spectra of these were variable and often multimodal, with peak frequencies ranging between 2 and 22 kHz (mean 11 kHz, CV 59%). Clicks received at low amplitude (produced by distant whales, presumably foraging at depth) had more consistent interclick intervals (mean 0.40 sec, CV 12.5%), generally unimodal frequency spectra with a mean peak frequency of 24 kHz (CV 7%) and 3 dB bandwidth of 4 kHz. Echolocation interclick intervals may reflect the approximate search distance of an animal, in this case 300 m, comparable to that found for sperm whales. The relationship between click frequency and the size of object being investigated, suggests that 24 kHz would be optimal for an object of approximately 6 cm or more, consistent with the size range of their squid prey.  相似文献   

16.
    
Lasiurus egregius (Peters, 1870) is a rare Neotropical vespertilionid bat and virtually no data on its ecology and echolocation calls are currently available. We report the capture of four individuals in the Central Amazon, representing the first record for the region and a significant (> 800 km) expansion of the species’ known range. Echolocation calls, recorded for the first time under natural conditions, were 1.5–8 ms in duration, and characterized by high mean bandwidth (18 kHz) and a mean frequency of maximum energy of 30 kHz.  相似文献   

17.
    
There are two recognized species in the genus Berardius, Baird's and Arnoux's beaked whales. In Japan, whalers have traditionally recognized two forms of Baird's beaked whales, the common “slate‐gray” form and a smaller, rare “black” form. Previous comparison of mtDNA control region sequences from three black specimens to gray specimens around Japan indicated that the two forms comprise different stocks and potentially different species. We have expanded sampling to include control region haplotypes of 178 Baird's beaked whales from across their range in the North Pacific. We identified five additional specimens of the black form from the Aleutian Islands and Bering Sea, for a total of eight “black” specimens. The divergence between mtDNA haplotypes of the black and gray forms of Baird's beaked whale was greater than their divergence from the congeneric Arnoux's beaked whale found in the Southern Ocean, and similar to that observed among other congeneric beaked whale species. Taken together, genetic evidence from specimens in Japan and across the North Pacific, combined with evidence of smaller adult body size, indicate presence of an unnamed species of Berardius in the North Pacific.  相似文献   

18.
    
  1. For animals that produce species-specific audible sounds, environmental recordings combined with automated acoustic monitoring software (passive acoustic monitoring [PAM]) may be an effective monitoring tool because it allows audio data from many, widely distributed autonomous recording units (ARUs) to be processed in a relatively short period of time. Males of many insect species produce loud, species-specific mating songs, yet acoustic insects have received less attention from PAM relative to vertebrates.
  2. We evaluated the use of PAM to monitor, Roeseliana roeselii (Orthoptera, Tettigoniidae), an acoustic insect that has expanded its range to Alberta, Canada, far outside its naturalized North American range. We analysed environmental recordings from ARUs: (1) at two control sites known to be occupied by R. roeselii and (2) across Alberta established by the Alberta Biodiversity Monitoring Institute (ABMI) to search for new populations.
  3. PAM successfully detected R. roeselii at the two control sites, but not at any of the 73 ABMI sites that we analysed. Despite the failure to detect new locations of R. roeselii, our analysis of ABMI environmental recordings detected several other species of acoustic insects, including Orchelimum gladiator, Gryllus sp. and Allonemobius spp.
  4. Our results add to the growing body of work showing the feasibility of using PAM for acoustic insects. We make suggestions for how to maximize the effectiveness of this monitoring tool for the conservation and management of singing insects in North America.
  相似文献   

19.
    
Passive acoustic recorders have emerged as powerful tools for ecological monitoring. However, effective monitoring is not simply an act of recording sounds. To have meaning for conservation and management, acoustic monitoring needs to be properly planned and analyzed to yield high quality information. Here, we provide a set of considerations for the design of an effective acoustic monitoring program. We argue that such a program, has the following attributes: (1) has established appropriate partnerships with landowners, Traditional Owners, researchers, or other relevant stakeholders, (2) is based on clear objectives and questions, (3) is explicit in its target sound signals, (4) has considered in-field sensor placement for a range of factors, including experimental design, statistical power, background noise, and potential impacts on human privacy and animal disturbance, (5) has a justified recording schedule and periodicity, (6) has methods to process sound data in line with objectives, and (7) has protocols for permanent data storage and access. Acoustic monitoring is increasingly used in large-scale programs and will be important in addressing global biodiversity targets and new biodiversity markets. It is critical that new monitoring programs are designed to effectively and efficiently capture data that address pertinent and emerging issues in conservation.  相似文献   

20.
    
Although humpback whales have been well‐studied on their Hawaiian breeding grounds, it is difficult to track individual animals over long distances without tags, particularly when they move offshore. Here, singing humpback whales were localized in three dimensions on the Pacific Missile Range Facility off Kauai, Hawaii, located between 20 km and 80 km offshore, from January 2011 through June 2014. Detailed behavioral analyses were conducted on the resulting tracks. One hundred and eight individual tracks were identified and metrics of these tracks were examined. Using these metrics, the tracks were classified into four behavior categories, described herein as Directed Travel, Repeated Stationary Dives, Mill, and tracks with Combinations of behavioral states. Some diel and seasonal patterns were identified, with Mill tracks occurring more at night than the other behaviors, Repeated Stationary Dive tracks occurring more during the day, and Directed Travel occurring only at the start and end of the breeding season. These results provide detailed insights into the movement of singing humpback whales, particularly in offshore waters where they may be migrating into or out of breeding grounds. This also contributes valuable information on the baseline behavior of humpback whales on a US Navy training range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号