首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Chen  P Levesque  E Pomert    R E Pollack 《Journal of virology》1987,61(11):3521-3527
pSVCT3 is a cytoplasmic-localization mutant of simian virus 40 (SV40) isolated from the SV40 adenovirus 7 hybrid virus (PARA) and cloned into plasmid PBR. The large T antigen of pSVCT3 accumulates in the cytoplasm of infected monkey cells instead of being transported to the nucleus. The sole change in CT3 large T antigen is amino acid residue 128 (Lys----Asn). Transformation of precrisis rodent cells by pSVCT3 is negligible, whereas the frequency of transformation of established rodent cell lines by pSVCT3 is comparable to that of wild-type SV40. According to the model, in which transformation of precrisis cells involves the combined oncogenic action of both nuclear and cytoplasmic gene products, we predicted that pSVCT3 would localize in the cytoplasm of human cells and would therefore at most only partially and rarely transform precrisis human cells. We have found that pSVCT3 is able to transform precrisis human cells at high frequency. Furthermore, pSVCT3-transformed human precrisis cells relocalized T antigen to their nuclei. The relocalization of large T antigen was not dependent on cell growth. Wild-type and pSVCT3-transformed human cell lines both have about five copies of integrated SV40 DNA. SV40 virus-specific proteins, including the 100,000-molecular-weight super large T antigen, were expressed in pSVCT3-transformed human cells. Our results suggest that molecules in precrisis human cells, but not cells of other species, are able to complement the cytoplasmic-localization defect of the CT3 mutant large T antigen.  相似文献   

2.
3.
While it is clear that cancer arises from the accumulation of genetic mutations that endow the malignant cell with the properties of uncontrolled growth and proliferation, the precise combinations of mutations that program human tumor cell growth remain unknown. The study of the transforming proteins derived from DNA tumor viruses in experimental models of transformation has provided fundamental insights into the process of cell transformation. We recently reported that coexpression of the simian virus 40 (SV40) early region (ER), the gene encoding the telomerase catalytic subunit (hTERT), and an oncogenic allele of the H-ras gene in normal human fibroblast, kidney epithelial, and mammary epithelial cells converted these cells to a tumorigenic state. Here we show that the SV40 ER contributes to tumorigenic transformation in the presence of hTERT and oncogenic H-ras by perturbing three intracellular pathways through the actions of the SV40 large T antigen (LT) and the SV40 small t antigen (ST). LT simultaneously disables the retinoblastoma (pRB) and p53 tumor suppressor pathways; however, complete transformation of human cells requires the additional perturbation of protein phosphatase 2A by ST. Expression of ST in this setting stimulates cell proliferation, permits anchorage-independent growth, and confers increased resistance to nutrient deprivation. Taken together, these observations define the elements of the SV40 ER required for the transformation of human cells and begin to delineate a set of intracellular pathways whose disruption, in aggregate, appears to be necessary to generate tumorigenic human cells.  相似文献   

4.
Human cells are more resistant to both immortalization and malignant transformation than rodent cells. Recent studies have established the basic genetic requirements for the transformation of human cells, but much of this work relied on the expression of transforming proteins derived from DNA tumor viruses. We constructed an isogenic panel of human fibroblast cell lines using a combination of gene targeting and ectopic expression of dominantly acting mutants of cellular genes. Abolition of p21(Cip1/Waf1) and p16(Ink4a) functions prevented oncogenically activated Ras from inducing growth arrest and was sufficient for limited anchorage-independent growth but not tumorigenesis. Deletion of the tumor suppressor p53 combined with abolition of p16(Ink4a) function failed to mimic the introduction of simian virus 40 large T antigen, indicating that large T antigen may target additional cellular functions. Ha-Ras and Myc cooperated only to a limited extent, but in the absence of Ras, Myc cooperated strongly with the simian virus 40 small t antigen to elicit aggressive anchorage-independent growth. The experiments reported here further define specific components of human transformation pathways.  相似文献   

5.
Endothelial cells isolated from human umbilical veins show a limited in vitro life span of about 40 population doublings. Cell division is dependent on the presence of endothelial cell growth factor in the culture medium. We have transfected primary endothelial cells with a plasmid containing the early region of SV40 virus. Large T positive cells were obtained which grew in the absence of endothelial cell growth factor at low serum concentrations and showed a prolonged lifespan. Expression of von Willebrand factor and SV40 large T antigen was detected simultaneously in transfected cells.  相似文献   

6.
The product of the retinoblastoma (Rb) gene can form complexes with the transforming proteins of small DNA tumor viruses, including SV40 large T antigen (Tag), adenovirus E1A, and the human papilloma virus E7. The strong correlation between their ability to transform and their ability to bind Rb protein suggests that these oncoproteins exert their effect through blocking the Rb function. SV40 Tag causes oncogenic cell transformation of rodent cells, and it is also required for viral DNA replication. In this paper, we investigated the effect of the Rb protein on the SV40 replication associated function of Tag. We present evidence suggesting that the complex formation between Rb and Tag interferes with the viral DNA replication. In Y79 retinoblastoma and Saos-2 osteosarcoma cells, which lack functional Rb protein, a SV40 based plasmid vector, pSVEpR4, replicates well. In the same cells reconstituted for Rb expression with an intact Rb gene introduced by retroviral mediated gene transfer, pSVEpR4 replicates to a considerably lower level. The inhibitory effect of Rb protein was surmounted by increasing the intracellular level of Tag. Increasing amounts of Tag in wild-type Rb negative Y79 cells had virtually no effect on SV40 replication. Furthermore, the overexpression of Tag in Rb reconstituted Y79 cells did not alter the growth rate of the cells. These data suggest that Rb protein interacts with Tag and modulates its ability to promote SV40 DNA replication.  相似文献   

7.
To examine the role of simian virus 40 (SV40) large T and small t antigens in tumorigenesis in animals, we generated transgenic mice which expressed either both the SV40 large T and small t antigens or the SV40 large T antigen alone under the control of the mouse mammary tumor virus long terminal repeat. The mouse mammary tumor virus long terminal repeat directs the expression of transgenes in ductal epithelial cells of several organs, including the mammary gland, lung, and kidney, and in lymphoid cells. The mice which expressed both the T and t tumor antigens developed lung and kidney adenocarcinomas, while those which expressed large T alone did not. Both types of mice developed malignant lymphomas with similar frequencies and latency periods. Our results show that the SV40 small t antigen cooperates with the large T antigen in inducing tumors in slowly dividing epithelial cells in the lung and kidney.  相似文献   

8.
Normal fibroblasts display two distinct growth controls which can be assayed as requirements for serum or for anchorage. Interaction of mouse 3T3 fibroblasts with simian virus 40 (SV40) thus generates four classes of transformed cells. We have examined viral gene expression in these four classes of cell lines. Immunoprecipitation of [35S]methionine-labeled cell extracts with an antiserum obtained from tumor-bearing hamsters detected the SV40 large T and small t proteins (94,000 molecular weight [94K], 17K) and the nonviral host 54K protein in all cell lines tested. A tumor antigen with an apparent molecular weight of 100,000 was also found in some, but not all, lines. Similar "super T" molecules have been found by others in many rodent transformed lines. We carried out an analysis of the relation of phenotype to relative amounts of these proteins in cell lines of the four classes, using the Spearman rank correlation test. The amount of the 100K T antigen relative to the 94K T antigen or to total viral protein was well correlated with the ability to form colonies in semisolid medium. No significant correlation was found between quantities of labeled 94K T antigen, 54K host antigen, or 17K t antigen and either serum or anchorage independence. Mouse cells transformed with the small t SV40 deletion mutant 884 synthesized a 100K T antigen, suggesting that small t is not required for the production of this protein. The 100K T antigen migrated more slowly than lytic T. Since mixtures of extracts from cells expressing and lacking the 100K T antigen yielded the expected amount of this protein, it is unlikely that the 100K T derives from the 94K protein by a posttranslational modification.  相似文献   

9.
Mouse embryo cells expressing a wild-type number of insulin-like growth factor I receptors (IGF-IR) (W cells) can be transformed either by simian virus 40 large T antigen (SV40 T) or by overexpressed insulin receptor substrate 1 (IRS-1), singly transfected. Neither SV40 T antigen nor IRS-1, individually, can transform mouse embryo cells with a targeted disruption of the IGF-IR genes (R- cells). However, cotransfection of SV40 T antigen and IRS-1 does transform R- cells. In this study, using different antibodies and different cell lines, we found that SV40 T antigen and IRS-1 are coprecipitated from cell lysates in a specific fashion, regardless of whether the lysates are immunoprecipitated with an antibody to SV40 T antigen or an antibody to IRS-1. The same antibody to SV40 T antigen, however, fails to coprecipitate another substrate of IGF-IR, the transforming protein Shc, and two other signal-transducing molecules, Grb2 and Sos. Finally, an SV40 T antigen lacking the amino-terminal 250 amino acids fails to coprecipitate IRS-1 and also fails to transform R- cells overexpressing mouse IRS-1. These experiments indicate that IRS-1 associates with SV40 T antigen and that this association plays a critical role in the combined ability of these proteins to transform R- cells. This finding is discussed in light of the crucial role of the IGF-IR in the establishment and maintenance of the transformed phenotype.  相似文献   

10.
The DNA tumor virus oncogenes (adenovirus E1A, simian virus 40 (SV40) large T antigen, and papillomavirus E7) have been instrumental in illuminating the molecules and mechanisms of cell cycle progression and carcinogenesis. However, since these multifunctional proteins target so many important cellular regulators, it is sometimes difficult to establish the functional importance of any individual interaction. Perhaps a herpesvirus protein, newly defined as a cell cycle regulator, can help address these issues. Like the DNA tumor virus proteins, the human cytomegalovirus (HCMV) pp71 protein contains a retinoblastoma protein (Rb) binding motif (LxCxD), and stimulates DNA synthesis in quiescent cells. Unlike E1A, T antigen, and E7, pp71 expression does not induce apoptosis, nor does it cooperate to transform primary cells. Determining how pp71 induces cell cycle progression without invoking apoptosis or leading to cellular transformation may help in defining the signals that ultimately lead to these processes.  相似文献   

11.
12.
The regulatory proteins of polyomaviruses, including small and large T antigens, play important roles, not only in the viral life cycle but also in virus-induced cell transformation. Unlike many other tumor viruses, the transforming proteins of polyomaviruses have no cellular homologs but rather exert their effects mostly by interacting with cellular proteins that control fundamental processes in the regulation of cell proliferation and the cell cycle. Thus, they have proven to be valuable tools to identify specific signaling pathways involved in tumor progression. Elucidation of these pathways using polyomavirus transforming proteins as tools is critically important in understanding fundamental regulatory mechanisms and hence to develop effective therapeutic strategies against cancer. In this short review, we will focus on the structural and functional features of one polyomavirus transforming protein, that is, the small t-antigen of the human neurotropic JC virus (JCV) and the simian virus, SV40.  相似文献   

13.
Hybrid viral genomes were used to investigate the influence of specific polyomavirus sequences on the transforming behavior of JC virus (JCV). One set of chimeric DNAs was made by exchanging the regulatory regions between JCV and simian virus 40 (SV40) or JCV and BK virus (BKV). A second set of constructs was produced that expressed hybrid JCV-BKV T proteins under the control of either JCV or BKV regulatory signals. Transformation of Rat 2 cells with the parental and chimeric DNAs indicated that both the JCV regulatory signals and the sequence encoding the amino terminus of T protein contributed to the restricted transforming behavior of this virus. Analysis of the viral proteins in the transformed rat cells indicated that the large T antigens of JCV and BKV were less stable than their SV40 counterpart, that small t protein was produced in JCV transformants, and that the subpopulation of T antigen that forms a stable complex with cellular p53 protein was smaller in JCV-transformed cells than in SV40- or BKV-transformed cells.  相似文献   

14.
D I Linzer  A J Levine 《Cell》1979,17(1):43-52
SV40 infection or transformation of murine cells stimulated the production of a 54K dalton protein that was specifically immunoprecipitated, along with SV40 large T and small t antigens, with sera from mice or hamsters bearing SV40-induced tumors. The same SV40 anti-T sera immunoprecipitated a 54K dalton protein from two different, uninfected murine embryonal carcinoma cell lines. These 54K proteins from SV40-transformed mouse cells and the uninfected embryonal carcinomas cells had identical partial peptide maps which were completely different from the partial peptide map of SV40 large T antigen. An Ad2+ND4-transformed hamster cell line also expressed a 54K protein that was specifically immunoprecipitated by SV40 T sera. The partial peptide maps of the mouse and hamster 54K protein were different, showing the host cell species specificity of these proteins. The 54K hamster protein was also unrelated to the Ad2+ND4 SV40 T antigen. Analogous proteins immunoprecipitated by SV40 T sera, ranging in molecular weight from 44K to 60K, were detected in human and monkey SV40-infected or -transformed cells. A wide variety of sera from hamsters and mice bearing SV40-induced tumors immunoprecipitated the 54K protein of SV40-transformed cells and murine embryonal carcinoma cells. Antibody produced by somatic cell hybrids between a B cell and a myeloma cell (hybridoma) against SV40 large T antigen also immunoprecipitated the 54K protein in virus-infected and -transformed cells, but did not do so in the embryonal carcinoma cell lines. We conclude that SV40 infection or transformation of mouse cells stimulates the synthesis or enhances the stability of a 54K protein. This protein appears to be associated with SV40 T antigen in SV40-infected and -transformed cells, and is co-immunoprecipitated by hybridomas sera to SV40 large T antigen. The 54K protein either shares antigenic determinants with SV40 T antigen or is itself immunogenic when in association with SV40 large T antigen. The protein varies with host cell species, and analogous proteins were observed in hamster, monkey and human cells. The role of this protein in transformation is unclear at present.  相似文献   

15.
Mouse C3H 10T1/2 cell lines expressing the simian virus 40 (SV40) small t antigen were obtained by cotransfection of pSV2neo and plasmids which encode small t. Cell lines derived from two plasmids which encode small t in the absence of stable deletion fragments of the large T antigen were morphologically normal and grew to slightly higher saturation densities in low serum than control cell lines. Unexpectedly, the clones had highly organized actin cables, as did parental 10T1/2 cells infected with wild-type SV40. These observations and comparisons of rat F111 cells infected with either polyomavirus or SV40 suggest that the SV40 small t antigen does not directly affect cytoskeletal organization.  相似文献   

16.
SV40 early region oncoproteins and human cell transformation   总被引:11,自引:0,他引:11  
We now understand neoplastic transformation to be the consequence of multiple acquired genetic alterations. The combination of these acquired changes confer the various phenotypes that constitute the clinical features of cancer. Although only rare human cancers derive from a viral etiology, the study of DNA tumor viruses that transform rodent and human cells has led to a greater understanding of the molecular events that program the malignant state. In particular, investigation of the viral oncoproteins specified by the Simian Virus 40 Early Region (SV40 ER) has revealed critical host cell pathways, whose perturbation play an essential role in the experimental transformation of mammalian cells. Recent work has re-investigated the roles of two SV40 ER oncoproteins, the large T antigen (LT) and the small t antigen (ST), in human cell transformation. Co-expression of these two oncoproteins, together with the telomerase catalytic subunit, hTERT, and an oncogenic version of the H-Ras oncoprotein, suffices to transform human cells. LT inactivates two key tumor suppressor pathways by binding to the retinoblastoma protein (pRB) and p53. The ability of ST to transform human cells requires interactions with PP2A, an abundant family of serine-threonine phosphatases. Here we review recent developments in our understanding of how these two viral oncoproteins facilitate human cell transformation.  相似文献   

17.
DNA tumor viruses such as SV40, Ras and papillomaviruses are the most commonly used agents in immortalization of non-hematopoietic cells, but the results are quite different. Some of them even lead instead to a senescence-like state. To verify the potential of SV40 T antigen-mediated immortalization or properties and functions of it to regulate cell growth, human dermal fibroblasts were cultured and then transfected with eukaryotic expressing plasmid psv3-neo which containing SV40 T DNA. We found that expression of oncogenic SV40 T in human dermal fibroblasts resulted in growth, arrest, earlier than the occurrence of control cell senescence, although telomerase was positive and cells grew faster than control ones in early stage following transfection. These observations suggest that SV40 T antigen can activate growth arrest in human dermal fibroblasts under normal growth condition instead of always prolonging the lifespan of fibroblasts. Moreover, high rate of cell division in early stage after transfection may be associated with the expression of telomerase activity.  相似文献   

18.
By using a photoaffinity ligand, cell extracts from transformed macrophages that were established by infection with temperature-sensitive mutants (tsA640) of simian virus 40 (SV40) were examined for cyclic adenosine 3':5'-monophosphate (cAMP)-binding proteins. At the nonpermissive temperature for SV40 large T antigen, 39.0 degrees C, no significant cAMP-binding proteins could be detected, such as primary mouse macrophages. At the permissive temperature of 33.0 degrees C, cAMP-binding proteins appeared later than SV40 T antigen expression and cellular DNA synthesis. The profile of cAMP-binding proteins was similar to that of resting, but not proliferating, mouse clonal fibroblasts (BALB/c 3T3). These and previous results suggest that SV40 T antigen influences the expression of cAMP-binding proteins in tsA640-transformed macrophages; the large/small T antigen converts the profile of cAMP-binding proteins from macrophage to fibroblastic cells.  相似文献   

19.
We found that simian virus 40 (SV40), in addition to the SV40 early proteins large T antigen (large T) and small antigen (small t), codes for a third early protein with a molecular weight of 17 kDa. This protein (17kT) is expressed from an alternatively spliced third SV40 early mRNA, using a splice donor site at position 4425 and a splice acceptor site at position 3679 of the SV40 genome. The 17kT protein consists of 135 amino acids. Of these, 131 correspond to the amino-terminus of large T, while the four carboxy-terminal amino acids are unique and encoded by a different reading frame. 17kT mRNA, and the corresponding protein, were found in all SV40 transformed cells analyzed, as well as in SV40 infected cells. Transfection of a cDNA expression vector encoding the 17kT protein into rat F111 fibroblasts induced phenotypic transformation of these cells. The expression of the transforming amino-terminal domain of large T as an independent 17kT protein might provide a means for individually regulating the various functions associated with this domain.  相似文献   

20.
There is increasing evidence that the transforming DNA tumor virus simian virus 40 (SV40) is associated with human malignancies. SV40 small tumor antigen (small t) interacts with endogenous serine/threonine protein phosphatase 2A (PP2A) and is required for the transforming activity of SV40 in epithelial cells of the lung and kidney. Here, we show that expression of SV40 small t in epithelial MDCK cells induces acute morphological changes and multilayering. Significantly, it also causes severe defects in the biogenesis and barrier properties of tight junctions (TJs) but does not prevent formation of adherens junctions. Small t-induced TJ defects are associated with a loss of PP2A from areas of cell-cell contact; altered distribution and reduced amounts of the TJ proteins ZO-1, occludin, and claudin-1; and marked disorganization of the actin cytoskeleton. Small t-mediated F-actin rearrangements encompass increased Rac-induced membrane ruffling and lamellipodia, Cdc42-initiated filopodia, and loss of Rho-dependent stress fibers. Indeed, these F-actin changes coincide with elevated levels of Rac1 and Cdc42 and decreased amounts of RhoA in small t-expressing cells. Notably, these cellular effects of small t are dependent on its interaction with endogenous PP2A. Thus, our findings provide the first evidence that, in polarized epithelial cells, expression of small t alone is sufficient to induce deregulation of Rho GTPases, F-actin, and intercellular adhesion, through interaction with endogenous PP2A. Because defects in the actin cytoskeleton and TJ disruption have been linked to loss of cell polarity and tumor invasiveness, their deregulation by PP2A and small t likely contributes to the role of SV40 in epithelial cell transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号