首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Lipid A moiety of the lipopolysaccharide can be covalently modified during its transport to the outer membrane by different enzymes, among which the LpxT inner membrane protein. LpxT transfers a phosphate group from the undecaprenyl pyrophosphate to the Lipid A, a modification affecting the stability of the outer membrane and its recognition by the host immune system in Enterobacteria. We previously found that the expression of the Pseudomonas aeruginosa lpxT gene, encoding LpxT, is induced in response to a temperature upshift and we proposed that an RNA thermometer was responsible for such regulation. Here we show that the Escherichia coli lpxT orthologous gene is down-regulated upon a temperature upshift and investigated the mechanism of this regulation. We found that the LpxT protein stability is not affected by the temperature change. Conversely, the lpxT mRNA levels strongly decrease upon a shift from 28 to 42 °C. The lack of MicA sRNA, which was previously implicated in lpxT regulation, does not affect lpxT thermal regulation. We identified the lpxTp promoter and demonstrated that lpxTp has temperature-sensitive activity depending on its peculiar −10 region. Moreover, we found that RNase E-dependent degradation of the lpxT mRNA is also modulated by temperature causing a strong destabilization of the lpxT mRNA at 42 °C. In vitro data argue against the involvement of factors differentially expressed at 28 and 42 °C in the temperature–dependent modulation of lpxT mRNA stability.  相似文献   

3.
Inosine triphosphate pyrophosphatases, which are ubiquitous house-cleaning enzymes, hydrolyze noncanonical nucleoside triphosphates (inosine triphosphate (ITP) and xanthosine triphosphate (XTP)) and prevent the incorporation of hypoxanthine or xanthine into nascent DNA or RNA. Here we present the 1.5-Å-resolution crystal structure of the inosine triphosphate pyrophosphatase RdgB from Escherichia coli in a free state and in complex with a substrate (ITP + Ca2 +) or a product (inosine monophosphate (IMP)). ITP binding to RdgB induced a large displacement of the α1 helix, closing the enzyme active site. This positions the conserved Lys13 close to the bridging oxygen between the α- and β-phosphates of the substrate, weakening the Pα-O bond. On the other side of the substrate, the conserved Asp69 is proposed to act as a base coordinating the catalytic water molecule. Our data provide insight into the molecular mechanisms of the substrate selectivity and catalysis of RdgB and other ITPases.  相似文献   

4.
Leaderless mRNAs beginning with a 5'-terminal start codon occur in all biological systems. In this work, we have studied the comparative translational efficiency of leaderless and leadered mRNAs as a function of temperature by in vitro translation competition assays with Escherichia coli extracts. At low temperature (25 degrees C) leaderless mRNAs were found to be translated comparatively better than mRNAs containing an internal canonical ribosome binding site, whereas at high temperature (42 degrees C) the translational efficiency of canonical mRNAs is by far superior to that of leaderless mRNA. The inverse correlation between temperature and translational efficiency characteristic for the two mRNA classes was attributed to structural features of the mRNA(s) and to the reduced stability of the translation initiation complex formed at a 5'-terminal start codon at elevated temperature.  相似文献   

5.
6.
7.
The induction of the inducible lysyl-tRNA synthetase, LysU, and the inducible lysine and arginine decarboxylases of Escherichia coli K-12 grown in AC broth to a pH of 5.5 or less is temperature dependent, being distinctly lower at 24 than at 37 degrees C. This induction does not appear to be under HtpR control.  相似文献   

8.
The induction of the inducible lysyl-tRNA synthetase, LysU, and the inducible lysine and arginine decarboxylases of Escherichia coli K-12 grown in AC broth to a pH of 5.5 or less is temperature dependent, being distinctly lower at 24 than at 37 degrees C. This induction does not appear to be under HtpR control.  相似文献   

9.
By the freeze-etching method, in has been shown that E. coli plasma membranes undergo a structural transition in the range of temperatures within 0 and 20 degrees C which could be observed as redistribution of intramembrane particles with free-zone formation. The onset of temperature interval of this transition (20 degrees) well correlate with the break in the Arrhenius curves characterizing the cell membrane permeability for free nucleotides and for respiration intensity.  相似文献   

10.
The antimutagenic effect of cinnamaldehyde on mutagenesis was investigated using ten kinds of chemical mutagen in Escherichia coli WP2s (uvr A-). In addition, the frequency of mutation induction by each mutagen in an SOS repair deficient (umuC-) strain was compared with that in a wild-type (umuC+) strain. Cinnamaldehyde greatly suppressed the umuC-dependent mutagenesis induced by 4-nitroquinoline 1-oxide (4-NQO), furylfuramide or captan. However, cinnamaldehyde was less effective against the umuC-independent mutagenesis by alkylating agents such as N-methyl-N'-nitro-N-nitrosoguanidine and ethylmethanesulfonate. On the other hand, no inhibitory effect of cinnamaldehyde was observed on prophage induction or tif-mediated filamentous growth. These results suggest that a cinnamaldehyde does not prevent the induction of the SOS functions. Despite the decrease in the number of revertants, a remarkable increase was observed in the survival of 4-NQO-treated WP2s cells after exposure to cinnamaldehyde. The reactivation of survival suggests the promotion of some DNA repair system by cinnamaldehyde. This enhancement of survival was also observed in uvr B, polA, recF or umuC mutants and less in lexA or recB, C mutants. However, it was not observed in recA mutants. Therefore, we assume that cinnamaldehyde may enhance an error-free recombinational repair system by acting on recA-enzyme activity.  相似文献   

11.
12.
ld-Carboxypeptidase activity in Escherichia coli   总被引:1,自引:0,他引:1  
The activities of the LD-carboxypeptidases of Escherichia coli K 12 and of a mutant strain 155 with reduced activities were studied with the aid of ether treated cells. Evidence was obtained that was consistent with the suggestion that in both strains two LD-carboxypeptidase activities are present. Activity I degrades the nucleotide activated precursor UDP-MurNAc-tetrapeptide and activity II splits off D-alanine residues from position 4 of the peptide subunits in the nascent murein. In the mutant strain activity I is reduced 10fold compared with strain K 12, whereas activity II is not affected. The two activities could be distinguished with regard to their sensitivity to D-amino acids and the beta-lactam antibiotic thienamycin.  相似文献   

13.
Nitrosation activity was measured in Escherichia coli isolates and a range of nitrite reductase (nir) mutants. Activity was only detected in intact cells and could be inhibited by a number of treatments such as sonication and osmotic shock. Aerobically-grown cells had highest nitrosation activity compared to oxygen-limited ones. Inclusion of nitrite in growth media induced high activities of nitrite reductase and for some isolates, nitrosation. Analysis of nir mutants identified two which were unable to nitrosate. This result suggested that NADH-dependent nitrite reductase was implicated either directly or indirectly in nitrosation.  相似文献   

14.
Detailed comparison of growth kinetics at temperatures below and above the optimal temperature was carried out with Escherichia coli ML 30 (DSM 1329) in continuous culture. The culture was grown with glucose as the sole limiting source of carbon and energy (100 mg liter(-1) in feed medium), and the resulting steady-state concentrations of glucose were measured as a function of the dilution rate at 17.4, 28.4, 37, and 40 degrees C. The experimental data could not be described by the conventional Monod equation over the entire temperature range, but an extended form of the Monod model [mu = mu(max) x (s - s(min))/(Ks + s - s(min))], which predicts a finite substrate concentration at 0 growth rate (s(min)), provided a good fit. The two parameters mu(max) and s(min) were temperature dependent, whereas, surprisingly, fitting the model to the experimental data yielded virtually identical Ks values (approximately 33 microg liter(-1)) at all temperatures. A model that describes steady-state glucose concentrations as a function of temperature at constant growth rates is presented. In similar experiments with mixtures of glucose and galactose (1:1 mixture), the two sugars were utilized simultaneously at all temperatures examined, and their steady-state concentrations were reduced compared with to growth with either glucose or galactose alone. The results of laboratory-scale kinetic experiments are discussed with respect to the concentrations observed in natural environments.  相似文献   

15.
Ribonuclease activity in Escherichia coli polyribosomes   总被引:1,自引:0,他引:1  
  相似文献   

16.
The initial rates of antimutagenic dark repair were measured in Escherichia coli WP2 trpE65 cells irradiated by UV-light (11 J/m2) and then incubated in liquid media of various compositions. Samples were taken from suspension of incubated bacteria every 5 min following irradiation, mixed with acriflavine to block further repair and plated onto the selective medium containing acriflavine (1 micrograms/ml) to score the Trp+ mutations. The initial rate of antimutagenic repair was estimated from the kinetics of disappearance of mutations in several successive probes. It appeared to depend on the composition of a medium, to establish just after placing irradiated bacteria onto the medium and to decrease significantly in irradiated cells incubated under conditions favourable for growth. The decrease was not due to inhibition of postreplicative repair and was not caused by casaminoacids as such, but by combination of growth factors that provided the intensive protein synthesis. The decrease could be responsible for a strong mutational response of bacteria to irradiation because it secures the survival of premutagenic lesions in DNA till mutation fixation. It is suggested that metabolic regulation of the antimutagenic repair activity exists, based on an active switch of the energy flows required for several parallel metabolic pathways that proceed in irradiated cells.  相似文献   

17.
18.
DNA-damaging activity of patulin in Escherichia coli   总被引:1,自引:0,他引:1  
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.  相似文献   

19.
20.
The isolation of conditional mutants with an altered copy number of the R plasmid R1drd-19 is described. Temperature-dependent as well as amber-suppressible mutants were found. These mutant plasmids have been named pKN301 and pKN303, respectively. Both types of mutations reside on the R plasmid. No difference in molecular weight could be detected by neutral sucrose gradient centrifugation for any of the mutant plasmids when compared with the wild-type plasmid. The number of copies of the plasmids was determined by measurement of the specific activity of the R plasmid-mediated β-lactamase and by measurement of covalently closed circular (CCC) DNA in alkaline sucrose gradients and dye-CsCl density gradients. Below 34 °C the temperature-dependent mutant, pKN301, had the same copy number as the wild type, while this was four times that of the wild type above 37 °C. The amber mutant pKN303 had a copy number indistinguishable from that of the wild-type plasmid in a strain containing a strong amber suppressor and a copy number about five times that of the wild-type plasmid in a strain lacking an amber suppressor. In a strain containing a temperature-sensitive amber suppressor, the amber mutant's copy number increased with the decrease in amber suppressor activity. Thus, the existence of the temperature-dependent and the amber-suppressible R-plasmid copy mutants indicates that the system that controls the replication of plasmid R1drd-19 contains an element with a negative function and that this element is a protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号