首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolving technology of computer autofabrication makes it possible to produce physical models for complex biological molecules and assemblies. Augmented reality has recently developed as a computer interface technology that enables the mixing of real-world objects and computer-generated graphics. We report an application that demonstrates the use of autofabricated tangible models and augmented reality for research and communication in molecular biology. We have extended our molecular modeling environment, PMV, to support the fabrication of a wide variety of physical molecular models, and have adapted an augmented reality system to allow virtual 3D representations to be overlaid onto the tangible molecular models. Users can easily change the overlaid information, switching between different representations of the molecule, displays of molecular properties, or dynamic information. The physical models provide a powerful, intuitive interface for manipulating the computer models, streamlining the interface between human intent, the physical model, and the computational activity.  相似文献   

2.
3.
The efficiency of replication of plasmids containing the control region of polyomavirus DNA including one, two, or all three of the strong binding sites for large T antigen was measured in COP 8 cells which provide polyomavirus T antigen in trans. It was found that plasmids carrying only binding site A (the one closest to the origin core region) exhibited only 10% of the replication competence of plasmids with binding sites A and B or A and C. Plasmids containing all three binding sites, A, B, and C, did not replicate more efficiently than those with only two strong T-antigen-binding sites. We conclude, therefore, that optimal T-antigen-dependent replication of polyomavirus DNA requires two high-affinity T-antigen-binding sites.  相似文献   

4.
Merozoite surface protein 1 (MSP1) of the malaria parasite Plasmodium falciparum is an important vaccine candidate antigen. Antibodies specific for the C-terminal maturation product, MSP1(19), have been shown to inhibit erythrocyte invasion and parasite growth. Specific monoclonal antibodies react with conformational epitopes contained within the two EGF-like domains that constitute the antigen MSP1(19). To gain greater insight into the inhibitory process, the authors selected two strongly inhibitory antibodies (designated 12.8 and 12.10) and modeled their structures by homology. Computational docking was used to generate antigen-antibody complexes and a selection filter based on NMR data was applied to obtain plausible models. Molecular Dynamics simulations of the selected complexes were performed to evaluate the role of specific side chains in the binding. Favorable complexes were obtained that complement the NMR data in defining specific binding sites. These models can provide valuable guidelines for future experimental work that is devoted to the understanding of the action mechanism of invasion-inhibitory antibodies.  相似文献   

5.
Current models for T-cell recognition of foreign antigen depict the T-cell receptor as having a single antibody-like combining site which binds a complex of MHC and antigen. An alternative hypothesis is presented here; it is proposed that the first domains of the MHC function as inverted V-like regions to complement the TcR V-regions in creating antigen binding sites.  相似文献   

6.
DNA binding sites: representation and discovery   总被引:60,自引:0,他引:60  
The purpose of this article is to provide a brief history of the development and application of computer algorithms for the analysis and prediction of DNA binding sites. This problem can be conveniently divided into two subproblems. The first is, given a collection of known binding sites, develop a representation of those sites that can be used to search new sequences and reliably predict where additional binding sites occur. The second is, given a set of sequences known to contain binding sites for a common factor, but not knowing where the sites are, discover the location of the sites in each sequence and a representation for the specificity of the protein.  相似文献   

7.
Managing the overwhelming numbers of molecular states and interactions is a fundamental obstacle to building predictive models of biological systems. Here we introduce the Network-Free Stochastic Simulator (NFsim), a general-purpose modeling platform that overcomes the combinatorial nature of molecular interactions. Unlike standard simulators that represent molecular species as variables in equations, NFsim uses a biologically intuitive representation: objects with binding and modification sites acted on by reaction rules. During simulations, rules operate directly on molecular objects to produce exact stochastic results with performance that scales independently of the reaction network size. Reaction rates can be defined as arbitrary functions of molecular states to provide powerful coarse-graining capabilities, for example to merge Boolean and kinetic representations of biological networks. NFsim enables researchers to simulate many biological systems that were previously inaccessible to general-purpose software, as we illustrate with models of immune system signaling, microbial signaling, cytoskeletal assembly and oscillating gene expression.  相似文献   

8.
Simian Virus 40 (SV40) large T antigen is a DNA binding protein with high affinity for segments of the viral genome. To find out whether T antigen also binds to sequences of genomic cellular DNA we mixed T antigen and SAU 3 A restricted mouse DNA under stringent DNA binding conditions. Resulting protein-DNA complexes were immunoprecipitated using T antigen specific monoclonal or polyclonal antibodies. The DNA fragments in the immunoprecipitates were cloned in plasmid vectors. Four plasmid clones were selected for a detailed investigation of the inserted mouse DNA fragments. Nucleotide sequencing and DNase I footprint experiments showed that T antigen binds to sites in these fragments consisting of two tandemly oriented G(A)AGGC pentamers separated by AT rich spacers of different lengths. The cellular binding sites are very similar in their architecture to the SV40-DNA binding site I. The isolated cellular DNA fragments with T antigen binding sites occur only once or a few times in the mouse genome. Our data help to further define the structure of T antigen's DNA binding sites. The genetic functions of the isolated cellular DNA elements are not known.  相似文献   

9.
The anthrax protective antigen (PA) is a key component of the tripartite anthrax toxin. Monoclonal antibody (mAb) 14B7 and its engineered, affinity-matured variants have been shown to be effective in blocking PA binding to cellular receptors and mitigating anthrax toxicity. Here, we perform computational structural modeling of the mAb 14B7-PA interaction. Our objectives are to determine the structure of the 14B7-PA complex, to deduce a structural explanation for the affinity maturation from the docking models, and to study the effect of inaccuracies in the antibody homology model on docking. We used the RosettaDock program to dock PA with the mAb 14B7 crystal structure or homology model. Our simulations generate two distinct binding orientations consistent with experimental residue mutations that diminish 14B7-PA binding. Furthermore, the models suggest new site-directed mutations to positively identify one of these two solutions as the correct 14B7-PA docking orientation. The models indicate that PA regions 648-660 and 712-720 may be important for 14B7 binding in addition to the known PA epitope, and the binding interfaces are similar to that seen in the PA complex with cellular receptor CMG2. Antibody residues involved in affinity maturation do not contact the antigen in the docking models, suggesting that affinity maturation in the 14B7 family does not result from direct enhancements of antibody-antigen contacts. Docking the homology model produces low-resolution representations of the crystal structure docking orientations, but homology model docking is frustrated by antibody H3 loop conformation errors. This work demonstrates the usefulness and limitations of computational structure prediction for the development of antibody therapeutics, and reemphasizes the need for flexible backbone docking algorithms to achieve high-resolution docking using homology models.  相似文献   

10.
A new application of antibodies is to use them as macromolecular chaperones. Protein antigens usually have multiple epitopes, thus, there may be a plurality of antibodies binding to one antigen. However, not all antibodies that bind to one antigen could act as a chaperone. Experiments show that some screened anti-human creatine kinase single chain antibodies (scFV) could assist in the folding and stabilizing of the enzyme, while others could not. We built the model of the single chain antibody (scFv-A4) that increased the stability of human creatine kinase (HCK) by the homology modeling method. Epitopes of human creatine kinase were predicted by computer and then the binding of scFv-A4 and HCK was modeled with computer. The calculation results were further combined with the peptide array membrane experiment results to obtain reliable models for the scFv-A4-HCK complex. Based on the above study we gave an explanation about how scFv-A4 could act as a macromolecular chaperone assisting the folding of HCK. This study provides an approach for predicting antigen-antibody binding mode and also a useful theoretical guidance for the study of antibodies'' chaperone-like function.  相似文献   

11.
The translocator protein (TSPO) is a potential drug target for the treatment of CNS diseases, with TSPO ligands being able to modulate steroidogenesis, apoptosis, and cell proliferation. While there exist multiple TSPO binding sites, the nature of these sites--either overlapping or allosterically linked--remains largely uncharacterized. Furthermore, while evidence suggests that microglial activation and polymerization result in changes to TSPO binding sites, these changes are poorly understood. While current pharmacophoric models can be used to synthesize TSPO ligands with high affinity and selectivity, these models are unable to predict ligands with desirable functional effects. Better characterization of TSPO binding sites in health and disease may provide insight into particular sites which mediate promising therapeutic profiles, thus refining the TSPO pharmacophore.  相似文献   

12.
We used an artificial neural network (ANN) computer model to study peptide binding to the human transporter associated with antigen processing (TAP). After validation, an ANN model of TAP-peptide binding was used to mine a database of HLA-binding peptides to elucidate patterns of TAP binding. The affinity of HLA-binding peptides for TAP was found to differ according to the HLA supertype concerned: HLA-B27, -A3 or -A24 binding peptides had high, whereas HLA-A2, -B7 or -B8 binding peptides had low affinity for TAP. These results support the idea that TAP and particular HLA molecules may have co-evolved for efficient peptide processing and presentation. The strong similarity between the sets of peptides bound by TAP or HLA-B27 suggests functional co-evolution whereas the lack of a relationship between the sets of peptides bound by TAP or HLA-A2 is against these particular molecules having co-evolved. In support of these conclusions, the affinities of HLA-A2 and HLA-B7 binding peptides for TAP show similar distributions to that of randomly generated peptides. On the basis of these results we propose that HLA alleles constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3 and -A24) and those that are TAP-inefficient (HLA-A2, -B7 and -B8). Computer modelling can be used to complement laboratory experiments and thereby speed up knowledge discovery in biology. In particular, we provide evidence that large-scale experiments can be avoided by combining initial experimental data with limited laboratory experiments sufficient to develop and validate appropriate computer models. These models can then be used to perform large-scale simulated experiments the results of which can then be validated by further small-scale laboratory experiments.  相似文献   

13.
The Epstein-Barr virus (EBV) nuclear antigen EBNA-1 plays an integral role in the maintenance of latency in EBV-infected B lymphocytes. EBNA-1 binds to sequences within the plasmid origin of replication (oriP). It is essential for the replication of the latent episomal form of EBV DNA and may also regulate the expression of the EBNA group of latency gene products. We have used sequence-specific DNA-binding assays to purify EBNA-1 away from nonspecific DNA-binding proteins in a B-lymphocyte cell extract. The availability of this eucaryotic protein has allowed an examination of the interaction of EBNA-1 with its specific DNA-binding sites and an evaluation of possible roles for the different binding loci within the EBV genome. DNA filter binding assays and DNase I footprinting experiments showed that the intact Raji EBNA-1 protein recognized the two binding site loci in oriP and the BamHI-Q locus and no other sites in the EBV genome. Competition filter binding experiments with monomer and multimer region I consensus binding sites indicated that cooperative interactions between binding sites have relatively little impact on EBNA-1 binding to region I. An analysis of the binding parameters of the Raji EBNA-1 to the three naturally occurring binding loci revealed that the affinity of EBNA-1 for the three loci differed. The affinity for the sites in region I of oriP was greater than the affinity for the dyad symmetry sites (region II) of oriP, while the physically distant region III locus showed the lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can lowest affinity. This arrangement may provide a mechanism whereby EBNA-1 can mediate differing regulatory functions through differential binding to its recognition sequence.  相似文献   

14.
The problem of discovering novel motifs of binding sites is important to the understanding of gene regulatory networks. Motifs are generally represented by matrices (position weight matrix (PWM) or position specific scoring matrix (PSSM) or strings. However, these representations cannot model biological binding sites well because they fail to capture nucleotide interdependence. It has been pointed out by many researchers that the nucleotides of the DNA binding site cannot be treated independently, e.g. the binding sites of zinc finger in proteins. In this paper, a new representation called Scored Position Specific Pattern (SPSP), which is a generalization of the matrix and string representations, is introduced which takes into consideration the dependent occurrences of neighboring nucleotides. Even though the problem of discovering the optimal motif in SPSP representation is proved to be NP-hard, we introduce a heuristic algorithm called SPSP-Finder, which can effectively find optimal motifs in most simulated cases and some real cases for which existing popular motif finding software, such as Weeder, MEME and AlignACE, fail.  相似文献   

15.
Antibody-drug conjugates enhance the antitumor effects of antibodies and reduce adverse systemic effects of potent cytotoxic drugs. However, conventional drug conjugation strategies yield heterogenous conjugates with relatively narrow therapeutic index (maximum tolerated dose/curative dose). Using leads from our previously described phage display-based method to predict suitable conjugation sites, we engineered cysteine substitutions at positions on light and heavy chains that provide reactive thiol groups and do not perturb immunoglobulin folding and assembly, or alter antigen binding. When conjugated to monomethyl auristatin E, an antibody against the ovarian cancer antigen MUC16 is as efficacious as a conventional conjugate in mouse xenograft models. Moreover, it is tolerated at higher doses in rats and cynomolgus monkeys than the same conjugate prepared by conventional approaches. The favorable in vivo properties of the near-homogenous composition of this conjugate suggest that our strategy offers a general approach to retaining the antitumor efficacy of antibody-drug conjugates, while minimizing their systemic toxicity.  相似文献   

16.
SV40 gene expression is modulated by the cooperative binding of T antigen to DNA   总被引:102,自引:0,他引:102  
R M Myers  D C Rio  A K Robbins  R Tjian 《Cell》1981,25(2):373-384
  相似文献   

17.
The amino acid sequences of five monoclonal antibodies (designated mAbs A-E) which bind to the dopaminergic D-2 antagonist, haloperidol, with a variety of affinities (Kd = 4-810 nM), have been used to build theoretical, three-dimensional, computer models of the variable region combining sites. Physiocochemical interactions which have been previously determined from in vitro binding data have been used to orient the drug molecule within the combining site model. The results indicate that hydrophobic, aromatic, and ionic amino acids are involved in specific interactions with the antagonist molecule. For example, fluorescence quenching data suggests that a tryptophan residue is intimately involved in the binding of haloperidol by mAb A. Examination of the modeled structure reveals five tryptophans within the variable fragment, only one of which (H-50) is within the classical beta-barrel binding pocket and is readily accessible to the antigen. Haloperidol's relatively electron poor fluorophenyl ring system stacks with the electron-rich tryptophan ring system at a distance of 3.3 A and in so doing, places haloperidol's positively charged piperidinyl nitrogen atom within hydrogen bond distance of the negatively charged Glu-95 and Asp-100A residues of the H3 loop (Glu-H-95 and Asp-H-100A). This type of analysis for each antibody provides an interesting profile of changes in amino acid composition and hypervariable loop length which markedly effect binding affinity and specificity for a series of proteins which have similar combining site.  相似文献   

18.
The class II genes of the major histocompatibility complex encode proteins which play a crucial role in antigen presentation. They are among the most polymorphic proteins known, and this polymorphism is thought to be the result of natural selection. To understand the selective pressure acting on the protein and to examine possible differences in the evolutionary dynamics among species, we apply maximum likelihood models of codon substitution to analyze the DRB genes of six mammalian species: human, chimpanzee, macaque, tamarin, dog, and cow. The models account for variable selective pressures across codons in the gene and have the power to detect amino acid residues under either positive or negative selection. Our analysis detected positive selection in the DRB genes in each of the six mammals examined. Comparison with structural data reveals that almost all amino acid residues inferred to be under positive selection in humans are in the peptide binding region (PBR) and are in contact with the antigen side chains, although residues outside of but close to the PBR are also detected. Strong purifying selection is also detected in the PBR, at sites which contact the antigen and at sites which may be involved in dimerization or T cell binding. The analysis demonstrates the utility of the random-sites analysis even when structural information is available. The different mammalian species are found to share many positively or negatively selected sites, suggesting that their functional roles have remained very similar in the different species, despite the different habitats and pathogens of the species.  相似文献   

19.
Simian virus 40 T antigen has been shown previously to bind specifically with high affinity to sites within the regulatory region of double-stranded simian virus 40 DNA. Using competition filter binding and the DNA-binding immunoassay, we show that T antigen did not bind specifically to either early or late single-stranded DNA containing these binding sites. Moreover, T antigen did not bind these sequences present in single-stranded RNA, RNA/RNA duplexes, or RNA/DNA hybrids. T antigen did, however, bind as efficiently to single-stranded DNA-cellulose as to double-stranded DNA-cellulose. This binding was nonspecific because it was independent of the presence of T-antigen-binding sites. The implications of these observations are discussed.  相似文献   

20.
The affinity of the origin-binding domain (OBD) of simian virus 40 large T antigen for its cognate origin was measured at equilibrium using a DNA binding assay based on fluorescence anisotropy. At a near-physiological concentration of salt, the affinities of the OBD for site II and the core origin were 31 and 50 nM, respectively. Binding to any of the four 5'-GAGGC-3' binding sites in site II was only slightly weaker, between 57 and 150 nM. Although the OBD was shown previously to assemble as a dimer on two binding sites spaced by 7 bp, we found that increasing the distance between both binding sites by 1 to 3 bp had little effect on affinity. Similar results were obtained for full-length T antigen in absence of nucleotide. Addition of ADP-Mg, which promotes hexamerization of T antigen, greatly increased the affinity of full-length T antigen for the core origin and for nonspecific DNA. The implications of these findings for the assembly of T antigen at the origin and its transition to a non-specific DNA helicase are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号