首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A technique based on homogenisation of rapidly frozen tissue was used to investigate the regulation of intracellular pH (pHi) in freshwater and marine fish from diverse environmental temperatures. The following species were held at ambient temperatures of ca. 1°C (Notothenia coriiceps; Antarctica), 5°C (Pleuronectes platessa, Myoxocephalus scorpius; North Sea), and 26°C (Oreochromis niloticus; African lakes). The effects of seasonal acclimatisation to 4, 11 and 18°C were also examined in rainbow trout in the winter, autumn and summer, respectively. Extracellular (whole blood) pH (pHe) did not follow the constant relative alkalinity relationship, where pH+=pOH for any particular temperature, over a range of 1–26°C (overall δpHeT=0.009±0.002 U °C−1; P<0.001), apparently being regulated by ionic fluxes and ventilation. Intracellular pH (pHi) was also regulated independently of pN(=0.5 pK water) in all species of fish examined. The inverse relationship between pHi and environmental temperature gave an overall δpHiT of −0.010±0.001 U °C−1 (for both white and red muscle) and −0.004±0.003 U °C−1 (cardiac muscle). However, between 1 and 11°C δpHiT was much higher (P<0.001), −0.022±0.003 U °C−1 (white muscle) and −0.022±0.004 U °C−1 (red muscle). The possible adaptive roles for these different acid–base responses to environmental temperature variation among tissues and species, and the potential difficulties of estimating pHi, are discussed.  相似文献   

2.
Ventilation was measured directly in the hagfish, Myxine glutinosa L., by means of an electro-magnetic blood flowmeter. Ventilatory flow and frequency increased from 0.86 ± 0.27 ml·min?, and 18.2 ± 5.1·min?, respectively, at 7°C to 1.70 ± 0.20 ml·min?, and 70.1 ± 9.5·min? at 15 ·C.Standard oxygen consumption,V?O2, was measured in non-buried hagfish. V?O2 was 0.57 ± 0.17μl O2·g?1·min?1 at 7°C, and 0.85 ± 0.12μl O2·g?1·min?1 at 15°C.  相似文献   

3.
Heat conduction calorimeters are widely used in biological sciences, but baseline instability, low resolution, electrical noise and motion artifacts have limited their utility. Two main sources of noise, baseline fluctuation or drift and a motion artifact, were traced to amplifier drift, a small (0.015°C) gradient within the constant temperature cylinder, and the method of installing the thermopiles. The addition of heaters to the top and bottom of the cylinder reduced the gradient to approximately 0.003°C and greatly reduced the slow component of the motion artifact. The drift error was reduced by proper mounting of the amplifier and its external components and the enclosure of the calorimeter in a temperature-controlled box.An R-C model of the heat flow in the calorimeter was developed which was employed to discover several means of increasing sensitivity without increasing the rise-time of the calorimeter. Analysis, also based on the model, showed that variations in the air gap between the cell holder can be a major source of error when the calorimeter is used to investigate the kinetics of a chemical reaction. This analysis also showed that the time for the heat to flow through the solution through the solution in the cell can be the dominant factor in determining the rise-time of the instrument.The heat conduction calorimeter described here has improved characterics: a baseline stability of 200 nJ · s?1 (peak-to-peak) over a 48 h period; a resolution of 200 nJ · s?1; a sensitivity of 6.504 ± 0.045 J · V?1 · s?1 referred to the sensor output; and a rise-time of 122 s for the 10–90% response.  相似文献   

4.
The enthalpies of the hexokinase-catalyzed phosphorylation or glucose, mannose, and fructose by ATP to the respective hexose 6-phosphates have been measured calorimetrically in TRIS/TRIS HCl buffer at 25.0, 28.5, and 32.0°C. The effects on the measured enthalpy of the glucose/hexokinase reaction due to variation of pH (over the range 6.7 to 9.0) and ionic strength (over the range 0.02 to 0.25) have been examined. Correction for enthalpy of buffer protonation leads to δHo and δCpo values for the processes: eq-D-hexose + ATP4− = eq-D-hexose 6-phosphate2− + ADP3−+ H+. Results are δHo = −23.8 ± 0.7 kJ · mol−1 and δCpo = −156 ± 280 J·mol−1·K−1 for glucose. δHo = −21.9 ± 0.7 kJ·mol−1 and δCpo = 10 ± 140 J·mol−1·K−1 for mannose, and δHo = −15.0 ± 0.9 kJ·mol−1 and δCpo = −41 ± 160 J·mol−1·K−1 for fructose. Combination of these measured enthalpies with Gibbs energy data for hydrolysis of ATP4− and that for the hexose 6-phosphates lead to δSo values for the above hexokinase-catalyzed reactions.  相似文献   

5.
While the nuclei of many diverse types of tissue can be purified by centrifugation through dense sucrose solutions, Xenopus laevis embryo and liver nuclei present special purification problems due to the presence of large numbers of melanosomes in embryo and liver cells. These melanosomes were removed by isopycnic centrifugation in Metrizamide gradients. In Metrizamide, embryo nuclei banded at an average buoyant density of ρC = 1.288 ± 0.003 g/cm3. Liver nuclei separated into two peaks, one containing nonparenchymal cell nuclei with an average buoyant density of ρC = 1.274 ± 0.003 g/cm3 and the other peak containing parenchymal cell nuclei with an average buoyant density of ρC = 1.284 ± 0.001 g/cm3.  相似文献   

6.
In all larval stages of Carcinus maenas L. oxygen consumption was measured at three temperatures (12,18,25 °C). Values increased during development and were in the range of 0.037 ± 0.01 (zoea-1, 12°C, x? ± 95% CL) to 0.734 ± 0.047 μl O2 · h?1 · ind?1 (megalopa, 25 °C). Growing larvae showed temperature dependent trends in weight specific respiration rates (referred to dry wt; DW), with values between ≈2.4 and 9.4 μl O2· h?1·mg DW?1. Increase in oxygen consumption of megalops did not differ much at temperatures between 18 and 25 °C. This points to an exceptional physiological position of this stage. Fed zoea-1 of C. maenas (18 °C) revealed growth rates in terms of 40% DW, 20% carbon (C), 30% nitrogen (N) and 65% hydrogen (H). At the same time larvae gained individual energy by 13% (J · ind?1), while weight specific energy dropped by ≈ 19% (J · mg DW?1) during the first day and remained constant until the moult. Starved zoea-1 of C. maenas (18 ° C) gained ≈ 20 % in DW through the first day, probably caused by inorganic salts which enter the organism after the moult of the prezoea. DW dropped to ≈ 25 % of initial value, when starvation continued. Single components decreased by ≈50% (C), 54% (N), 57% (J · ind?1). Weight specific energy (J · mg DW?1) decreased by 40% during the first 4 days of starvation, remaining constant thereafter. Individual respiration rate (R) dropped by 61 %, weight specific respiration rate (QO2) by 55 %. Individual energy loss in starved zoea-1 was 0.077 J over a period of 11 days. In this period ≈ 9.3 μl O2·ind?1 were consumed. Thus effective oxygen capacity was lower than in growing larvae. It dropped to 5.3 J·mlO2?1 after 4 days and remained constant if starvation continued, i.e. 65 % of possible energy loss occurred during the first 4 days. Decrease in requirement for oxygen and its effective capacity were both recognized as independent components of survival during starvation. Partitioning of energy through individual larval development of C. maenas was investigated for all five larval stages. The cumulative budget could be calculated: consumption (C) = 28.23 J, growth (G) = 0.92 J, exoskeleton (Ex) = 0.20 J, metabolism (M) = 5.30 J, egestion and excretion (E) = 21.82 J. Mean gross and net growth efficiency were, K1 = 3.3% and K2 = 14.8%, respectively.  相似文献   

7.
We have investigated the binding of 2′-deoxyuridine 5′-monophosphate (2′-dUMP) to Leishmania major deoxyuridine 5′-triphosphate nucleotide hydrolase (dUTPase) by isothermal titration microcalorimetry under different experimental conditions. Binding to dimeric L. major dUTPase is a non-cooperative process, with a stoichiometry of 1 molecule of 2′-dUMP per subunit. The utilization of buffers with different ionization enthalpies has allowed us to conclude that the formation of the 2′-dUMP–dUTPase complex, at pH 7.5 and 30 °C, is accompanied by the uptake of 0.33±0.05 protons per dUTPase subunit from the buffer media. Moreover, 2′-dUMP shows a moderate affinity for the enzyme, and binding is enthalpically driven across the temperature range studied. Besides, whereas ΔG° remains practically invariant as a function of temperature, both ΔH and ΔS° decrease with increasing temperature. The TS and TH were 23.4 and 13.6 °C, respectively. The temperature dependence of the enthalpy change yields a heat capacity change of ΔCp°=?618.1±126.4 cal·mol?1·K?1, a value low enough to discard major conformational changes, in agreement with the fitting model. An interpretation of this value in terms of solvent-accessible surface areas is provided.  相似文献   

8.
《Inorganica chimica acta》1987,128(2):169-173
The axial adduct formation of the iron(II) complex of 2,3,9,10-tetraphenyl-l,4,8,11-tetraaza-1,3,8,10-cyclotetradecatetraene (L) with imidazole in dimethyl sulfoxide has been investigated spectrophotometrically at various temperatures and pressures. In the presence of a large excess of imidazole the reaction with the two phases has been observed. The first faster reaction is the formation of the monoimidazole complex of FeL2+, and the second slower reaction corresponds to the formation of the bisimidazole complex. Activation parameters are as follows: for the first step with k1 (25.0°C) = (6.8 ±0.2)×105 mol−1 kg s−1, ΔH31 = 47.5 ± 4.9 kJ mol−1, ΔS31 = 26±16 J K−1 mol−1, and ΔV31 (30.0°C) = 27.2±1.5 cm3 mol−1; for the second step with k2 (25.0°C) = 26.8±0.8 mol−1 kg s−1, ΔH32 = 91.6± 0.8 kJ mol−1, ΔS32 = 90±3 J K−1 mol−1, and ΔV32 (35.0°C) = 21.8±0.9 cm3 mol−1. The large positive activation volumes strongly indicate a dissociative character of the activation process.  相似文献   

9.
Uptake rates of dissolved inorganic phosphorus and dissolved inorganic nitrogen under unsaturated and saturated conditions were studied in young sporophytes of the seaweeds Saccharina latissima and Laminaria digitata (Phaeophyceae) using a “pulse‐and‐chase” assay under fully controlled laboratory conditions. In a subsequent second “pulse‐and‐chase” assay, internal storage capacity (ISC) was calculated based on VM and the parameter for photosynthetic efficiency Fv/Fm. Sporophytes of S. latissima showed a VS of 0.80 ± 0.03 μmol · cm?2 · d?1 and a VM of 0.30 ± 0.09 μmol · cm?2 · d?1 for dissolved inorganic phosphate (DIP), whereas VS for DIN was 11.26 ± 0.56 μmol · cm?2 · d?1 and VM was 3.94 ± 0.67 μmol · cm?2 · d?1. In L. digitata, uptake kinetics for DIP and DIN were substantially lower: VS for DIP did not exceed 0.38 ± 0.03 μmol · cm?2 · d?1 while VM for DIP was 0.22 ± 0.01 μmol · cm?2 · d?1. VS for DIN was 3.92 ± 0.08 μmol · cm?2 · d?1 and the VM for DIN was 1.81 ± 0.38 μmol · cm?2 · d?1. Accordingly, S. latissima exhibited a larger ISC for DIP (27 μmol · cm?2) than L. digitata (10 μmol · cm?2), and was able to maintain high growth rates for a longer period under limiting DIP conditions. Our standardized data add to the physiological understanding of S. latissima and L. digitata, thus helping to identify potential locations for their cultivation. This could further contribute to the development and modification of applications in a bio‐based economy, for example, in evaluating the potential for bioremediation in integrated multitrophic aquacultures that produce biomass simultaneously for use in the food, feed, and energy industries.  相似文献   

10.
Using time-course, natural-light incubations, we assessed the rate of carbon uptake at a range of light intensities, the effect of supplemental additions of nitrogen (as NH4+ or urea) on light and dark carbon uptake, and the rates of uptake of NH4+ and urea by phytoplankton from Vineyard Sound, Massachusetts from February through August 1982. During the winter, photoinhibition was severe, becoming manifested shortly after the start of an incubation, whereas during the summer, there was little to no evidence of photoinhibition during the first several hours after the start of an incubation. At light levels which were neither photoinhibiting nor light limiting, rates of carbon uptake normalized per liter were high and approximately equal during winter and summer (22–23 μg C·l?1 · h?1), and low during spring (<10 μgC·l?1· h?1). In contrast, on a chlorophyll a basis, rates of carbon fixation were as high during spring (15–20μg C·μg Chl a?1·h?1), when concentrations of chlorophyll a were at the yearly minimum (<0.5 μg · l?1) as during the summer, when chlorophyll a concentrations were substantially higher (0.8–1.3 μg · l?1). Highest rates of NH4+ and urea uptake were observed during summer, and at no time of the year was there evidence for severe nitrogen deficiency, although moderate nitrogen nutritional stress was apparent during the summer months.  相似文献   

11.
A theoretical study of the magnetic properties, using density functional theory, of a family of trinuclear μ3-OH copper(II) complexes reported in the literature is presented. The reported X-ray crystal structures of [Cu33-OH)(aat)3(H2O)3](NO3)2·H2O (HUKDUM), where aat: 3-acetylamine-1,2,4-triazole; [Cu33-OH)(aaat)3(H2SO4)(HSO4)(H2O)] (HUKDOG), where aaat: 3-acetylamine-5-amine-1,2,4-triazole; [Cu33-OH)(PhPyCNO)3(tchlphac)2] (HOHQUR), where PhPyCNO: phenyl 2-pyridyl-ketoxime and tchlphac: acid 2,4,5-trichlorophenoxyacetic; [Cu33-OH)(PhPyCNO)3(NO3)2(CH3OH)] (ILEGEM); [Cu33-OH)(pz)3(Hpz)3(ClO4)2] (QOPJIP), where Hpz?=?pyrazole; [Cu33-OH)(pz)3(Hpz)(Me3CCOO)2]?2Me3CCOOH (DEFSEN) and [Cu33-OH)(8-amino-4-methyl-5-azaoct-3-en-2-one)3][CuI3] (RITXUO), were used in the calculations. The magnetic exchange constants were calculated using the broken-symmetry approach. The calculated J values are for HUKDUM J1?=??68.6 cm?1, J2?=??69.9 cm?1, J3?=??70.4 cm?1; for HUKDOG, J1?=??73.5 cm?1, J2?=??58.9 cm?1, J3?=??62.1 cm?1; for HOHQUR J1?=??128.3 cm?1, J2?=??134.1 cm?1, J3?=??120.4 cm?1; for ILEGEM J1?=??151.6 cm?1, J2?=??173.9 cm?1, J3?=??186.9 cm?1; for QOPJIP J1?=??118.3 cm?1, J2?=??106.0 cm?1, J3?=??120.6 cm?1; for DEFSEN J1?=??74.9 cm?1, J2?=??64.0 cm?1, J3?=??57.7 cm?1 and for RITXUO J1?=??10.9 cm?1, J2?=?+14.3 cm?1, J3?=??35.4 cm?1. The Kahn-Briat model was used to correlate the calculated magnetic properties with the overlap of the magnetic orbitals. Spin density surfaces show that the delocalization mechanism is predominant in all the studied compounds.
Figure
The Kahn-briat model was used to correlate the calculated magnetic properties with the overlap of the magnetic orbitals.  相似文献   

12.
A protoplasmic drop isolated from an internodal cell of Nitella in an initial solution composed of 70 mM KNO3, 50 mM NaNO3 and 5 mM CaCl2 became electrically excitable when the drop was placed in the final solution containing 0.5 mM KNO3, 0.5 mM NaCl, 1 mM Ca(NO3)2 and 2 mM Mg(NO3)2. The electrical impedance of the surface membrane of the drop was measured both in the initial and final solutions at frequencies between 60 Hz and 100 kHz.The impedance and admittance loci of the surface membrane fell on circular arcs. The d.c. resistance Rm°, and the d.c. capacitance Cm° were determined by extrapolating the circular arcs to the low frequency limit. Rm° thus determined was in the range of 50–200 Ω·cm2 in the initial solution, and increased to a steady value of 0.4–4.0 kΩ·cm2 when the external solution was replaced by the final solution. After the protoplasmic drop was isolated from the internodal cell of Nitella, Cm° decreased monotonically from about 1.5 μF/cm2 within 20 min and approached 1.25±0.1 μF/cm2 both in the initial and final solutions. No appreciable difference was observed for Cm° in these two solutions.The impedance data were discussed in relation to the process of formation of the membrane at the surface of the protoplasmic drop. After the excitable stage was reached, the drop membrane impedance was found to decrease by a factor of 10 during excitation.  相似文献   

13.
Dissolved inorganic phosphorus (DIP ) is an essential macronutrient for maintaining metabolism and growth in autotrophs. Little is known about DIP uptake kinetics and internal P‐storage capacity in seaweeds, such as Ulva lactuca (Chlorophyta). Ulva lactuca is a promising candidate for biofiltration purposes and mass commercial cultivation. We exposed U. lactuca to a wide range of DIP concentrations (1–50 μmol · L?1) and a nonlimiting concentration of dissolved inorganic nitrogen (DIN ; 5,000 μmol · L?1) under fully controlled laboratory conditions in a “pulse‐and‐chase” assay over 10 d. Uptake kinetics were standardized per surface area of U. lactuca fronds. Two phases of responses to DIP ‐pulses were measured: (i) a surge uptake (VS ) of 0.67 ± 0.10 μmol · cm?2 · d?1 and (ii) a steady state uptake (VM ) of 0.07 ± 0.03 μmol · cm?2 · d?1. Mean internal storage capacity (ISCP ) of 0.73 ± 0.13 μmol · cm?2 was calculated for DIP . DIP uptake did not affect DIN uptake. Parameters of DIN uptake were also calculated: VS  = 12.54 ± 1.90 μmol · cm?2 · d?1, VM  = 2.26 ± 0.86 μmol · cm?2 · d?1, and ISCN  = 22.90 ± 6.99 μmol · cm?2. Combining ISC and VM values of P and N, nutrient storage capacity of U. lactuca was estimated to be sufficient for ~10 d. Both P and N storage capacities were filled within 2 d when exposed to saturating nutrient concentrations, and uptake rates declined thereafter at 90% for DIP and at 80% for DIN . Our results contribute to understanding the ecological aspects of nutrient uptake kinetics in U. lactuca and quantitatively evaluating its potential for bioremediation and/or biomass production for food, feed, and energy.  相似文献   

14.
《Biomass》1990,21(4):273-284
A field experiment was conducted at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Center, Patancheru, India to study photosynthetically active radiation (PAR) interception and dry matter production relationships in pearl millet (Pennisetum americanum (L.) Leeke). Two pearl millet genotypes, BJ 104 (G1) and ICH 226 (G2) were sown at three planting geometries obtained by using combinations of row and plant spacings (S1: 37·5 cm × 26·6 cm; S2: 75·0 cm × 13·3 cm; S3: 150·0 cm × 6·6 cm) such that plant population was constant at 100 000 ha−1 in all treatments. Cumulative intercepted PAR was maximum (330 MJ m−2) in G2S2 and minimum (268 MJ m−2) in G1S3. Conversion efficiency values ranged from 1·87 g MJ−1 in G1S2 to 2·32 g MJ−1 in G2S3. Final above-ground dry matter followed the pattern of cumulative intercepted PAR and maximum dry matter (7·22 Mg ha−1) was produced by G2S2 while G1S3 produced minimum dry matter (4·97 Mg ha−1).  相似文献   

15.
Aims: The objective was to study the response of Cronobacter sakazakii ATCC 29544 cells to heat, pulsed electric fields (PEF), ultrasound under pressure (Manosonication, MS) and ultraviolet light (UV‐C) treatments after exposure to different sublethal stresses that may be encountered in food‐processing environments. Methods and Results: Cronobacter sakazakii stationary growth‐phase cells (30°C, 24 h) were exposed to acid (pH 4·5, 1 h), alkaline (pH 9·0, 1 h), osmotic (5% NaCl, 1 h), oxidative (0·5 mmol l?1 H2O2, 1 h), heat (47·5°C, 1 h) and cold (4°C, 4 h) stress conditions and subjected to the subsequent challenges: heat (60°C), PEF (25 kV cm?1, 35°C), MS (117 μm, 200 kPa, 35°C) and UV‐C light (88·55 mW cm?2, 25°C) treatments. The inactivation kinetics of Csakazakii by the different technologies did not change after exposure to any of the stresses. The combinations of sublethal stress and lethal treatment that were protective were: heat shock–heat, heat shock–PEF and acid pH–PEF. Conversely, the alkaline shock sensitized the cells to heat and UV‐C treatments, the osmotic shock to heat treatments and the oxidative shock to UV‐C treatments. The maximum adaptive response was observed when heat‐shocked cells were subjected to a heat treatment, increasing the time to inactivate 99·9% of the population by 1·6 times. Conclusions: Cronobacter sakazakii resistance to thermal and nonthermal preservation technologies can increase or decrease as a consequence of previous exposure to stressing conditions. Significance and Impact of the Study: The results help in understanding the physiology of the resistance of this emerging pathogen to traditional and novel preservation technologies.  相似文献   

16.
17.
The preparation and properties of binuclear complexes containing the pyrazolate and azide groups as bridging ligands are reported. Representative formulae are: M2(μ-pz)(μ-N3)(CO)4, M2(μ-pz)(μ-N3)- (COD)2 (M = Rh or Ir), (CO)2Rh(μ-pz)(μ-N3)ML2 (M = Rh, L2 = COD, M = Ir, L = CO) and (η3-C3H5)- Pd(μ-pz)(μ-N3)Rh(CO)2. The crystal and molecular structure of the latter complex has been determined by single-crystal X-ray methods. Crystals are monoclinic, space group C2/c with cell constants a = 18.4750(10), b = 10.0351(3), c = 13.6399(6) Å, α = 90, β = 100.022(4), γ = 90°, and Z = 8. The final R and Rw values were 0.051 and 0.062 for 1417 observed reflexions. This binuclear compound packs in the crystal zig-zag chains of rhodium atoms, along the c axis, wtth intermolecular Rh···Rh contacts of 3.290(1) and 3.604(1) Å. The Rh···Rh···Rh angle is 163.16(4)°.  相似文献   

18.
Nickel(II) complexes with the compartmental Schiff bases derived from 2,6-diformyl-4-chlorophenol and 1,5-diamino-3-thiapentane (H2L1) or 3,3′-diamino-N-methyl-dipropylamine (H2L2) were synthesized, and the crystal structures of [Ni(L1)- (py)2] and [Ni(L2)(dmf)]·H20 were determined by X-ray crystallography.Ni(L1)(py)2 is monoclinic, space group C2/c, with a= 18.457(6), b = 11.116(7), c= 16.098(6) Å, and β = 115.79(5)°; Dc = 1.49 g cm−3 for Z = 4. The structure was refined to the final R of 6.9%. The molecule has C2 symmetry. The nickel atom is six-coordinated octahedral. Selected bond lengths are: NiO 2.04(1) Å, NiN (L1) 2.08(1) Å, NiN(py) 2.17(1) Å.[Ni(L2)(dmf)]·H2O is monoclinic, space group P21/n, with a = 17.329(6), b = 13.322(7), c = 12.476(7) Å and β = 95.43(5)°; Dc = 1.45 g cm−3 for Z = 4. The structure was refined to the final R of 5.1%. The nickel atom is bonded in the octahedral geometry to the bianionic pentadentate ligand L2 and to one molecule of dimethylformamide. Selected bond lengths are: NiO (charged) 2.063(3) Å (mean value), NiO (neutral) 2.120(3) Å, NiN (planar) 2.050(3) Å (mean value), NiN (tetrahedral) 2.177(3) Å.  相似文献   

19.
Respiratory activity of intact, attached roots was measured under field and controlled conditions. Root respiration of Yucca elata Engelm. was highly temperature dependent: Q10 values decreased from 2.1 (12–22° C) to 1.7 (26–36° C) as temperatures increased. Respiration ceased after 5 h at 42° C. In the field, in August, when net leaf photosynthesis was severely depressed, the diel fluctuation in the respiration rate of suberized and partially suberized roots was predominantly a function of temperature. A photoperiod-associated rise in respiration rates apart from temperature response occurred in February for nonsuberized, partially suberized, and suberized roots when active net photosynthesis occurred throughout the photoperiod. In whole-plant root systems, respiratory CO2 was 3.2 and 4.3 mg CO2·g DW-1·d-1 in August and February, respectively, when adjusted for the proportion of suberized and nonsuberized lateral roots. On a whole-plant basis, 0.89 mg C·g DW-1·d-1 was gained during February and 0.46 mg C·g DW-1·d-1 was lost in August. The belowground: aboveground ratio of whole-plants in situ was 0.42 on a shallow soil where vertical root growth was limited to a soil depth of 68 cm and ranged from 1.29 to 5.94 \(\left( {\bar x = 3.31} \right)\) in deep sands. No leaf dark fixation of CO2 was observed in field plants during August and February, nor in well-watered plants or plants subjected to drought in laboratory studies. Although small diel fluctuations in leaf acidity occurred in both field and greenhouse-grown plants, results of this study suggest that Y. elata is a C3 plant.  相似文献   

20.
Rotation of single swollen thylakoid vesicles (‘blebs’) was induced by means of a rotating electric field of strength 104 V · cm−1, inducing a membrane voltage of 72 mV peak. Within the range of medium conductives described (40–300 μS · cm−1), measurement of the field frequency (2–100 kHz) giving maximum rotation rate is equivalent to measuring the electrical time constant of the bleb membrane. Hence the membrane capacity (specific capacitance) was determined, and the value found at pH 8.1 (0.93 ± 0.07 μF · cm−2) is in agreement with values deduced from measurements using other techniques. However, the capacity was also found to decreased with pH: a minimum value of 0.77 ± 0.01 μF · cm−2 was measured at pH 4.4. The present study was extended to measurements of the effects of the lipid-soluble anion of dipicrylamine on the membrane capacity. At pH 7.2 and dipicrylamine concentration of 1.0 μM, a minimum estimate of the apparent membrane capacity was found to be 2.0 ± 0.2 μF · cm−2, with 2.6 ± 0.2 μF · cm−2 being observed at 5.0 μM concentration. In addition, it was found possible to measure the membrane resistivity (specific resistance) in the presence of either gramicidin (1.0 to 10 nM) or valinomycin (1.0 to 10 μM). In the case of gramicidin, it was possible to derive a maximum estimate of the mean channel conductance, and this agrees very well with the values for individual, single channels that may be deduced from artificial bilayer work. Unless the gramicidin channels in blebs are in fact substantially more conductive than in artificial bilayers, this indicates that a high percentage of the added gramicidin forms channels which are open for most of the time. In the case of valinomycin, a much greater amount had to be added to produce the same reduction of membrane resistivity as seen with a given concentration of gramicidin. However, calculations indicate that the majority of this effect is due to the difference in partioning behaviour of the two ionophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号