首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. We report on a study of reproduction and development in the Mediterranean vermetid gastropod Vermetus triquetrus from the SE coast of Spain. It is a gonochoristic species. The egg capsules are attached to the inside of the shell, and females brood up to 22 capsules simultaneously (more often 4–10). The capsules hold 10–61 eggs or embryos; the uncleaved eggs are yolk-rich, with a mean diameter of 377.3 μm. A distinct polar lobe occurs during the first cleavage, and blastomere D has discernible qualities after the 4-cell stage. The formation of the mesentoblast 4d occurs at the transition from the 24-cell stage to the 25-cell stage. Gastrulation begins after the 36-cell stage. Internal yolk is the major source of nutrition for the encapsulated embryos, but some nurse eggs (∼ 12%) and some sibling larvae are also ingested by the developing embryos. Hatching occurs during the swimming/crawling pediveliger stage, and metamorphosis is completed outside the capsules soon after hatching. Hence, larval development in Vermetus triquetrus is lecithotrophic intracapsular, with a short free-swimming/crawling phase.  相似文献   

2.
Anuran development is usually described using model species, most notably Xenopus laevis and Rana pipiens. We describe the development of the East African Reed Frog, Hyperolius puncticulatus, a species displaying development that is highly divergent from the "classic" anuran developmental pattern. Although having small eggs, the eggs of H. puncticulatus are characterized by a large amount of yolk, and embryonic development is reminiscent of species with large eggs. The eggs are teleolecithal and the cleavage is holoblastic, with a "pseudo-meroblastic" pattern. Gastrulation proceeds primarily at the dorsal lip and is characterized by reduced embryonic cavities. Gastrulation ends with a thickened "embryonic mantle" that sits upon a large yolk mass and forms most of the tissues of the embryo. The embryonic axis curves across the yolk mass, instead of the typical lengthening of anuran embryos. The tadpole hatches with a large ventral yolk mass which is gradually absorbed. We hypothesize about the developmental mechanisms that underlie this unusual development, based on comparisons with other anuran and fish species. We suggest that this type of development is not unique to this species, but can be found in many species of different anuran taxonomic groups. Comparing the development of H. puncticulatus and similar species to what is known about the development of model species, such as X. laevis, shows us the variation in early anuran embryogenesis. Knowing the existing diversity is a prerequisite to understanding the evolution of early anuran development and the changes in patterning mechanisms in different lineages.  相似文献   

3.
The evolutionary origin of the egg stage of animal development presents several difficulties for conventional developmental and evolutionary narratives. If the egg's internal organization represents a template for key features of the developed organism, why can taxa within a given phylum exhibit very different egg types, pass through a common intermediate morphology (the so-called "phylotypic stage"), only to diverge again, thus exemplifying the embryonic "hourglass"? Moreover, if different egg types typically represent adaptations to different environmental conditions, why do birds and mammals, for example, have such vastly different eggs with respect to size, shape, and postfertilization dynamics, whereas all these features are more similar for ascidians and mammals? Here, I consider the possibility that different body plans had their origin in self-organizing physical processes in ancient clusters of cells, and suggest that eggs represented a set of independent evolutionary innovations subsequently inserted into the developmental trajectories of such aggregates. I first describe how "dynamical patterning modules" (DPMs) associations between components of the metazoan developmental-genetic toolkit and certain physical processes and effects may have organized primitive animal body plans independently of an egg stage. Next, I describe how adaptive specialization of cells released from such aggregates could have become "proto-eggs," which regenerated the parental cell clusters by cleavage, conserving the characteristic DPMs available to a lineage. Then, I show how known processes of cytoplasmic reorganization following fertilization are often based on spontaneous, self-organizing physical effects ("egg-patterning processes": EPPs). I suggest that rather than acting as developmental blueprints or prepatterns, the EPPs refine the phylotypic body plans determined by the DPMs by setting the boundary and initial conditions under which these multicellular patterning mechanisms operate. Finally, I describe how this new perspective provides a resolution to the embryonic hourglass puzzle.  相似文献   

4.

Background

Embryos of taxonomically different vertebrates are thought to pass through a stage in which they resemble one another morphologically. This "vertebrate phylotypic stage" may represent the basic vertebrate body plan that was established in the common ancestor of vertebrates. However, much controversy remains about when the phylotypic stage appears, and whether it even exists. To overcome the limitations of studies based on morphological comparison, we explored a comprehensive quantitative method for defining the constrained stage using expressed sequence tag (EST) data, gene ontologies (GO), and available genomes of various animals. If strong developmental constraints occur during the phylotypic stage of vertebrate embryos, then genes conserved among vertebrates would be highly expressed at this stage.

Results

We established a novel method for evaluating the ancestral nature of mouse embryonic stages that does not depend on comparative morphology. The numerical "ancestor index" revealed that the mouse indeed has a highly conserved embryonic period at embryonic day 8.0–8.5, the time of appearance of the pharyngeal arch and somites. During this period, the mouse prominently expresses GO-determined developmental genes shared among vertebrates. Similar analyses revealed the existence of a bilaterian-related period, during which GO-determined developmental genes shared among bilaterians are markedly expressed at the cleavage-to-gastrulation period. The genes associated with the phylotypic stage identified by our method are essential in embryogenesis.

Conclusion

Our results demonstrate that the mid-embryonic stage of the mouse is indeed highly constrained, supporting the existence of the phylotypic stage. Furthermore, this candidate stage is preceded by a putative bilaterian ancestor-related period. These results not only support the developmental hourglass model, but also highlight the hierarchical aspect of embryogenesis proposed by von Baer. Identification of conserved stages and tissues by this method in various animals would be a powerful tool to examine the phylotypic stage hypothesis, and to understand which kinds of developmental events and gene sets are evolutionarily constrained and how they limit the possible variations of animal basic body plans.  相似文献   

5.
In 1828, Karl von Baer proposed a set of four evolutionary "laws" pertaining to embryological development. According to von Baer's third law, young embryos from different species are relatively undifferentiated and resemble one another but as development proceeds, distinguishing features of the species begin to appear and embryos of different species progressively diverge from one another. An expansion of this law, called "the hourglass model," has been proposed independently by Denis Duboule and Rudolf Raff in the 1990s. According to the hourglass model, ontogeny is characterized by a starting point at which different taxa differ markedly from one another, followed by a stage of reduced intertaxonomic variability (the phylotypic stage), and ending in a von-Baer-like progressive divergence among the taxa. A possible "translation" of the hourglass model into molecular terminology would suggest that orthologs expressed in stages described by the tapered part of the hourglass should resemble one another more than orthologs expressed in the expansive parts that precede or succeed the phylotypic stage. We tested this hypothesis using 1,585 mouse genes expressed during 26 embryonic stages, and their human orthologs. Evolutionary divergence was estimated at different embryonic stages by calculating pairwise distances between corresponding orthologous proteins from mouse and human. Two independent datasets were used. One dataset contained genes that are expressed solely in a single developmental stage; the second was made of genes expressed at different developmental stages. In the second dataset the genes were classified according to their earliest stage of expression. We fitted second order polynomials to the two datasets. The two polynomials displayed minima as expected from the hourglass model. The molecular results suggest, albeit weakly, that a phylotypic stage (or period) indeed exists. Its temporal location, sometimes between the first-somites stage and the formation of the posterior neuropore, was in approximate agreement with the morphologically defined phylotypic stage. The molecular evidence for the later parts of the hourglass model, i.e., for von Baer's third law, was stronger than that for the earlier parts.  相似文献   

6.
The early embryonic development of Nematoda proceeds by three ways, which strictly correspond to three phylogenetic lineages. Under the first way the endodermal precursor is localized in the posterior blastomere at the two-cells stage (such a determination is the peculiarity of all the Chromadoria, including Secernentea and Caenorhabditis elegans). Under the second way the endodermal precursor is localized in the anterior blastomere of the egg. This feature is very unusual for Metazoa, but it is the only way of entoderm determination in all the Dorylaimia orders (Mononchida, Mermithida, Trichinellida, Dioctophymida, Dorylaimida). The third way described for the sea Enoplida is characterized with variable location of blastomers and changeable localization of endodermal precursor before eight-cells stage. It is still unknown of these three variants was typical the most recent common ancestor of present Nematoda. D.A. Voronov (2001) produced argument in favour of variable cleavage as primitive one for Nematoda. This opinion is rejected because of the similarity in development between sea Enoplida and C. elegans. Both of them share such features as low-cell gastrula and neurula, identical phylotypic lima bean stage of embryogenesis, identity of some geometrical figures 4 or 8 blastomers, isolating of the endodermal precursor at the eight-cells stage, the lack in development of any plesiomorphous features, which are widely distributed outside Nematoda (under the variable cleavage of Enoplida there are no such locations of blastomers, which are typical for spiral or radial cleavage, there are no embryonic leaves as well). One can see the homology of separate cells at adult Enoplida and Rhabditia. Cell lineage of Triplonchida as far as it is described at Tobrilus gracilis doesn't exclude the hypothesis on their origin from the cleavage similar to one of present Dorylaimia with localization of the endodermal precursor in the anterior blastomere. In view of all the considerations mentioned above one should interpret variable cleavage of Enoplida as derivation from invariant cleavage.  相似文献   

7.
Vertebrate embryos pass through a period of morphological similarity, the phylotypic period. Since Haeckel's biogenetic law of recapitulation, proximate and ultimate evolutionary causes of such similarity of embryos were discussed. We test predictions about changes in phenotypic and genetic variances that were derived from three hypotheses about the evolutionary origin of the phylotypic stage, i.e. random, epigenetic effects, and stabilizing selection. The random hypothesis predicts increasing values for phenotypic variances and stable or increasing values for genetic variances; the epigenetic effects hypothesis predicts declining values for phenotypic variances but stable or increasing values of genetic variances, and the stabilizing selection predicts stable phenotypic variances but decreasing genetic variances. We studied zebrafish as a model species, because it can be bred in large numbers as necessary for a quantitative genetics breeding design. A half-sib breeding scheme provided estimates of additive genetic variances from 11 embryonic characters from 12 through to 24 hr after fertilization, i.e. before, during (15-19 hr), and after the phylotypic period. Because additive genetic variances are size dependent, we calculated narrow-sense heritabilities as a size independent gauge of genetic contributions to the phenotype. The results show declining phenotypic variances and stable heritabilities. In conclusion, we reject the random and the stabilizing selection hypotheses and favor ideas about epigenetic effects that constrain the early embryonic development. Additive genetic variance during the phylotypic stage makes it accessible for evolution, thus explaining in a simple and straightforward way why the phylotypic period differs among vertebrates in timing, duration, and morphologies.  相似文献   

8.
为研究蛋白激酶Cζ (proteinkinaseCζ ,PKCζ)在小鼠受精卵细胞早期发育过程中对胚胎基因组活化影响 ,采用免疫印迹和细胞免疫荧光的方法 ,观察PKCζ的抑制剂对小鼠受精卵 1 细胞期G1和G2 不同时期小鼠受精卵基因组活化的影响 .小鼠 1 细胞期受精卵蛋白激酶C (PKC)的活性不断增加 ,并在G2 期达到最高 .PKC的抑制剂calphostinC可以明显抑制PKC的活性达 4 7% .同时calphostinC对受精卵 1 细胞期基因组的早期活化具有显著的抑制作用 (P <0 0 1) .在小鼠 1 细胞期受精卵的G2 期 ,具有活性的磷酸化PKCζ的含量明显多于G1期和卵母细胞MⅡ期 ,分别比它们高2 7%和 110 % .PKCζ的特异性抑制剂可以抑制受精卵 1 细胞期基因的转录和活化 (P <0 0 5 ) .实验结果表明 ,PKCζ参与了小鼠受精卵基因组早期转录的调控  相似文献   

9.
10.
 The parasitic wasp Copidosoma floridanum represents the most extreme form of polyembryonic development known, forming up to 2000 embryos from a single egg. To understand the mechanisms of embryonic patterning in polyembryonic wasps and the evolutionary changes that led to this form of development we have analyzed embryonic development at the cellular level using confocal and scanning electron microscopy. C. floridanum embryogenesis can be divided into three phases: (1) early cleavage that leads to formation of a primary morula, (2) a proliferative phase that involves partitioning of embryonic cells into thousands of morulae, and (3) morphogenesis whereby individual embryos develop into larvae. This developmental program represents a major departure from typical insect embryogenesis, and we describe several features of morphogenesis unusual for insects. The early development of polyembryonic wasps, which likely evolved in association with a shift in life history to endoparasitism, shows several analogies with mammalian embryogenesis, including early separation of extraembryonic and embryonic cell lineages, formation of a morula and embryonic compaction. However, the late morphogenesis of polyembryonic wasps proceeds in a fashion conserved in all insects. Collectively, this suggests a lack of developmental constraints in early development, but a strong conservation of the phylotypic stage. Received: 27 June 1997 / Accepted: 11 January 1998  相似文献   

11.
We have analyzed the embryonic development of the temnocephalid flatworms Craspedella pedum and Diceratocephala boschmai, using a combination of fuchsin-labeled whole-mount preparation, histology, and transmission electron microscopy. Following the staging system recently introduced for another flatworm species (Mesostoma lingua), we can distinguish eight morphologically defined stages. Temnocephalids produce eggs of the neoophoran type in which a small oocyte is surrounded by a layer of yolk cells. Cleavage takes place in the center of the yolk mass (stages 1-2) and results in an irregular, multilayered disc of mesenchymal cells that moves to the future ventral egg pole (stage 3). Organ primordia, including those of the brain, pharynx, male genital apparatus, sucker, and epidermis "crystallize" within this disc without undergoing gastrulation movements (stage 4). An invagination of the epidermal primordium pushes the embryo back into the center of the yolk ("embryonic invagination"). As a result, organogenesis begins while the embryo is invaginated (stage 5). The brain differentiates into an outer cortex of cell bodies that surround a central neuropile. Precursor cells of the epidermis, pharynx, and protonephridia become organized into epithelia. During stage 6, the embryonic primordium everts back to the surface, where organogenesis and cell differentiation continues. Epidermal cells fuse into a syncytium that expands around the yolk. Myoblasts initially do not spread out in the way epidermal cells do; they remain concentrated in two narrow, longitudinal bands that extend along the sides of the embryo. Three pairs of axon tracts extending posteriorly from the brain follow the bands of myoblasts. Stages 7 and 8 are characterized by the appearance of eye pigmentation, brain condensation, and the formation of tentacles and a sucker that bud out from the epidermis of the anterior and posterior end, respectively. Comparison of morphogenesis in temnocephalids with observations in other flatworm taxa suggests a phylotypic stage for this phylum of invertebrates.  相似文献   

12.
Annual killifish adapted to life in seasonally ephemeral water-bodies exhibit desiccation resistant eggs that can undergo diapause, a period of developmental arrest, enabling them to traverse the otherwise inhospitable dry season. Environmental cues that potentially indicate the season can govern whether eggs enter a stage of diapause mid-way through development or skip this diapause and instead undergo direct development. We report, based on construction of a supermatrix phylogenetic tree of the order Cyprinodontiformes and a battery of comparative analyses, that the ability to produce diapause eggs evolved independently at least six times within African and South American killifish. We then show in species representative of these lineages that embryos entering diapause display significant reduction in development of the cranial region and circulatory system relative to direct-developing embryos. This divergence along alternative developmental pathways begins mid-way through development, well before diapause is entered, during a period of purported maximum developmental constraint (the phylotypic period). Finally, we show that entering diapause is accompanied by a dramatic reduction in metabolic rate and concomitant increase in long-term embryo survival. Morphological divergence during the phylotypic period thus allows embryos undergoing diapause to conserve energy by shunting resources away from energetically costly organs thereby increasing survival chances in an environment that necessitates remaining dormant, buried in the soil and surrounded by an eggshell for much of the year. Our results indicate that adaptation to seasonal aquatic environments in annual killifish imposes strong selection during the embryo stage leading to marked diversification during this otherwise conserved period of vertebrate development.  相似文献   

13.
Gastrulation in the maximum direct developing ascidian Molgula pacifica is highly modified compared with commonly studied "model" ascidians in that endoderm cells situated in the vegetal pole region do not undergo typical invagination and due to the absence of a typical blastopore the involution of mesoderm cells is highly modified. At the gastrula stage, embryos are comprised of a central cluster of large yolky cells that are surrounded by a single layer of ectoderm cells in which there is only a slight indication of an inward movement of cells at the vegetal pole. As a consequence, these embryos do not form an archenteron. In the present study, ultraviolet (UV) irradiation of fertilized eggs tested the possibility that cortical cytoplasmic factors are required for gastrulation, and blastomere isolation experiments tested the possibility that cell signaling beginning at the two-cell stage may be required for the development of the gastrula. Irradiation of unoriented fertilized eggs with UV light resulted in late cleavage stage embryos that failed to undergo gastrulation. When blastomeres were isolated from two-cell embryos, they developed into late cleavage stage embryos; however, they did not undergo gastrulation and subsequently develop into juveniles. These results suggest that cytoplasmic factors required for gastrulation are localized in the egg cortex, but in contrast to previously studied indirect developers, these factors are not exclusively localized in the vegetal pole region at the first stage of ooplasmic segregation. Furthermore, the inability of embryos derived from blastomeres isolated at the two-cell stage to undergo gastrulation and develop into juveniles suggests that important cell signaling begins as early as the two-cell stage in M. pacifica. These results are discussed in terms of the evolution of maximum direct development in ascidians.  相似文献   

14.
Amphibian eggs have been widely used to study embryonic development. Early embryonic development is driven by maternally stored factors accumulated during oogenesis. In order to study roles of such maternal factors in early embryonic development, it is desirable to manipulate their functions from the very beginning of embryonic development. Conventional ways of gene interference are achieved by injection of antisense oligonucleotides (oligos) or mRNA into fertilized eggs, enabling under- or over-expression of specific proteins, respectively. However, these methods normally require more than several hours until protein expression is affected, and, hence, the interference of gene functions is not effective during early embryonic stages. Here, we introduce an experimental system in which expression levels of maternal proteins can be altered before fertilization. Xenopus laevis oocytes obtained from ovaries are defolliculated by incubating with enzymes. Antisense oligos or mRNAs are injected into defolliculated oocytes at the germinal vesicle (GV) stage. These oocytes are in vitro matured to eggs at the metaphase II (MII) stage, followed by intracytoplasmic sperm injection (ICSI). By this way, up to 10% of ICSI embryos can reach the swimming tadpole stage, thus allowing functional tests of specific gene knockdown or overexpression. This approach can be a useful way to study roles of maternally stored factors in early embryonic development.  相似文献   

15.
Capelin (Mallotus villosus) displays alternative reproductive modes throughout its circumpolar distribution. This predicts divergent thermohaline tolerance of eggs because they are incubated in either a steady offshore or variable intertidal environment. We investigate herein thermohaline tolerance of eggs from the offshore spawning Barents Sea capelin. Subsequently, we compare our data with those previously published on other offshore and intertidal spawning capelin populations across the Northeast Atlantic Ocean, with the aim of determining possible patterns in the thermohaline tolerance of eggs from the alternative reproductive modes. In a 2?×?4 factorial design various combinations of salinities and temperatures had only negligible effect on the survival of eggs until first hatch. The embryonic development rate from fertilisation until first hatch across populations and between the two reproductive modes suggested non-local thermohaline tolerance towards the physical factors during development. Finally, no differences were observed in salinity tolerance from fertilisation to first hatch between populations representing different reproductive modes. The present findings demonstrate wide thermohaline tolerance of capelin eggs regardless of population origin and reproductive mode.  相似文献   

16.
The concept of a phylotypic stage, when all vertebrate embryos show low phenotypic diversity, is an important cornerstone underlying modern developmental biology. Many theories involving patterns of development, developmental modules, mechanisms of development including developmental integration, and the action of natural selection on embryological stages have been proposed with reference to the phylotypic stage. However, the phylotypic stage has never been precisely defined, or conclusively supported or disproved by comparative quantitative data. We tested the predictions of the 'developmental hourglass' definition of the phylotypic stage quantitatively by looking at the pattern of developmental-timing variation across vertebrates as a whole and within mammals. For both datasets, the results using two different metrics were counter to the predictions of the definition: phenotypic variation between species was highest in the middle of the developmental sequence. This surprising degree of developmental character independence argues against the existence of a phylotypic stage in vertebrates. Instead, we hypothesize that numerous tightly delimited developmental modules exist during the mid-embryonic period. Further, the high level of timing changes (heterochrony) between these modules may be an important evolutionary mechanism giving rise to the diversity of vertebrates. The onus is now clearly on proponents of the phylotypic stage to present both a clear definition of it and quantitative data supporting its existence.  相似文献   

17.
The evolution of development required few new features not already present in the eukaryotic cell, as exemplified by the cell cycle. Moreover, the protozoa possess many features of spatial organization and regulation present in metazoan embryos.
The earliest multicellular organism could have been reproduced by a stem cell mechanism or by fission, the latter requiring cell-to-cell interactions that may have favoured cell-interactions and regulation. Regeneration can be considered as a meta-phenomenon related to asexual reproduction and retention of embryonic characters. The origin of embryonic structures like the gastrula may be accounted for in terms of Haeckel's 'Gastrea' theory. Mechanisms based on selection at the level of cell lineage are rejected.
It is not clear what selective forces act on development itself, as distinct from the requirement for reliably producing a functional orgainsm. There is, for example, a major problem why gastrulation should be so variable in related animals. Selection for rate of development in relation to energy utilization may play a role. If many variants are neutral this may facilitate the evolution of novelty.
In general terms there is a requirement for a continuity principle for the evolution of each form in development. Most groups pass through a phylotypic stage with considerable diversity before and after.  相似文献   

18.
SUMMARY During development vertebrate embryos pass through a stage where their morphology is most conserved between species, the phylotypic period (approximately the pharyngula). To explain the resistance to evolutionary changes of this period, one hypothesis suggests that it is characterized by a high level of interactions. Based on this hypothesis, we examined protein–protein interactions, signal transduction cascades and miRNAs over the course of zebrafish development, and the conservation of expression of these genes in mouse development. We also investigated the characteristics of genes highly expressed before or during the presumed phylotypic period. We show that while there is a high diversity of interactions during the phylotypic period (protein–DNA, RNA–RNA, cell–cell, and between tissues), which is well conserved with mouse, there is no clear difference with later, more morphologically divergent, stages. We propose that the phylotypic period may rather be the expression at the morphological level of strong conservation of molecular processes earlier in development.  相似文献   

19.
中华稻蝗的胚胎发育及卵滞育发生的胚胎发育阶段   总被引:2,自引:0,他引:2  
崔双双  朱道弘 《昆虫知识》2011,48(4):845-853
为弄清中华稻蝗Oxya chinensis(Thunberg)卵滞育发生的胚胎发育阶段,观察了其胚胎发育过程,检测了中华稻蝗铁岭、济南、长沙及儋州种群产卵后卵粒含水量的变化规律和胚胎发育的停滞时期.根据胚胎形态,自原头与原颚胸折叠的胚胎发育阶段开始,将中华稻蝗的胚胎发育过程划分为11个阶段.在25℃的温度条件下,4个地...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号