首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure of the human erythrocyte facilitative glucose transporter (GLUT1) has been intensively investigated using a wide array of chemical and biophysical approaches. Despite the lack of a crystal structure for any of the facilitative monosaccharide transport proteins, detailed information regarding primary and secondary structure, membrane topology, transport kinetics, and functionally important residues has allowed the construction of a sophisticated working model for GLUT1 tertiary structure. The existing data support the formation of a central aqueous channel formed by the juxtaposition of several amphipathic transmembrane-spanning α-helices. The results of extensive mutational analysis of GLUT1 have elucidated many of the structural determinants of the glucose permeation pathway. Continued application of currently available technologies will allow further refinement of this working model. In addition to providing insights into the molecular basis of both normal and disordered glucose homeostasis, this detailed understanding of structure/function relationships within GLUT1 can provide a basis for understanding transport carried out by othermembers of the major facilitator super family.  相似文献   

2.
A family of structurally related intrinsic membrane proteins (facilitative glucose transporters) catalyzes the movement of glucose across the plasma membrane of animal cells. Evidence indicates that these proteins show a common structural motif where approximately 50% of the mass is embedded in lipid bilayer (transmembrane domain) in 12 alpha-helices (transmembrane helices; TMHs) and accommodates a water-filled channel for substrate passage (glucose channel) whose tertiary structure is currently unknown. Using recent advances in protein structure prediction algorithms we proposed here two three-dimensional structural models for the transmembrane glucose channel of GLUT1 glucose transporter. Our models emphasize the physical dimension and water accessibility of the channel, loop lengths between TMHs, the macrodipole orientation in four-helix bundle motif, and helix packing energy. Our models predict that five TMHs, either TMHs 3, 4, 7, 8, 11 (Model 1) or TMHs 2, 5, 11, 8, 7 (Model 2), line the channel, and the remaining TMHs surround these channel-lining TMHs. We discuss how our models are compatible with the experimental data obtained with this protein, and how they can be used in designing new biochemical and molecular biological experiments in elucidation of the structural basis of this important protein function.  相似文献   

3.
To investigate the tissue distribution of the GLUT3 glucose transporter isoform in human tissue we produced affinity purified antibodies to the COOH terminus of the human GLUT3. Both antibodies recognize a specific GLUT3 band in oocytes injected with GLUT3 mRNA but not in those injected with H2O or GLUT1, 2, 4, 5 mRNA. This immunoreactive band in GLUT3 injected oocytes is photolabelled by cytochalasin-B in the presence of L- but not D-glucose indicating that it is a glucose transporter. A high cross reactivity between the human GLUT3 antibodies and a 43 kDa cytoskeletal actin band was identified in all oocyte lysates and many human tissues. However, the specific GLUT3 band could be distinguished from the actin band by carbonate treatment which preferentially solubilized the actin band. Using these antibodies we show that GLUT3 is present as a 45-48 kDa protein in human brain with lower levels detectable in heart, placenta, liver and a barely detectable level in kidney. No GLUT3 was detected in membranes from any of 3 skeletal muscle groups investigated. We conclude that a major role of GLUT3 in humans is as the brain neuronal glucose transporter.  相似文献   

4.
Summary Two isoforms of facilitative glucose transporters (GLUT), namely the erythroid/brain-type GLUT 1 and the liver-type GLUT 2, were demonstrated in native cryostat sections of normal rat liver and brain by immunofluorescence and a very sensitive immunoalkaline phosphatase reaction. Fixation with 0.1% alcoholic periodic acid resulted in an excellent localization of GLUT 2 in liver and GLUT 1 in brain. GLUT 1 in liver, however, could successfully be demonstrated after fixation with 1% alcoholic formaldehyde. GLUT 2 occurred in all hepatocytes as a basolateral membrane protein with a gradient of high expression in the periportal area and a lower one in the perivenous part. The first layer of hepatocytes adjacent to the hepatic vein coexpressed GLUT 1. In addition, GLUT 1 could be detected in the smooth muscle layer of the portal vein and in the apical and lateral plasma membrane of the bile duct epithelium. In brain, GLUT 1 showed a high expression in the microvessels, the ependym and in the basal plasma membrane of choroid plexus epithelial cells. The blood capillaries associated with the choroidal epithelium were, however, negative for GLUT 1. The importance of the new findings in this study for the physiological role of the respective facilitative glucose transport proteins is discussed.  相似文献   

5.
Glucose metabolism is vital to most mammalian cells, and the passage of glucose across cell membranes is facilitated by a family of integral membrane transporter proteins, the GLUTs. There are currently 14 members of the SLC2 family of GLUTs, several of which have been the focus of this series of reviews. The subject of the present review is GLUT3, which, as implied by its name, was the third glucose transporter to be cloned (Kayano T, Fukumoto H, Eddy RL, Fan YS, Byers MG, Shows TB, Bell GI. J Biol Chem 263: 15245-15248, 1988) and was originally designated as the neuronal GLUT. The overriding question that drove the early work on GLUT3 was why would neurons need a separate glucose transporter isoform? What is it about GLUT3 that specifically suits the needs of the highly metabolic and oxidative neuron with its high glucose demand? More recently, GLUT3 has been studied in other cell types with quite specific requirements for glucose, including sperm, preimplantation embryos, circulating white blood cells, and an array of carcinoma cell lines. The last are sufficiently varied and numerous to warrant a review of their own and will not be discussed here. However, for each of these cases, the same questions apply. Thus, the objective of this review is to discuss the properties and tissue and cellular localization of GLUT3 as well as the features of expression, function, and regulation that distinguish it from the rest of its family and make it uniquely suited as the mediator of glucose delivery to these specific cells.  相似文献   

6.
The human facilitative transporter Glut1 is the major glucose transporter present in all human cells, has a central role in metabolism, and is an archetype of the superfamily of major protein facilitators. Here we describe a three-dimensional structure of Glut1 based on helical packing schemes proposed for lactose permease and Glut1 and predictions of secondary structure, and refined using energy minimization, molecular dynamics simulations, and quality and environmental scores. The Ramachandran scores and the stereochemical quality of the structure obtained were as good as those for the known structures of the KcsA K(+) channel and aquaporin 1. We found two channels in Glut1. One of them traverses the structure completely, and is lined by many residues known to be solvent-accessible. Since it is delimited by the QLS motif and by several well conserved residues, it may serve as the substrate transport pathway. To validate our structure, we determined the distance between these channels and all the residues for which mutations are known. From the locations of sugar transporter signatures, motifs, and residues important to the transport function, we find that this Glut1 structure is consistent with mutagenesis and biochemical studies. It also accounts for functional deficits in seven pathogenic mutants.  相似文献   

7.
The structure of the human erythrocyte facilitative glucose transporter (GLUT1) has been intensively investigated using a wide array of chemical and biophysical approaches. Despite the lack of a crystal structure for any of the facilitative monosaccharide transport proteins, detailed information regarding primary and secondary structure, membrane topology, transport kinetics, and functionally important residues has allowed the construction of a sophisticated working model for GLUT1 tertiary structure. The existing data support the formation of a central aqueous channel formed by the juxtaposition of several amphipathic transmembrane-spanning alpha-helices. The results of extensive mutational analysis of GLUT1 have elucidated many of the structural determinants of the glucose permeation pathway. Continued application of currently available technologies will allow further refinement of this working model. In addition to providing insights into the molecular basis of both normal and disordered glucose homeostasis, this detailed understanding of structure/function relationships within GLUT1 can provide a basis for understanding transport carried out by other members of the major facilitator superfamily.  相似文献   

8.
We have examined whether GLUT-10 and GLUT-12, members of the Class III group of the recently expanded family of facilitative glucose transporters, are expressed in adipose tissues. The mouse GLUT-12 gene, located on chromosome 10, comprises at least five exons and encodes a 622 amino acid protein exhibiting 83% sequence identity and 91% sequence similarity to human GLUT-12. Expression of the GLUT-12 gene was evident in all the major mouse adipose tissue depots (epididymal, perirenal, mesenteric, omental, and subcutaneous white; interscapular brown). The GLUT-10 gene is also expressed in mouse adipose tissues and as with GLUT-12 expression occurred in the mature adipocytes as well as the stromal vascular cells. 3T3-L1 adipocytes express GLUT-10, but not GLUT-12, and expression of GLUT-12 was not induced by insulin or glucose. Both GLUT-10 and GLUT-12 expression was also found in human adipose tissue (subcutaneous and omental) and SGBS adipocytes. It is concluded that white fat expresses a wide range of facilitative glucose transporters.  相似文献   

9.
10.
This brief review is focused on the short-term regulation of the facilitative glucose transporter GLUT1 in megakaryocytic cells M07e. The effects of cytokines such as TPO, GM-CSF and SCF and of a low dose of H202 on the transport activity and its kinetic parameters are compared. The possible mechanisms and the signalling pathways involved in the glucose uptake activation are discussed. A role for the cellular redox status in glucose uptake control, possibly related to the status of redox-sensitive enzymes such as tyrosine phosphatases, is suggested.  相似文献   

11.
In this study we report the cloning and characterisation of the mouse Glut12 gene and examine for the first time its expression pattern in the earliest stages of development. Mouse Glut12 (mGlut12) was cloned from preimplantation embryos by 5'RACE RT-PCR using primers designed from an EST clone corresponding to a human GLUT12 antigenic sequence after positive immunoreactivity was observed in mouse two-cell embryos by western immunoblotting. The mGlut12 gene contains an open reading frame of 1869 base pairs, potentially encoding a polypeptide of 622 amino acids. The predicted mGLUT12 protein bears all the hallmarks of the SLC2A family of hexose transporters and shares an 83% sequence homology to human GLUT12. Consistent with its human homolog mGlut12 mRNA is found highly expressed in skeletal and cardiac muscle and fat. Additionally, it was also found in the uterus and during early embryogenesis. During early development in the mouse, Glut12 expression is clearly apparent in ovulated oocytes and two-cell embryos but declines in day 3 morulae. With the exception of some Glut12 expression apparent in blastocysts, Glut12 mRNA remains at low to undetectable levels until E11.  相似文献   

12.
Hruz PW  Mueckler MM 《Biochemistry》2000,39(31):9367-9372
The glucose permeation pathway within the GLUT1 facilitative glucose transporter is hypothesized to be formed by the juxtaposition of the hydrophilic faces of several transmembrane alpha-helices. The role of transmembrane segment 11 in forming a portion of this central aqueous channel was investigated using cysteine-scanning mutagenesis in conjunction with sulfhydryl-directed chemical modification. Each of the amino acid residues within transmembrane segment 11 were individually mutated to cysteine in an engineered GLUT1 molecule devoid of all native cysteines (C-less). Measurement of 2-deoxyglucose uptake in a Xenopus oocyte expression system revealed that all of these mutants retain measurable transport activity. Four of the cysteine mutants (N411, W412, N415, and F422) had significantly reduced specific activity relative to the C-less protein. Specific activity was increased in five of the mutants (A402, A405, V406, F416, and M420). The solvent accessibility and relative orientation of the residues to the glucose permeation pathway were investigated by determining the sensitivity of the mutant transporters to inhibition by the sulfhydryl-directed reagent p-chloromercuribenzenesulfonate (pCMBS). Cysteine replacement at five positions (I404, G408, F416, G419, and M420) produced transporters that were inhibited by incubation with extracellular pCMBS. All of these residues cluster along a single face of the alpha-helix within the regions showing altered specific activities. These data demonstrate that the exofacial portion of transmembrane segment 11 is accessible to the external solvent and provide evidence for the positioning of this alpha-helix within or near the glucose permeation pathway.  相似文献   

13.
Based on homology with GLUT1-5, we have isolated a cDNA for a novel glucose transporter, GLUTX1. This cDNA encodes a protein of 478 amino acids that shows between 29 and 32% identity with rat GLUT1-5 and 32-36% identity with plant and bacterial hexose transporters. Unlike GLUT1-5, GLUTX1 has a short extracellular loop between transmembrane domain (TM) 1 and TM2 and a long extracellular loop between TM9 and TM10 that contains the only N-glycosylation site. When expressed in Xenopus oocytes, GLUTX1 showed strong transport activity only after suppression of a dileucine internalization motif present in the amino-terminal region. Transport activity was inhibited by cytochalasin B and partly competed by D-fructose and D-galactose. The Michaelis-Menten constant for glucose was approximately 2 mM. When translated in reticulocytes lysates, GLUTX1 migrates as a 35-kDa protein that becomes glycosylated in the presence of microsomal membranes. Western blot analysis of GLUTX1 transiently expressed in HEK293T cells revealed a diffuse band with a molecular mass of 37-50 kDa that could be converted to a approximately 35-kDa polypeptide following enzymatic deglycosylation. Immunofluorescence microscopy detection of GLUTX1 transfected into HEK293T cells showed an intracellular staining. Mutation of the dileucine internalization motif induced expression of GLUTX1 at the cell surface. GLUTX1 mRNA was detected in testis, hypothalamus, cerebellum, brainstem, hippocampus, and adrenal gland. We hypothesize that, in a similar fashion to GLUT4, in vivo cell surface expression of GLUTX1 may be inducible by a hormonal or other stimulus.  相似文献   

14.
Reconstitution of the glucose transporter from bovine heart   总被引:1,自引:0,他引:1  
Reconstitution of the glucose transporter from heart should be useful as an assay in its purification and in the study of its regulation. We have prepared plasma membranes from bovine heart which display D-glucose reversible binding of cytochalasin B (33 pmol sites/mg protein; Kd = 0.2 muM). The membrane proteins were reconstituted into liposomes by the freeze-thaw procedure. Reconstituted liposomes showed D-glucose transport activity which was stereospecific, saturable and inhibited by cytochalasin B, phloretin, and mercuric chloride. Compared to membrane proteins reconstituted directly, proteins obtained by dispersal of the membranes with low concentrations of cholate or by cholate solubilization showed 1.2- or 2.3-fold higher specific activities for reconstituted transport, respectively. SDS-polyacrylamide gel electrophoresis followed by electrophoretic protein transfer and labeling with antisera prepared against the human erythrocyte transporter identified a single band of about 45 kDa in membranes from both dog and bovine hearts, a size similar to that reported for a number of other glucose transporters in various animals and tissues.  相似文献   

15.
We show that D- but not L-hexoses modulate the accumulation of radioactive vinblastine in injected Xenopus laevis oocytes expressing the murine Mdr1b P-glycoprotein. We also show that X. laevis oocytes injected with RNA encoding the rat erythroid/brain glucose transport protein (GLUT1) and expressing the corresponding functional transporter exhibit a lower accumulation of [3H]vinblastine and show a greater capacity to extrude the drug than do control oocytes not expressing the rat GLUT1 protein. Cytochalasin B and phloretin, two inhibitors of the mammalian facilitative glucose transporters, can overcome the reduced drug accumulation conferred by expression of the rat GLUT1 protein in Xenopus oocytes but have no significant effect on the accumulation of drug by Xenopus oocytes expressing the mouse Mdr1b P-glycoprotein. These drugs also increase the accumulation of [3H]vinblastine in multidrug-resistant Chinese hamster ovary cells. Cytochalasin E, an analog of cytochalasin B that does not affect the activity of the facilitative glucose transporter, has no effect on the accumulation of vinblastine by multidrug-resistant Chinese hamster cells or by oocytes expressing either the mouse Mdr1b P-glycoprotein or the GLUT1 protein. In all three cases, the drug verapamil produces a profound effect on the cellular accumulation of vinblastine. Interestingly, although immunological analysis indicated the presence of massive amounts of P-glycoprotein in the multidrug-resistant cells, immunological and functional studies revealed only a minor increase in the expression of a hexose transporter-like protein in resistant versus drug-sensitive cells. Taken together, these results suggest the participation of the mammalian facilitative glucose transporter in the development of drug resistance.  相似文献   

16.
17.
In recent years, successful examples of antisense oligonucleotide (AS) therapy for genetic diseases have stimulated scientists to investigate its application on cancer diseases. AS can be used to down-regulate the mRNA and protein expression by annealing to specific region of the target mRNA which is responsible for the malignancy. Glucose transporter 5 (Glut5) is a tissue specific transporter that can be found on breast cancer tissues but not on normal breast tissues. Therefore, it is of clinical interest to investigate whether AS against Glut5 mRNA can tackle breast cancer. In this study, two cell lines, MCF-7 which is estrogen-receptor positive and MDA-MB-231 which is estrogen-receptor negative, were used to mimic breast cancer tissues at early and late stages, respectively. A 15-base sequence around the start codon of Glut5 was used. It was found that AS against Glut5 exerted anti-proliferative effect on both of these two breast tumor cell lines and seemed to exert its effect via the suppression of expression of Glut5 proteins in the cells. AS against Glut5 exhibited no effect on human hepatoma HepG2 cells which do not possess any Glut5. The results imply an alternative way in treating breast tumor as the AS against Glut5, unlike tamoxifen, takes effect on breast tumor cells via suppressing the expression of Glut5 that they specifically possess, and regardless whether the breast tumors are estrogen dependent or not.  相似文献   

18.
Analysis of glucose transporter mRNA levels in adipose tissue from streptozotocin (STZ)-induced diabetic rats demonstrated a specific decrease (10-fold) in adipose tissue GLUT-4 mRNA with no significant effect on GLUT-1 mRNA levels. Treatment of STZ-diabetic rats with twice daily injections of insulin for 1-3 days resulted in a 16-fold increase in the relative amount of GLUT-4 mRNA to levels approximately 2-fold greater than those in control animals. However, after 7 days of insulin therapy the amount of GLUT-4 mRNA decreased approximately 2-fold back to the levels in the control animals. Normalization of the STZ-induced serum hyperglycemia by phlorizin treatment, which inhibits renal tubular reabsorption of glucose, had no effect on GLUT-4 mRNA in the absence of insulin. Similar to STZ-diabetes, fasting for 48 h also reduced adipose GLUT-4 mRNA levels. Parenteral administration of insulin with glucose over 7.5 h, but not glucose alone, increased the levels of the GLUT-4 mRNA 3- to 4-fold. These studies demonstrate that the relative glycemic state does not influence GLUT-4 glucose transporter mRNA expression in vivo and strongly suggests that insulin is a major factor regulating the levels of GLUT-4 mRNA in adipose tissue.  相似文献   

19.
Bacterial glucokinase (GK) binds to purified, human erythrocyte glucose transporter (GT) reconstituted in vesicles. The binding is largely abolished if GT is predigested with trypsin, indicating that GK binds to the cytoplasmic domain of GT. The binding is a saturable function of GK concentration showing two distinct affinities with apparent KD of 0.33 and 5.1 μM. The binding is stimulated by an increasing concentration of ADP with the 50% maximal effect at 5 mM. Glucose-6-phosphate (G6P) also stimulates the binding with a distinct optimum at 25 mM. The binding is stimulated only slightly by ATP. D-glucose has no affect on the binding. KCl enhances the binding with the maximal effect at physiological intracellular concentrations. The binding is sensitive to changes in pH with an optimum at pH 4. The binding causes no detectable functional change in GT. However, the enzymatic activity of GK measured at nanomolar concentrations of GK is significantly greater in the presence of GT vesicles than in its absence or in the presence of protein-free vesicles, indicating that GK interacts with GT at this low concentration range with an apparent KD of 10 mM. Although its physiological significance is not known, the GK-GT interaction in vitro described here suggests that these two proteins may also interact in the cell and regulate carbohydrate metabolism. © 1993 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号