首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Somatosensory evoked potentials (SEPs) in the vicinity of the dorsal column nuclei in response to electrical stimulation of the median nerve (MN) and posterior tibial nerve (PTN) were studied by analyzing the wave forms, topographical distribution, effects of higher rates of stimulation and correlation with components of the scalp-recorded SEPs. Recordings were done on 4 patients with spasmodic torticollis during neurosurgical operations for microvascular decompression of the eleventh nerve. The dorsal column SEPs to MN stimulation (MN-SEPs) were characterized by a major negative wave (N1; 13 msec in mean latency), preceded by a small positivity (P1) and followed by a large positive wave (P2). Similar wave forms (P1′-N1′-P2′) were obtained with stimulation of PTN (PTN-SEPs), with a mean latency of N1′ being 28 msec. Maximal potentials of MN-SEPs and PTN-SEPs were located in the vicinity of the ipsilateral cuneate and gracile nuclei, respectively, at a level slightly caudal to the nuclei. The latencies of P1 and N1 increased progressively at more rostral cervical cord segments and medulla, but that of P2 did not. A higher rate of stimulation (16 Hz) caused no effects on P1 and N1, while it markedly attenuated the P2 component. These findings suggest that P1 and N1 of MN-SEPs, as well as P1′ and N1′ of PTN-SEPs, are generated by the dorsal column fibers, and P2 and P2′ are possibly of postsynaptic origin in the respective dorsal column nuclei.The peak latency of N1 recorded on the cuneate nucleus was identical with the scalp-recorded far-field potential of P13–14 in all patients, while no scalp components were found which corresponded to P2. These findings support the previous assumption that the scalp-recorded P13–14 is generated by the presynaptic activities of the dorsal column fibers at their terminals in the cuneate nucleus.  相似文献   

2.
Somatosensory evoked potentials (SEPs) to unilateral or bilateral posterior tibial nerve (PTN) stimulation and to stimulation of the dorsal nerve (DN) of the penis / clitoris were recorded on 32 channels in 10 volunteers. SEPs to unilateral PTN stimulation consisted of the classic ‘W’ complex P38-N45-P56-N75 maximal on the ipsilateral central and parietal leads, and two negative waves, N33 and N37, maximal on the contralateral post- and prerolandic areas, respectively. A lemniscal P30 was also recorded. Bilateral PTN stimulation caused, by algebraic summation, the disappearance of both N33 and N37; the W complex was symmetrical and the amplitude of P30 increased. The SEPs to DN stimulation were also symmetrical, and N33 and N37 were absent. These features can be explained by the bilateral character of DN stimulation. They also differed from bilateral PTN SEPs in 3 respects; the absence of P30, the small amplitude and the weaker gradients of field distribution of the ‘W’ complex, and the somewhat different distribution of penile from clitoral or bilateral PTN, N45 and P56. These differences can be explained both by physiological (the different fiber composition of the DN) and anatomical (the deeper localization of the DN cortical receiving area) mechanisms.  相似文献   

3.
SEPs were elicited by stimulation of the dorsal penile nerve (DPN) or posterior tibial nerve (PTN) under 3 conditions of stimulation: random and constant interstimulus intervals, and subject-initiated stimulation. Within these conditions, the effects of repeated stimulation were also examined. The latency of the N90 peak decreased with repeated stimulation. N90 amplitude decreased with increased foreknowledge as well as with repeated stimulation. Factors extracted by principal components analysis revealed similar effects. A difference between DPN and PTN stimulation was seen in a factor associated with the N90 peak, wherein the condition involving subject self-initiation of the stimulus reflected a significantly greater decrease in SEP amplitude when the DPN was stimulated. Morphological commonalities were observed in the SEPs elicited by DPN and PTN for a given subject.  相似文献   

4.
To investigate the dual nature of the posterior neck N13 potential, we attempted to establish the presence of a latency dissociation between caudal (cN13) and rostral (rN13) potentials on stimulating the ulnar nerve, in view of its lower radicular entry compared to the median nerve. SEPs were evaluated in 24 normal subjects after both median and ulnar nerve stimulation. cN13 was prominent in the lower cervical segments, and rN13 was localized mainly in the upper ones using anteroposterior and longitudinal bipolar montage, respectively. The N9-cN13 interpeak latency did not differ significantly from N9-rN13 when stimulating the median nerve. On the other hand, the N9-rN13 interpeak was significantly longer than the N9-cN13 interpeak when the ulnar nerve was stimulated. The rN13 presented the same latency as P13-P14 far-field potentials in 17 out of 24 ulnar nerves tested. Therefore, the ulnar nerve stimulation evokes two distinct posterior neck N13 potentials. It is widely accepted that the caudal N13 is a postsynaptic potential reflecting the activity of the dorsal horn interneurons in the lower cervical cord. We suggest that the rostral N13 is probably generated close to the cuneate nucleus, which partly contributes to the genesis of P13-P14 far-field potentials.  相似文献   

5.
The neural generators of the somatosensory evoked potentials (SEPs) elicited by electrical stimulation of the median nerve were studied in man and in rhesus monkeys. Recordings from the cuneate nucleus were compared to the far-field potentials recorded from electrodes placed on the scalp. It was found that the shape of the response from the surface of the human cuneate nucleus to stimulation of the median nerve is similar to that of the response recorded more caudally in the dorsal column, i.e., an initially small positivity followed by a negative wave that is in turn followed by a slow positive wave. The beginning of the negative wave coincides in time with the N14 peak in the SEP recorded from the scalp, and its latency is 13 msec. The response from the cuneate nucleus in the rhesus monkey has a similar shape and its negative peak appears with the same latency as the positive peak in the vertex response that has a latency of 4.5 msec; the peak negativity has a latency of about 6 msec and thus coincides with P6.2 in the vertex recording. Depth recordings from the cuneate nucleus and antidromic stimulation of the dorsal column fibers in the monkey provide evidence that the early components of the response from the surface of the cuneate nucleus are generated by the dorsal column fibers that terminate in the nucleus.The results support the hypothesis that the P14 peak in the human SEP is generated by the termination of the dorsal column fibers and that the cuneate nucleus itself contributes little to the far-field potentials.  相似文献   

6.
This study examines how the recording of the lumbar and subcortical components of the posterior tibial nerve (PTN) SEPs may usefully replace that of cortical components in situations in which these components cannot be reliably obtained (infants, high concentrations of halogenated gasses). Lumbar, brain-stem, and cortical PTN SEPs were intraoperatively monitored in 7 patients undergoing repair of aortic coarctation under variable isoflurane concentration (up to 1.2%). Four patients were less than 1 year old. Two distinct activities were evidenced at the lumbar level in all of the patients: the dorsal root component (DRC) and the dorsal horn negativity (DHN). The equivalent of the adult P30 (lemniscal positivity; LP) was also present in all of the patients, whatever their age or the concentration of isoflurane. By contrast, the parietal activities were absent intraoperatively in the youngest patients. Spinal-cord ischemia consecutive to aortic cross-clamping gave rise to early DHN changes and later alterations of the LP in the two patients in which it occurred, while the DRC and the peripheral nerve activities remained unchanged. This elective sensitivity of the DHN is likely due to it being dependent on the gray matter of the spinal cord, the basal metabolism of which is greater than that of the white matter and to the situation of the DHN generator in a watershed zone of the spinal cord. This study emphasizes the interest of PTN SEPs for spinal-cord monitoring in vascular surgery and the importance of combining the recording of parietal activities with that of the lumbar spinal components.  相似文献   

7.
Peroneal somatosensory evoked potentials (SEPs) were performed on 23 normal subjects and 9 selected patients with unilateral hemispheric lesions involving somatosensory pathways.Recording obtained from right and left peroneal nerve (PN) stimulations were compared in all subjects, using open and restricted frequency bandpass filters. Restricted filter (100–3000 Hz) and linked ear reference (A1–A2) enhanced the detection of short latency potentials (P1, P2, N1 with mean peak latency of 17.72, 21.07, 24.09) recorded from scalp electrodes over primary sensory cortex regions. Patients with lesions in the parietal cortex and adjacent subcortical areas demonstrated low amplitude and poorly formed short latency peroneal potentials, and absence of components beyond P3 peak with mean latency of 28.06 msec. In these patients, recordings to right and left median nerve (MN) stimulation showed absence or distorted components subsequent to N1 (N18) potential.These observations suggest that components subsequent to P3 potential in response to PN stimulation, and subsequent to N18 potential in response to MN stimulation, are generated in the parietal cortical regions.  相似文献   

8.
Somatosensory evoked potentials (SEPs) to median and posterior tibial nerve stimulation were studied in 160 subjects aged 20–90 years. Height was highly correlated with latencies of spinal and cortical SEPs (N13, N20, N22, and P40). Although tibial central conduction (N22-P40) was also highly correlated with height, median conduction (N13–N22) was not correlated with the latter.Multiple correlation and regression analysis showed that except for the median N13–N20 latency, height provided the best prediction of the remaining SEP latencies. Age alone was not correlated with SEP latencies, but its significance was observed when age and height were considered together as the predictors. Effects of age and height on SEP latencies were independent of gender.The present data indicate that except for the N13–N20 conduction, height is the most important parameter for SEP latencies and can be used for construction of normograms.  相似文献   

9.
Previous studies have shown that the somatosensory evoked potentials (SEPs) recorded from the scalp are modified or gated during motor activity in man. Animal studies show corticospinal tract terminals in afferent relays, viz. dorsal horn of spinal cord, dorsal column nuclei and thalamus. Is the attenuation of the SEP during movement the result of gating in subcortical nuclei? This study has investigated the effect of manipulation and fractionated finger movements of the hand on the subcortically generated short latency SEPs in 9 healthy subjects. Left median nerve SEPs were recorded with electrodes optimally placed to record subcortical activity with the least degree of contamination. There was no statistically significant change in amplitude or latency of the P9, N11, N13, P14, N18 and N20 potentials during rest or voluntary movement of the fingers of the left hand or manipulation of objects placed in the hand. The shape of the N13 wave form was not modified during these 3 conditions. It is concluded that in man attenuation of cortical waves during manipulation is not due to an effect of gating in the subcortical sensory relay nuclei.  相似文献   

10.
Scalp distributions of median nerve SEPs were studied in normal controls and 2 patients with localized lesions of the postcentral gyrus. In controls, parieto-occipital electrodes registered N20-P27 while frontal electrodes registered P20-N27. Other small components, parieto-occipital P22 and frontal N22, were recognized in about half of the control records. The wave forms at a frontal and a parieto-occipital electrode, both distant from the central region, formed exact mirror images of each other concerning N20-(P22)-P27 and P20-(N22)-N27. Electrodes near the central region contralateral to the stimulation registered cP22-cN30 (central P22 and central N30). When the postcentral gyrus was damaged, N20/P20-P27/N27 and cP22-cN30 were eliminated and the only remaining components were a frontal negative wave (frN) and a contralateral parieto-occipital positive wave (poP). Digital nerve stimulation also evoked poP and frN in both cases. In case 2, poP coincided with P22 of the non-affected side. The following generators were proposed; N20/P20-P27/N27: area 3b, cP22-cN30: areas 1 and 2, poP/early frN (= P22/N22): area 4 at the anterior wall of the central sulcus (due to direct thalamic inputs to motor cortex), late frN: uncertain (SMA?, SII?).  相似文献   

11.
We studied upper limb somatosensory evoked potentials (SEPs) in 11 patients with MRI and clinical evidence of cervical spondylotic myelopathy (CSM), before and after cervical open-door laminoplasty. SEP studies before surgery revealed two main types of abnormality, the first characterized by the isolated loss of the spinal N13 response, reflecting the dysfunction of dorsal horn cervical cells in 4 patients. The second combined abnormalities of both spinal N13 and scalp far-field P14 potential, suggesting the involvement of both dorsal horn cells and dorsal columns at the cervical level in 7 patients. After surgery, N13 recovered in 9 patients, while P14 abnormalities remained unchanged. Clinical recovery, evaluated by means of the Japanese Orthopaedic Association (JOA) disability scale, was accompanied by SEP improvement. Moreover, this improvement was more pronounced in patients with isolated loss of the N13 than in patients with combined abnormalities of the N13 and scalp P14 response. Our data strongly suggest that upper limb SEPs can be useful in monitoring the effectiveness of surgery, as well as in selecting before surgery patients who are likely to have a better postsurgical outcome.  相似文献   

12.
BACKGROUND: Short Latency Somatosensory Evoked Potentials (SEPs) may serve to the testing of the somatosensory tract function, which is vulnerable and affected in vascular encephalopathy. The aim of the current study was to search for clinical and neuroimaging correlates of abnormal SEPs in vascular dementia (VD) patients. MATERIALS AND METHODS: The study included 14 VD patients, aged 72.93 PlusMinus; 4.73 years, and 10 controls aged 71.20 PlusMinus; 4.44 years. All subjects underwent a detailed clinical examination, blood and biochemical testing, brain MRI and were assessed with the MMSE. SEPs were recorded after stimulation from upper and lower limbs. The statistical Analysis included 1 and 2-way MANCOVAs and Factor analysis RESULTS: The N13 latency was significantly prolonged, the N19 amplitude was lower, the P27 amplitude was lower and the N11-P27 conduction time was prolonged in severely demented patients in comparison to controls. The N19 latency was prolonged in severely demented patients in comparison to both mildly demented and controls. The same was true for the N13-N19 conduction time, and for the P27 latency. Patients with subcortical lesions had all their latencies prolonged and lower P27 amplitude. DISCUSSION: The results of the current study suggest that there are significant differences between patients suffering from VD and healthy controls in SEPs, but these are detectable only when dementia is severe or there are lesions located in the subcortical regions. The results of the current study locate the abnormal SEPs in the white matter, and are in accord with the literature.  相似文献   

13.
We performed topographical mapping of somatosensory evoked potentials (SEPs) in response to posterior tibial nerve stimulation delivered at 2, 5 and 7.5 Hz in 15 healthy subjects. P37 was significantly attenuated at 5 and 7.5 Hz and the N50 component attenuated only at 5 Hz, its amplitude remaining stable for further increases in stimulus frequency. Frontal N37 and P50 potentials showed no significant decrease when the stimulus repetition frequency was changed from 2 to 7.5 Hz. P60 showed an attenuation of the amplitude only at 7.5 Hz. Latency and scalp topographies of all cortical components examined remained uncharged for the 3 stimulus rates tested The optimal stimulus rate for mapping of tibial nerve SEPs was lower than 5 Hz. The distinct recovery function of the contralateral N37-P50 and ipsilateral P37-N50 responses suggests that these potentials arise from separate generators  相似文献   

14.
We examined the effect of stimulus rates on the somatosensory evoked potential (SEP) amplitude following stimulation of the median nerve (MN) and the ulnar nerve (UN) at the elbow or wrist, and the radial nerve (RN) at the wrist in 12 normal subjects. We measured the amplitude of frontal (P14-N18-P22-N30) and parietal peaks (P14-N20-P26-N34) at a stimulus rate of 1.1, 3.5 and 5.7 Hz. The amplitude attenuation was found at frontal P22 and N30 and to a lesser degree at parietal N20 and P26 peaks with an increasing stimulus rate from 1.1 to 5.7 Hz. The amplitude attenuation was greatest at the elbow when compared to the wrist stimulation for both MN and UN. The attenuation was least for wrist stimulation for the RN. The UN block by local anesthesia just distal to the stimulus electrode at the elbow abolished the amplitude attenuation caused by the fast stimulus rate. The observed amplitude attenuation with the faster stimulus rate is probably due, in part, to interference from the “secondary” afferent inputs. The secondary afferent inputs arise from peripheral receptor stimulation (muscle, joint and/or cutaneous) as a subsequent effect of efferent volleys initiated from the point of stimulation. The greater number of peripheral receptors being activated as more proximal sites of stimulation in a mixed nerve would result in greater attenuation of the SEP recorded from scalp electrodes. We postulate that the attenuation of frontal peaks by the fast stimulus rate is due to the frontal projection of interfering “secondary” afferent inputs.  相似文献   

15.
Abstract

Objective: We analysed the recovery function of somatosensory evoked potentials (SEPs) in juvenile myoclonic epilepsy (JME) patients. We hypothesized that there may be disinhibition in the recovery of SEPs at 20–100?ms intervals in JME patients.

Methods: We recorded SEPs and SEP recovery in 19 consecutive patients with JME admitted for a routine follow-up examination, and in a control group composed of 13 healthy subjects who were similar to the patient group regarding age and sex. The recovery function of SEPs was examined using paired stimuli at 30, 40, 60, and 100?ms intervals.

Results: The amplitudes of N20-P25 and P25-N33 components were higher in patients with JME. Ten patients had high-amplitude SEPs. By paired stimulation, there was inhibition of SEPs in both groups. The mean recovery percentages of N20-P25 and P25-N33 components at 30, 40, 60, and 100?ms were not different between healthy subjects and patients with JME.

Conclusions: The recovery function of SEP is normal in JME even in the presence of high-amplitude SEPs.  相似文献   

16.
Since our previous study of pain somatosensory evoked potentials (SEPs) following CO2 laser stimulation of the hand dorsum could not clarify whether the early cortical component NI was generated from the primary somatosensory cortex (SI) or the secondary somatosensory cortex (SII) or both, the scalp topography of SEPs following CO2 laser stimulation of the foot dorsum was studied in 10 normal subjects and was compared with that of the hand pain SEPs and the conventional SEPs following electrical stimulation of the posterior tibial nerve recorded in 8 and 6 of the 10 subjects, respectively. Three components (N1, N2 and P2) were recorded for both foot and hand pain SEPs. N1 of the foot pain SEPs was maximal at the midline electrodes (Cz or CPz) in all data where that potential was recognized, but the potential field distribution was variable among subjects and even between two sides within the same subject. N1 of the hand pain SEPs was maximal at the contralateral central or midtemporal electrode. The scalp distribution of N2 and P2, however, was not different between the foot and hand pain SEPs. The mean peak latency of N1 following stimulation of foot and hand was found to be 191 msec and 150 msec, respectively, but there was no significant difference in the interpeak latency of Nl-N2 between foot and hand stimulation. It is therefore concluded that NI of the foot pain SEPs is generated mainly from the foot area of SI. The variable scalp distribution of the N7 component of the foot pain SEPs is likely due to an anatomical variability among subjects and even between sides.  相似文献   

17.
Somatosensory evoked potentials (SEPs) and compound nerve action potentials (cNAPs) have been recorded in 15 subjects during electrical and magnetic nerve stimulation. Peripheral records were gathered at Erb's point and on nerve trunks at the elbow during median and ulnar nerve stimulation at the wrist. Erb responses to electrical stimulation were larger in amplitude and shorter in duration than the magnetic ones when ‘electrical’ and ‘magnetic’ compound muscle action potentials (cMAPs) of comparable amplitudes were elicited. SEPs were recorded respectively at Cv7 and on the somatosensory scalp areas contra- and ipsilateral to the stimulated side. SEPs showed a statistically significant difference in amplitude only for the brachial plexus response and for the ‘cortical’ N20-P25 complex; differences were not found between the magnetic and electrical central conduction times (CCTs) or for the peripheral nerve response latencies. Magnetic stimulation preferentially excited the motor and proprioceptive fibres when the nerve trunks were stimulated at motor threshold intensities.  相似文献   

18.
Whether the two earliest cortical somatosensory evoked potentials (SEPs) to tibial nerve stimulation (N37 and P40) are generated by the same dipolar source or, instead, originate from different neuronal populations is still a debated problem. We recorded the early scalp SEPs to tibial nerve stimulation in 10 healthy subjects at rest and during voluntary movement of the stimulated foot. We found that the P40, which reached its highest amplitude on the vertex at rest, changed its topography during movement, since its amplitude was reduced much more in the central than in the parietal traces. These findings suggest that two different components contribute to the centro-parietal positivity at rest: (1) the P37 response, which is parietally distributed and is not modified by movement, and (2) the `real' P40 SEP, which is focused on the vertex and is reduced in amplitude during voluntary movement. Since, also, the N37 response did not vary its amplitude under interference condition, it is possible that the N37 and P37 potentials are generated by the same dipolar source. Other later components, namely P50 and N50, were significantly reduced in amplitude during foot movement. Lastly, the subcortical P30 far-field remained unchanged and this suggests that the phenomenon of amplitude reduction during movement (i.e. gating) occurs above the cervico-medullary junction.  相似文献   

19.
Middle-latency somatosensory evoked potentials (SEPs) following median and posterior tibial nerve stimulation were studied in 40 patients with Down's syndrome and in age- and gender-matched healthy controls as well as in middle-aged and aged healthy subjects. In median nerve SEPs, latencies of the initial cortical potentials, N18 and P18, showed no significant difference, but the following potentials N22, P25, N32, P41 and P46 were relatively or significantly shorter in latency in Down's patients than in the controls. Amplitudes of all components in Down's patients were significantly larger than those of age- and gender-matched controls as well as of those of middle-aged healthy subjects, but there was only a small difference in their amplitudes from aged healthy subjects. Results of posterior tibial nerve SEPs were generally consistent with those of median nerve SEPs. Therefore, ‘short latency with large amplitude’ is the main characteristic of middle-latency SEPs in Down's syndrome, possibly related to accelerated physiological aging of the central nervous system.  相似文献   

20.
We recorded electrically stimulated somatosensory evoked potentials (electric SEPs) and pain-related SEPs following CO2 laser stimulation (CO2 laser SEPs) from a 17-year-old patient affected by myotonic dystrophy whose MRI disclosed a large syrinx extending from spinal level C2 to S3. Careful clinical and electromyographic examinations revealed no motor or sensory disturbances, apart from myotonia. The only abnormality noted in median and ulnar nerve short-latency electric SEPs (recorded with a non-cephalic reference electrode) was the absence of cervical component N13, the other SEP responses (N9, N10, N11, P14, N20) being normal. The cutaneous pain threshold and CO2 laser SEPs (both obtained by a CO2 laser beam applied to the back of the hand) were normal. Thus cervical component N13 appears to be highly sensitive to the effects of central cord lesions, even when these are asymptomatic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号