首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various theoretical concepts, such as free energy potentials, electrostatic interaction potentials, atomic packing, solvent-exposed surface, and surface charge distribution, were tested for their ability to discriminate between native proteins and misfolded protein models. Misfolded models were constructed by introducing incorrect side chains onto polypeptide backbones: side chains of the alpha-helical hemerythrin were modeled on the beta-sheeted backbone of immunoglobulin VL domain, whereas those of the VL domain were similarly modeled on the hemerythrin backbone. CONGEN, a conformational space sampling program, was used to construct the side chains, in contrast to the previous work, where incorrect side chains were modeled in all trans conformations. Capability of the conformational search procedure to reproduce native conformations was gauged first by rebuilding (the correct) side chains in hemerythrin and the VL domain: constructs with r.m.s. differences from the x-ray side chains 2.2-2.4 A were produced, and many calculated conformations matched the native ones quite well. Incorrectly folded models were then constructed by the same conformational protocol applied to incorrect amino acid sequences. All CONGEN constructs, both correctly and incorrectly folded, were characterized by exceptionally small molecular surfaces and low potential energies. Surface charge density, atomic packing, and Coulomb formula-based electrostatic interactions of the misfolded structures and the correctly folded proteins were similar, and therefore of little interest for diagnosing incorrect folds. The following criteria clearly favored the native structures over the misfolded ones: 1) solvent-exposed side-chain nonpolar surface, 2) number of buried ionizable groups, and 3) empirical free energy functions that incorporate solvent effects.  相似文献   

2.
We develop a protocol for estimating the free energy difference between different conformations of the same polypeptide chain. The conformational free energy evaluation combines the CHARMM force field with a continuum treatment of the solvent. In almost all cases studied, experimentally determined structures are predicted to be more stable than misfolded "decoys." This is due in part to the fact that the Coulomb energy of the native protein is consistently lower than that of the decoys. The solvation free energy generally favors the decoys, although the total electrostatic free energy (sum of Coulomb and solvation terms) favors the native structure. The behavior of the solvation free energy is somewhat counterintuitive and, surprisingly, is not correlated with differences in the burial of polar area between native structures and decoys. Rather. the effect is due to a more favorable charge distribution in the native protein, which, as is discussed, will tend to decrease its interaction with the solvent. Our results thus suggest, in keeping with a number of recent studies, that electrostatic interactions may play an important role in determining the native topology of a folded protein. On this basis, a simplified scoring function is derived that combines a Coulomb term with a hydrophobic contact term. This function performs as well as the more complete free energy evaluation in distinguishing the native structure from misfolded decoys. Its computational efficiency suggests that it can be used in protein structure prediction applications, and that it provides a physically well-defined alternative to statistically derived scoring functions.  相似文献   

3.
A reduced representation model, which has been described in previous reports, was used to predict the folded structures of proteins from their primary sequences and random starting conformations. The molecular structure of each protein has been reduced to its backbone atoms (with ideal fixed bond lengths and valence angles) and each side chain approximated by a single virtual united-atom. The coordinate variables were the backbone dihedral angles phi and psi. A statistical potential function, which included local and nonlocal interactions and was computed from known protein structures, was used in the structure minimization. A novel approach, employing the concepts of genetic algorithms, has been developed to simultaneously optimize a population of conformations. With the information of primary sequence and the radius of gyration of the crystal structure only, and starting from randomly generated initial conformations, I have been able to fold melittin, a protein of 26 residues, with high computational convergence. The computed structures have a root mean square error of 1.66 A (distance matrix error = 0.99 A) on average to the crystal structure. Similar results for avian pancreatic polypeptide inhibitor, a protein of 36 residues, are obtained. Application of the method to apamin, an 18-residue polypeptide with two disulfide bonds, shows that it folds apamin to native-like conformations with the correct disulfide bonds formed.  相似文献   

4.
Tobi D  Bahar I 《Proteins》2006,62(4):970-981
Protein-protein docking is a challenging computational problem in functional genomics, particularly when one or both proteins undergo conformational change(s) upon binding. The major challenge is to define scoring function soft enough to tolerate these changes and specific enough to distinguish between near-native and "misdocked" conformations. Using a linear programming technique, we derived protein docking potentials (PDPs) that comply with this requirement. We considered a set of 63 nonredundant complexes to this aim, and generated 400,000 putative docked complexes (decoys) based on shape complementarity criterion for each complex. The PDPs were required to yield for the native (correctly docked) structure a potential energy lower than those of all the nonnative (misdocked) structures. The energy constraints applied to all complexes led to ca. 25 million inequalities, the simultaneous solution of which yielded an optimal set of PDPs that discriminated the correctly docked (up to 4.0 A root-mean-square deviation from known complex structure) structure among the 85 top-ranking (0.02%) decoys in 59/63 examined bound-bound cases. The high performance of the potentials was further verified in jackknife tests and by ranking putative docked conformation submitted to CAPRI. In addition to their utility in identifying correctly folded complexes, the PDPs reveal biologically meaningful features that distinguish docking potentials from folding potentials.  相似文献   

5.
G M Crippen 《Biochemistry》1991,30(17):4232-4237
Predicting the three-dimensional structure of a protein given only its amino acid sequence is a long-standing goal in computational chemistry. In the thermodynamic approach, one needs a potential function of conformation that resembles the free energy of the real protein to the extent that the global minimum of the potential is attained by the native conformation and no other. In practice, this has never been achieved with certainty because even with greatly simplified representations of the polypeptide chain, there are an astronomical number of local minima to examine. If one chooses instead a protein representation with only a large but manageable number of discrete conformations, then the global preference of the potential for the native can be directly verified. Representing a protein as a walk on a two-dimensional square lattice makes it easy to see that simple functions of the interresidue contacts are sufficient to globally favor a given "native" conformation, as long as it is a compact, globular structure. Explicit representation of the solvent is not required. Another more realistic way to confine the conformational search to a finite set is to draw alternative conformations from fragments of larger proteins having known crystal structure. Then it is possible to construct a simple function of interresidue contacts in three dimensions such that only 8 proteins are required to determine the adjustable parameters, and the native conformations of 37 other proteins are correctly preferred over all alternative conformations. The deduced function favors short-range backbone-backbone contacts regardless of residue type and long-range hydrophobic associations. Interactions over long distances, such as electrostatics, are not required.  相似文献   

6.
To estimate how extensively the ensemble of denatured-state conformations is constrained by local side-chain–backbone interactions, propensities of each of the 20 amino acids to occur in mono- and dipeptides mapped to discrete regions of the Ramachandran map are computed from proteins of known structure. In addition, propensities are computed for the trans, gauche−, and gauche+ rotamers, with or without consideration of the values of phi and psi. These propensities are used in scoring functions for fragment threading, which estimates the energetic favorability of fragments of protein sequence to adopt the native conformation as opposed to hundreds of thousands of incorrect conformations. As finer subdivisions of the Ramachandran plot, neighboring residue phi/psi angles, and rotamers are incorporated, scoring functions become better at ranking the native conformation as the most favorable. With the best composite propensity function, the native structure can be distinguished from 300,000 incorrect structures for 71% of the 2130 arbitrary protein segments of length 40, 48% of 2247 segments of length 30, and 20% of 2368 segments of length 20. A majority of fragments of length 30–40 are estimated to be folded into the native conformation a substantial fraction of the time. These data suggest that the variations observed in amino acid frequencies in different phi/psi/chi1 environments in folded proteins reflect energetically important local side-chain–backbone interactions, interactions that may severely restrict the ensemble of conformations populated in the denatured state to a relatively small subset with nativelike structure.  相似文献   

7.
An essential requirement for theoretical protein structure prediction is an energy function that can discriminate the native from non-native protein conformations. To date most of the energy functions used for this purpose have been extracted from a statistical analysis of the protein structure database, without explicit reference to the physical interactions responsible for protein stability. The use of the statistical functions has been supported by the widespread belief that they are superior for such discrimination to physics-based energy functions. An effective energy function which combined the CHARMM vacuum potential with a Gaussian model for the solvation free energy is tested for its ability to discriminate the native structure of a protein from misfolded conformations; the results are compared with those obtained with the vacuum CHARMM potential. The test is performed on several sets of misfolded structures prepared by others, including sets of about 650 good decoys for six proteins, as well as on misfolded structures of chymotrypsin inhibitor 2. The vacuum CHARMM potential is successful in most cases when energy minimized conformations are considered, but fails when applied to structures relaxed by molecular dynamics. With the effective energy function the native state is always more stable than grossly misfolded conformations both in energy minimized and molecular dynamics-relaxed structures. The present results suggest that molecular mechanics (physics-based) energy functions, complemented by a simple model for the solvation free energy, should be tested for use in the inverse folding problem, and supports their use in studies of the effective energy surface of proteins in solution. Moreover, the study suggests that the belief in the superiority of statistical functions for these purposes may be ill founded.  相似文献   

8.
We have revisited the protein coarse-grained optimized potential for efficient structure prediction (OPEP). The training and validation sets consist of 13 and 16 protein targets. Because optimization depends on details of how the ensemble of decoys is sampled, trial conformations are generated by molecular dynamics, threading, greedy, and Monte Carlo simulations, or taken from publicly available databases. The OPEP parameters are varied by a genetic algorithm using a scoring function which requires that the native structure has the lowest energy, and the native-like structures have energy higher than the native structure but lower than the remote conformations. Overall, we find that OPEP correctly identifies 24 native or native-like states for 29 targets and has very similar capability to the all-atom discrete optimized protein energy model (DOPE), found recently to outperform five currently used energy models.  相似文献   

9.
Understanding how denatured polypeptides self-assemble into correctly folded native protein structures is one of the grand challenges of 21st century science. Cytochrome c refolding has been exhaustively studied with a vast array of triggers and spectroscopic probes. Within the past year, atomically detailed dynamics simulations of this process have appeared as well. This wealth of data provides insights into the conformations and dynamics of diverse parts of the polypeptide at many stages in the refolding reaction. The combination of innovative experiments and powerful computational methods promises to produce a model that reconciles many disparate observations of cytochrome c folding.  相似文献   

10.
There are several knowledge-based energy functions that can distinguish the native fold from a pool of grossly misfolded decoys for a given sequence of amino acids. These decoys, which are typically generated by mounting, or “threading”, the sequence onto the backbones of unrelated protein structures, tend to be non-compact and quite different from the native structure: the root-mean-squared (RMS) deviations from the native are commonly in the range of 15 to 20 Å. Effective energy functions should also demonstrate a similar recognition capability when presented with compact decoys that depart only slightly in conformation from the correct structure (i.e. those with RMS deviations of ∼5 Å or less). Recently, we developed a simple yet powerful method for native fold recognition based on the tendency for native folds to form hydrophobic cores. Our energy measure, which we call the hydrophobic fitness score, is challenged to recognize the native fold from 2000 near-native structures generated for each of five small monomeric proteins. First, 1000 conformations for each protein were generated by molecular dynamics simulation at room temperature. The average RMS deviation of this set of 5000 was 1.5 Å. A total of 323 decoys had energies lower than native; however, none of these had RMS deviations greater than 2 Å. Another 1000 structures were generated for each at high temperature, in which a greater range of conformational space was explored (4.3 Å average RMS deviation). Out of this set, only seven decoys were misrecognized. The hydrophobic fitness energy of a conformation is strongly dependent upon the RMS deviation. On average our potential yields energy values which are lowest for the population of structures generated at room temperature, intermediate for those produced at high temperature and highest for those constructed by threading methods. In general, the lowest energy decoy conformations have backbones very close to native structure. The possible utility of our method for screening backbone candidates for the purpose of modelling by side-chain packing optimization is discussed.  相似文献   

11.
The relationship between the unfolding pseudo free energies of reduced and detailed atomic models of the GCN4 leucine zipper is examined. Starting from the native crystal structure, a large number of conformations ranging from folded to unfolded were generated by all-atom molecular dynamics unfolding simulations in an aqueous environment at elevated temperatures. For the detailed atomic model, the pseudo free energies are obtained by combining the CHARMM all-atom potential with a solvation component from the generalized Born, surface accessibility, GB/SA, model. Reduced model energies were evaluated using a knowledge-based potential. Both energies are highly correlated. In addition, both show a good correlation with the root mean square deviation, RMSD, of the backbone from native. These results suggest that knowledge-based potentials are capable of describing at least some of the properties of the folded as well as the unfolded states of proteins, even though they are derived from a database of native protein structures. Since only conformations generated from an unfolding simulation are used, we cannot assess whether these potentials can discriminate the native conformation from the manifold of alternative, low-energy misfolded states. Nevertheless, these results also have significant implications for the development of a methodology for multiscale modeling of proteins that combines reduced and detailed atomic models.  相似文献   

12.
We show that even in the complete absence of potential energies among the atoms in a protein-aqueous solution system, there is a physical factor that favors the folded state of the protein. It is a gain in the translational entropy (TE) of water originating from the translational movement of water molecules. An elaborate statistical-mechanical theory is employed to analyze the TE of water in which a protein or peptide with a prescribed conformation is immersed. It is shown that if the number of residues is sufficiently large, the TE gain is powerful enough to compete with the conformational-entropy loss upon folding. For protein G we have tested over 100 compact conformations generated by a computer simulation with the all-atom potentials as well as the native structure. A significant finding is that the largest TE is attained in the native structure. The translational movement of water molecules is quite effective in achieving the tight packing in the interior of a natural protein. These results are true only when the solvent is water whose molecular size is the smallest among the ordinary liquids in nature.  相似文献   

13.
Partly unfolded protein conformations close to the native state may play important roles in protein function and in protein misfolding. Structural analyses of such conformations which are essential for their fully physicochemical understanding are complicated by their characteristic low populations at equilibrium. We stabilize here with a single mutation the equilibrium intermediate of apoflavodoxin thermal unfolding and determine its solution structure by NMR. It consists of a large native region identical with that observed in the X-ray structure of the wild-type protein plus an unfolded region. Small-angle X-ray scattering analysis indicates that the calculated ensemble of structures is consistent with the actual degree of expansion of the intermediate. The unfolded region encompasses discontinuous sequence segments that cluster in the 3D structure of the native protein forming the FMN cofactor binding loops and the binding site of a variety of partner proteins. Analysis of the apoflavodoxin inner interfaces reveals that those becoming destabilized in the intermediate are more polar than other inner interfaces of the protein. Natively folded proteins contain hydrophobic cores formed by the packing of hydrophobic surfaces, while natively unfolded proteins are rich in polar residues. The structure of the apoflavodoxin thermal intermediate suggests that the regions of natively folded proteins that are easily responsive to thermal activation may contain cores of intermediate hydrophobicity.  相似文献   

14.
In this paper we discuss the problem of including solvation free energies in evaluating the relative stabilities of loops in proteins. A conformational search based on a gas-phase potential function is used to generate a large number of trial conformations. As has been found previously, the energy minimization step in this process tends to pack charged and polar side chains against the protein surface, resulting in conformations which are unstable in the aqueous phase. Various solvation models can easily identify such structures. In order to provide a more severe test of solvation models, gas phase conformations were generated in which side chains were kept extended so as to maximize their interaction with the solvent. The free energies of these conformations were compared to that calculated for the crystal structure in three loops of the protein E. coli RNase H, with lengths of 7, 8, and 9 residues. Free energies were evaluated with a finite difference Poisson-Boltzmann (FDPB) calculation for electrostatics and a surface area-based term for nonpolar contributions. These were added to a gas-phase potential function. A free energy function based on atomic solvation parameters was also tested. Both functions were quite successful in selecting, based on a free energy criterion, conformations quite close to the crystal structure for two of the three loops. For one loop, which is involved in crystal contacts, conformations that are quite different from the crystal structure were also selected. A method to avoid precision problems associated with using the FDPB method to evaluate conformational free energies in proteins is described. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
We present an approach for incorporating solvent accessibility data from electron paramagnetic resonance experiments in the structural refinement of membrane proteins through restrained molecular dynamics simulations. The restraints have been parameterized from oxygen (ΠO2) and nickel-ethylenediaminediacetic acid (ΠNiEdda) collision frequencies, as indicators of lipid or aqueous exposed spin-label sites. These are enforced through interactions between a pseudoatom representation of the covalently attached Nitroxide spin-label and virtual “solvent” particles corresponding to O2 and NiEdda in the surrounding environment. Interactions were computed using an empirical potential function, where the parameters have been optimized to account for the different accessibilities of the spin-label pseudoatoms to the surrounding environment. This approach, “pseudoatom-driven solvent accessibility refinement”, was validated by refolding distorted conformations of the Streptomyces lividans potassium channel (KcsA), corresponding to a range of 2-30 Å root mean-square deviations away from the native structure. Molecular dynamics simulations based on up to 58 electron paramagnetic resonance restraints derived from spin-label mutants were able to converge toward the native structure within 1-3 Å root mean-square deviations with minimal computational cost. The use of energy-based ranking and structure similarity clustering as selection criteria helped in the convergence and identification of correctly folded structures from a large number of simulations. This approach can be applied to a variety of integral membrane protein systems, regardless of oligomeric state, and should be particularly useful in calculating conformational changes from a known reference crystal structure.  相似文献   

16.
17.
Protein residues that are critical for structure and function are expected to be conserved throughout evolution. Here, we investigate the extent to which these conserved residues are clustered in three-dimensional protein structures. In 92% of the proteins in a data set of 79 proteins, the most conserved positions in multiple sequence alignments are significantly more clustered than randomly selected sets of positions. The comparison to random subsets is not necessarily appropriate, however, because the signal could be the result of differences in the amino acid composition of sets of conserved residues compared to random subsets (hydrophobic residues tend to be close together in the protein core), or differences in sequence separation of the residues in the different sets. In order to overcome these limits, we compare the degree of clustering of the conserved positions on the native structure and on alternative conformations generated by the de novo structure prediction method Rosetta. For 65% of the 79 proteins, the conserved residues are significantly more clustered in the native structure than in the alternative conformations, indicating that the clustering of conserved residues in protein structures goes beyond that expected purely from sequence locality and composition effects. The differences in the spatial distribution of conserved residues can be utilized in de novo protein structure prediction: We find that for 79% of the proteins, selection of the Rosetta generated conformations with the greatest clustering of the conserved residues significantly enriches the fraction of close-to-native structures.  相似文献   

18.
Proteins carry out many vital cellular functions determined by their precise 3-dimensional structures (the native conformations). Understanding how proteins fold has long been a major goal and can be of great therapeutic value. Failure to reach or maintain the correct folded structure can have serious consequences, as in the conformational diseases. The ultimate goal of folding studies is to predict structure from sequence, allowing the design of new functional proteins and prevention of aberrant disease-associated conformations.  相似文献   

19.
Franc Avbelj  John Moult 《Proteins》1995,23(2):129-141
Experimental evidence and theoretical models both suggest that protein folding begins by specific short regions of the polypeptide chain intermittently assuming conformations close to their final ones. The independent folding properties and small size of these folding initiation sites make them suitable subjects for computational methods aimed at deriving structure from sequence. We have used a torsion space Monte Carlo procedure together with an all-atom free energy function to investigate the folding of a set of such sites. The free energy function is derived by a potential of mean force analysis of experimental protein structures. The most important contributions to the total free energy are the local main chain electrostatics, main chain hydrogen bonds, and the burial of nonpolar area. Six proposed independent folding units and four control peptides 11–14 residues long have been investigated. Thirty Monte Carlo simulations were performed on each peptide, starting from different random conformations. Five of the six folding units adopted conformations close to the experimental ones in some of the runs. None of the controls did so, as expected. The generated conformations which are close to the experimental ones have among the lowest free energies encountered, although some less native like low free energy conformations were also found. The effectiveness of the method on these peptides, which have a wide variety of experimental conformations, is encouraging in two ways: First, it provides independent evidence that these regions of the sequences are able to adopt native like conformations early in folding, and therefore are most probably key components of the folding pathways. Second, it demonstrates that available simulation methods and free energy functions are able to produce reasonably accurate structures. Extensions of the methods to the folding of larger portions of proteins are suggested. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Fang Q  Shortle D 《Proteins》2005,60(1):97-102
In the preceding article in this issue of Proteins, an empirical energy function consisting of 4 statistical potentials that quantify local side-chain-backbone and side-chain-side-chain interactions has been demonstrated to successfully identify the native conformations of short sequence fragments and the native structure within large sets of high-quality decoys. Because this energy function consists entirely of interactions between residues separated by fewer than 5 positions, it can be used at the earliest stage of ab initio structure prediction to enhance the efficiency of conformational search. In this article, protein fragments are generated de novo by recombining very short segments of protein structures (2, 4, or 6 residues), either selected at random or optimized with respect this local energy function. When local energy is optimized in selected fragments, more efficient sampling of conformational space near the native conformation is consistently observed for 450 randomly selected single turn fragments, with turn lengths varying from 3 to 12 residues and all 4 combinations of flanking secondary structure. These results further demonstrate the energetic significance of local interactions in protein conformations. When used in combination with longer range energy functions, application of these potentials should lead to more accurate prediction of protein structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号