首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knox KJ  Clarke PJ 《Oecologia》2006,149(4):730-739
The season in which a fire occurs may regulate plant seedling recruitment because of: (1) the interaction of season and intensity of fire and the temperature requirements for seed release, germination and growth; (2) post-fire rainfall and temperature patterns affecting germination; (3) the interaction of post-fire germination conditions and competition from surrounding vegetation; and (4) the interaction of post-fire germination conditions and seed predators and/or seedling herbivores. This study examined the effects of different fire intensities and fire seasons on the emergence and survival of shrubs representing a range of fire response syndromes from a summer rainfall cool climate region. Replicated experimental burns were conducted in two seasons (spring and autumn) in 2 consecutive years and fuel loads were increased to examine the effects of fire intensity (low intensity and moderate intensity). Post-fire watering treatments partitioned the effects of seasonal temperature from soil moisture. Higher intensity fires resulted in enhanced seedling emergence for hard-seeded species but rarely influenced survival. Spring fires enhanced seedling emergence across all functional groups. Reduced autumn recruitment was related to seasonal temperature inhibiting germination rather than a lack of soil moisture or competition. In Mediterranean-type climate regions, seedling emergence has been related to post-fire rainfall and exposure of seeds to seed predators. We think a similar model may operate in temperate summer rainfall regions where cold-induced dormancy over winter exposes seeds to predators for a longer time and subsequently results in recruitment failure. Our results support the theory that the effect of fire season is more predictable where there are strong seasonal patterns in climate. In this study seasonal temperature rather than rainfall appears to be more influential.  相似文献   

2.
Reforestation projects in semiarid lands often yield poor results. Water scarcity, poor soil fertility, and structure strongly limit the survival and growth of planted seedlings in these areas. At two experimental semiarid sites, we evaluated a variety of low‐cost planting techniques in order to increase water availability to plants. Treatments included various combinations of traditional planting holes; water‐harvesting microcatchments; stone or plastic mulches; small waterproof sheets to increase water harvesting; dry wells; buried clay pots; and deep irrigation. Some of these treatments were also combined with addition of composted biosolids. Waterproof sheets significantly enhanced water harvesting (43%) and soil moisture in the planting hole (40%), especially for low‐intensity rainfall events. Treatment effects on the survival and growth of Olea europaea seedlings varied between experimental sites. At the most water‐limited site, clay pots, and dry wells improved seedling survival, while no treatment enhanced seedling growth. At the least water‐stressed site, the application of composted sludge significantly improved seedling growth. We conclude that nutrient‐mediated stress is subordinate to water stress in arid and semiarid environments, and we suggest modifications on the microsite scale to address these limiting conditions in Mediterranean drylands .  相似文献   

3.
Question: Understanding the mechanisms underlying how habitat degradation, topography and rainfall variability interactively affect seed distribution and seedling recruitment is crucial for explaining plant community patterns and dynamics. Interactions between these major factors were studied together in a semiarid sand dune grassland. Location: Eastern Inner Mongolia, China. Methods: The study system used four sites of fixed, semifixed, semishifting and shifting sand dune grasslands, representing a gradient of habitat degradation. We investigated the density of germinable seeds deposited in the top 5 cm of soil and in situ seedling emergence (number of seedlings emerging early in the growing season) and establishment (number of plants recruited at the end of the growing season) at three topographic positions (dune top, windward and leeward sides) within each site over 2 years that differed in rainfall. Habitat characteristics (i.e. vegetation cover, plant species composition and diversity, soil moisture and nutrient availability and soil erodibility) of the four sites were also measured. Results: Habitat degradation (i.e. decreased vegetation cover and enhanced wind erosion rate) significantly reduced the size of the germinable soil seed bank. On average, germinable seed number from the high‐vegetation cover fixed dune was 36‐fold larger than the low‐vegetation cover shifting dune, and eight‐ and two‐fold larger, respectively, than the semishifting and semifixed dunes with intermediate vegetation cover. We observed within‐habitat variability in seed distribution, but among‐topographic position variation differed among habitats. Seedling recruitment showed large between‐year, and among‐ and within‐habitat variability, but these variations varied significantly depending on the response variables evaluated (i.e. initial seedling density, final plant density, emergence rate and recruitment rate). Path analysis revealed complex density‐dependent positive and negative, direct and indirect effects of germinable seed density and initial seedling density on recruitment, but the relative importance of these density‐dependent effects varied depending on habitat type and rainfall availability. Conclusion: Our results suggest that habitat degradation, microtopography and rainfall availability interact in shaping sand dune seed bank and plant community recruitment patterns and dynamics. Their effects were mainly mediated through changes in both the biotic and abiotic environment during the process of habitat deterioration.  相似文献   

4.
Aim To investigate the differential effects of position within gaps, coarse woody debris and understorey cover on tree seedling survival in canopy gaps in two old‐growth Nothofagus pumilio (Poepp. & Endl.) Krasser forests and the response of this species to gaps in two forests located at opposite extremes of a steep rainfall gradient. Location Nahuel Huapi National Park, at 41° S in north‐western Patagonia, Argentina. Methods In both study sites, seedlings were transplanted to experimental plots in gaps in three different positions, with two types of substrate (coarse woody debris or forest floor), and with and without removal of understorey vegetation. Survival of seedlings was monitored during two growing seasons. Soil moisture and direct solar radiation were measured once in mid‐summer. Seedling aerial biomass was estimated at the end of the experiment. Results Mid‐summer soil water potential was lowest in the centre of gaps, in plots where the understorey had been removed, and highest at the northern edges of gaps. Direct incoming radiation was highest in gap centres and southern edges, and lowest at northern edges. Seedling mortality was highest in gap centres, in both sites. Coarse woody debris had a positive effect on seedling survival during summer in the mesic forest and during winter in the xeric forest. The removal of understorey cover had negative effects in gap centres during summer. Seedling final aerial biomass was positively affected by understorey removal and by soil substrate in both sites. In the dry forest gaps, seedling growth was highest in northern edges, whereas it was highest in gap centres in the mesic forest. Overall growth was positively related to survival in the xeric forest, and negatively related in the mesic forest. Main conclusions Survival and growth were facilitated by the shade of gap‐surrounding trees only in the xeric forest. Understorey vegetation of both forests facilitated seedling survival in exposed microsites but competed with seedling growth. Nurse logs were an important substrate for seedling establishment in both forests; however, causes of this pattern differed between forests. Water availability positively controls seedling survival and growth in the xeric forest while in the mesic forest, survival and growth are differentially controlled by water and light availability, respectively. These two contrasting old‐growth forests, separated by a relatively short distance along a steep rainfall gradient, had different yet unexpected microenvironmental controls on N. pumilio seedling survival and growth. These results underscore the importance of defining microscale limiting factors of tree recruitment in the context of large‐scale spatial variation in resources.  相似文献   

5.
沙埋与水分对科尔沁沙地主要固沙植物出苗的影响   总被引:3,自引:0,他引:3  
蒿属半灌木乌丹蒿(Artemisia wudanica)、白沙蒿(A. sphaerocephala)、差不嘎蒿(A. halodendron)是科尔沁沙地的主要固沙植物。其中乌丹蒿和差不嘎蒿是科尔沁沙地的本土植物,白沙蒿为来自于库布齐沙漠、毛乌素沙地的飞播植物。设置了 5个沙埋深度(0.5、1.0、1.5、2.0和3.0 cm)和 4个水分梯度(86、171、257和 342 mL,分别模拟每月25、50、75和100 mm的降雨量),以探讨3种植物幼苗出土对沙埋和水分的响应。结果表明,沙埋与水分均显著影响着3种蒿属植物的幼苗出土(P < 0.001)。3种植物最适沙埋深度在0.5-1.5 cm范围内,萌发出土时适宜水量要高于当地种子萌发期的平均降水量(50 mm/月)。两种固沙先锋植物乌丹蒿和白沙蒿的种子出苗率均显著高于差不嘎蒿,乌丹蒿较白沙蒿也明显为高,尤其在水分缺乏时,表现出两种先锋植物种子出苗对干旱有更好的适应性。协方差分析表明,乌丹蒿幼苗死亡率显著高于白沙蒿和差不嘎蒿(P < 0.05),在达到75 mm/月降水量时,3种植物的出苗较好,但不能满足乌丹蒿幼苗生长对水分的需求,而实际种子萌发期的降水量平均只有50 mm/月。因而降水的缺乏导致乌丹蒿种群更新出现问题,加之飞播植物的竞争,使得近几年科尔沁沙地较多乌丹蒿种群出现衰退。  相似文献   

6.
Temperature and moisture impact strongly on the early stages of a plant's life cycle. Global climate change is altering the environmental cues that seeds receive resulting in compromised seedling emergence and changes to seedling performance. Here, we investigate how temperature and moisture affect these early stages of plant development in four Banksia species collected from a longitudinal climate gradient in southwest Western Australia. A common garden was used to examine the between‐species and among‐population variation in seedling emergence, growth and leaf traits under two soil temperature regimes and three levels of precipitation. We predicted that reduced moisture and increased temperature would delay and reduce total seedling emergence and negatively affect seedling performance. Furthermore, we expected that within species there would be geographically structured variation in response to the treatments. Species differed significantly in all measured traits. Soil warming resulted in strong impacts on regenerative traits, significantly slowing seedling emergence in two species and reducing total seedling emergence in three species. In addition, warming altered seedling performance with significant reductions to the above‐ground leaf biomass ratio of three species. In contrast, response to soil moisture manipulation was minimal across all species but possibly due to issues regarding implementation of an effective moisture treatment. The species that showed the greatest decline in emergence under warmed conditions (B. quercifolia) also showed the smallest vegetative shift; the species with the smallest decline in emergence (B. coccinea) showed a relatively large vegetative shift. Among‐population differences were significant for many traits, however, trait differentiation was inconsistent across species and, contrary to our hypothesis, the variation we observed was not clearly associated with the climate gradient. As these among‐population differences in traits are not easy to predict, we caution the use of simple rules for choosing seed populations for conservation and restoration.  相似文献   

7.
Abstract. The effects of topography, soil moisture, wind and grazing on the emergence and survival of seedlings of Festuca spp. were examined in the steppe zone of Patagonia, Argentina. Ungrazed and grazed field treatment plots were established on a plain and a north-facing slope at the Media Luna Ranch (43° 36′S, 71° 25′W). On the leeward and windward sides of each of 15 Festuca plants, 0.1 m × 0.4 m quadrats were censused bimonthly for seedling emergence and survival over three growing seasons. Three categories were distinguished: recently germinated and up to the first leaf, two to four leaves, and from five leaves up to one tiller. Soil moisture content, litter cover and frost heaving effects were also determined for each treatment at each sampling date. Festuca spp. showed two emergence peaks, one in late fall and the other in early to mid-spring. Seedling emergence was significantly correlated with soil moisture content in the 0–5 cm of the soil during the three growing seasons. Seedlings that emerged in the fall had higher survivorship than those that emerged in spring. Seedling emergence and survival was significantly (p < 0.01) lower on slopes, in the grazing treatment, and on windward sides of adult plants. In this grassland, an increase in the availability of safe sites for seedling emergence and survival might be achieved by protecting vegetation from grazing, particularly on north-facing slopes.  相似文献   

8.
Seedling emergence is a critical stage in the establishment of desert plants. Soil microbes participate in plant growth and development, but information is lacking with regard to the role of microbes on seedling emergence. We applied the biocides (captan and streptomycin) to assess how seed mucilage interacts with soil microbial community and physiochemical processes to affect seedling emergence of Artemisia sphaerocephala on the desert sand dune. Fungal and bacterial community composition and diversity and fungal–bacterial interactions were changed by both captan and streptomycin. Mucilage increased soil enzyme activities and fungal–bacterial interactions. Highest seedling emergence occurred under streptomycin and mucilage treatment. Members of the phyla Firmicutes and Glomeromycota were the keystone species that improved A. sphaerocephala seedling emergence, by increasing resistance of young seedlings to drought and pathogen. Seed mucilage directly improved seedling emergence and indirectly interacted with the soil microbial community through strengthening fungal–bacterial interactions and providing favourable environment for soil enzymes to affect seedling emergence. Our study provides a comprehensive understanding of the regulatory mechanisms by which soil microbial community and seed mucilage interactively promote successful establishment of populations of desert plants on the barren and stressful sand dune.  相似文献   

9.
Patterns of seedling recruitment may have persistent effects on population and community processes. Assuming seed availability is not limiting, the environmental sieve (i.e., the suite of factors influencing seed germination and seedling emergence and survival) determines how many seedlings establish and, most importantly, where they do so. In this study, we identify the spatial structure of some resources and abiotic conditions known to be significant for tree seedling emergence and survival and determine how these environmental factors influence the establishment of Fagus grandifolia, Acer saccharum, Fraxinus americana, and Ostrya virginiana in a deciduous forest of southern Québec (Canada). We expect an increase from Fagus, through Acer and Fraxinus, to Ostrya in the control of environmental variables on seedling emergence and survival, because of differences in the seed size of these species. Density of newly-emerged seedlings of all four species showed positive spatial autocorrelation at distances of up to ca. 10 m. Environmental variables were also structured at the same spatial scale, except for soil moisture. Acer seedling emergence pattern was positively correlated to photosynthetic photon flux density (PPFD), and the pattern of Fraxinus to soil N and moisture. Seedling survival was not spatially autocorrelated for any of the four species, although it was positively density-dependent in Acer and Fagus. In only Ostrya was seedling survival correlated (positively) to one of the environmental variables studied, i.e., PPFD. Overall, environmental variables were spatially less heterogeneous than seedling emergence and survival. Either seed availability was not saturating or factors not considered here, such as competition and predation (the intensity of which often varies with resources and/or abiotic conditions), modified the influence that the physical environment had on patterns of seedling establishment. Our prediction of a greater environmental control on seedling emergence and survival in small-seed species was not totally confirmed.  相似文献   

10.
Seedling dynamics were followed in a Puerto Rican forest for 20 months following a severe hurricane to study the interactive effects of hurricane debris, nutrients, and light on seedling diversity, density, growth, and mortality. Three treatments (debris removal, an unaltered control with hurricane debris, and chemical fertilization added to hurricane debris) altered levels of forest debris and soil nutrients. Canopy openness was measured twice using hemispherical photographs of the canopy. We examined the demographic responses of six common species to treatments over time. Seedling densities increased for all six species but the only significant treatment effects were increased densities of the pioneer tree Cecropia and the shrub Palicourea in the debris removal treatment. Seedling growth declined with declining light levels for four species but not for the pioneer tree Alchornea or the non‐pioneer tree Dacryodes. Only Cecropia and the non‐pioneer tree Chionanthus had treatment effects on growth. Mortality also differed among species and tended to be highest in the fertilized plots for all but Cecropia and Dacryodes. We found only some of the expected differences between pioneer and non‐pioneer plants, as each species had a unique response to the patchy distributions of organic debris, nutrients, and light following the hurricane. High local species diversity was maintained through the individualistic responses of seedlings after a disturbance.  相似文献   

11.
西鄂尔多斯珍稀濒危植物长叶红砂种子萌发特征   总被引:2,自引:0,他引:2  
珍稀濒危灌木长叶红砂是我国西北干旱地区荒漠植被中的古老残遗物种,对维持荒漠植被稳定具有重要作用.本文研究了长叶红砂种子特性,及其在不同光照、温度、土壤水分和沙埋等环境因子中的萌发策略.结果表明:长叶红砂种子具有高活力、高萌发率、耐贮存的特点,在光照和黑暗条件下均能很好地萌发.种子萌发的适宜温度为恒温20 ℃~25 ℃或变温15 ℃/25 ℃,萌发率高达93%.土壤含水量为2%时,种子开始萌发;土壤含水量为12%时,其萌发率最高,达89%.长叶红砂种子适宜的沙埋深度为1 cm,>5 cm沙埋不出苗.沙埋深度对出苗率和幼苗生长高度的影响显著,而对幼苗质量的影响不显著.水分条件和沙埋深度是制约长叶红砂种子萌发和出苗的主要因素,而种子的高萌发率增加了幼苗生存的风险,不利于其应对荒漠极端环境变化.这种特性是长叶红砂濒危的重要原因之一.  相似文献   

12.
Abstract Experimental studies of the emergence of shrubs and trees in grassy woodlands on the New England Tablelands, New South Wales, Australia, showed that emergence of seedlings was determined by seed supply, seed predators and seed burial. The survival of these seedlings was then observed in an experiment to test the effects of previous land use, grazing by stock and grazing by other vertebrates. The fate of four eucalypts and six shrub species was followed over 5 years. Across all species more than 50% mortality occurred in the first 6 months prior to the imposition of grazing treatments. These deaths were attributed to the combined effects of insect defoliation, cold, and low soil moisture. Average mortality over all treatments showed two distinct trends: eucalypts and one unpalatable shrub (Leptospermum) had greater than 1% survival over 5 years, whereas Acacia, Cassinia, Indigophera, Lomatia and Xanthorrhoea either had very low or no survival after 5 years. The effect of livestock grazing on seedling numbers was rarely detected because of patchy emergence and mortality due to other causes. However, proportional hazard regression models showed that there was often an increased hazard associated with grazing or grazed landscapes. Overall, those species with high hazard coefficients associated with stock are rare in the landscape, whereas those with lesser risk are more common. Recruitment is likely to be an extremely rare event because the highest proportion of germinable seed sown that survived to a juvenile stage was 0.42% and the mean across all species was 0.12%. No natural recruitment of shrub species was observed over 5 years of observation, suggesting that recruitment is episodic and disturbance driven. Enhancing natural ‘regeneration’ of woody plants under these circumstances may be more challenging than simply fencing off remnants.  相似文献   

13.
Weed invasion is a major threat to Australian tropical savannas, and controlling weeds is essential for successful re‐establishment of native species on disturbed sites. Gamba Grass (Andropogon gayanus) is an African grass which has invaded large areas of tropical savanna across northern Australia. Current management strategies in northern Australia focus on fire and glyphosate to effectively control mature plants; however, re‐establishment of infestations from the soil seed bank remains a major challenge to eradication efforts. This study focused on the effects of soil seed bank treatments on Gamba Grass recruitment on a mine site in northern Australia. Adult Gamba Grass plants within test plots were killed with glyphosate to exclude resource competition. Chemical, physical and biological treatments were then applied, and the treatment effects on subsequent Gamba Grass seedling emergence and survival quantified. Seedling emergence was significantly reduced by three of the four residual herbicide treatments tested. The most effective herbicide treatments, dalapon and sulfometuron, reduced emergence by 90% compared to the standard glyphosate treatment alone. This equated to a reduction in Gamba Grass seedling emergence from 1 seedling/m2 to 1 seedling 10 m?2, a major improvement for Gamba Grass management. These residual herbicide treatments significantly reduced the population density of Gamba Grass for at least 5 months after emergence. The physical and biological treatments did not have a significant effect on seedling emergence. This significant reduction in Gamba Grass seedling emergence and survival can substantially improve Gamba Grass management. Reducing re‐colonisation from the soil seed bank using residual herbicides provides a valuable management tool for land managers, integrating readily with established strategies for controlling the mature plants.  相似文献   

14.
Yan Q  Liu Z  Ma J  Jiang D 《Annals of botany》2007,99(1):19-28
BACKGROUND AND AIMS: The function of sexual reproduction of perennials in restoration of vegetation of active dune fields frequently has been underestimated. The objective of this study was to evaluate the role of sexual reproduction of the perennial Salix gordejevii in the revegetation of active dunes. METHODS: Seedling emergence and establishment of S. gordejevii were examined both in controlled experiments (germination at different burial depths with different watering regimes) and in field observations in three dune slacks. The reproductive phenology and soil seed bank of S. gordejevii, the dynamics of soil moisture, the groundwater table and the landform level of three dune slacks were monitored. KEY RESULTS: Seeds of S. gordejevii began maturation on 1 May, and seed dispersal lasted from 8 May to 20 May. Seeds on the soil surface germinated significantly faster than those buried in soil (P<0.05). Seedling emergence was negatively correlated with landform level. When most seedlings emerged, there was a significantly positive correlation between soil moisture and seedling emergence (P<0.01). Rainfall was negatively correlated with seedling emergence. Seedling establishment was significantly and positively correlated with seedling emergence (P<0.05), and 72.3 % of the emergent seedlings were established at the end of the growing season. These results indicated that (a) seeds matured and dispersed before the rainy season; (b) seeds germinated as soon as they contacted a moist surface and relied more on soil moisture than on rainfall; and (c) more seedlings emerged at lower sampling points in dune slacks. CONCLUSIONS: In natural conditions, restoration of active sand dune fields generally commences with revegetation of dune slacks where sexual reproduction of perennials contributes greatly to species encroachment and colonization and hence plays an important role in restoration of active dune fields. Furthermore, aeolian erosion in dune slacks, leading to good soil moisture, facilitates seed germination, seedling emergence and establishment of S. gordejevii.  相似文献   

15.
Niche diversification is prominent among the mechanisms proposed to explain tropical rain forest tree diversity, with many studies focusing on trade‐offs among shade tolerance and growth. Less obvious is the impact of occasional, ephemeral and often minor disturbances on tree seedling survival. We propose that differential tolerances to soil waterlogging can contribute to the distribution of tree seedling communities along microtopographical gradients. We test this hypothesis experimentally by evaluating survival and performance of planted seedlings across microtopographical gradients in a periodically inundated tropical rain forest environment. Survival and relative growth rates were assessed for six Shorea (Dipterocarpaceae) species in Sepilok Forest Reserve (Sabah, Malaysia) over a 2‐yr period, during which seedlings were subjected to two brief flooding events. The species were selected on the basis of soil habitat affinities, with two species being primarily associated with low‐lying alluvial flats subject to inundation, two being associated with non‐flooded mudstone hills, and two species occurring in both habitats. Seedling performance was related to microtopographic elevation within and among plots and to soil moisture among plots. The faster growing species, Shorea argentifolia, Shorea leprosula and Shorea parvifolia, tended to be more vulnerable to high soil moisture in terms of mortality than the three species with lower growth rates. Within plots, soil moisture was inversely correlated with microelevation, and seedlings located at higher microelevations had an increased probability of survival. Microtopographical differences in seedling position could therefore contribute to species assembly processes through differential mortality, particularly in areas subject to minor and ephemeral flooding events.  相似文献   

16.
双元覆盖对果园土壤水分的调控效果   总被引:6,自引:0,他引:6  
为了研究双元覆盖对渭北旱塬苹果园土壤水分的调控效果,对4个不同处理(地膜压秸秆双元覆盖、地膜覆盖、秸秆覆盖和对照)下的果园0~600 cm土层范围内的土壤水分进行测定,并对果树产量和枝条生长量进行了统计.结果表明: 双元覆盖的整体保墒效果最佳,0~600 cm土壤贮水量比对照高6.7%;长期双元覆盖能够有效地缓解该地区深层土壤出现的干燥化现象,稳定层(240~600 cm)月平均土壤贮水量比对照高64.22 mm;双元覆盖和地膜覆盖两种措施均能降低浅层(0~60 cm)土壤水分随时间的波动,提高浅层土壤水分随时间变化的稳定性;与单一覆盖方式相比,双元覆盖方式更能减小土壤剖面水分垂直变异,提高土壤剖面水分垂直分布的稳定性;双元覆盖方式增产效果明显,苹果产量比对照高48.2%.综上,相对于单一的覆盖方式,双元覆盖能更好地调控果园土壤水分、提高苹果产量.  相似文献   

17.
The sea lavender Limonium girardianum (Guss.) Fourr. is endemic to the Mediterranean salt marshes of the French and Spanish coasts. Most of the salt marshes where L. girardianum occurs are exposed to human disturbance, in particular due to industrial expansion. To determine the ecological conditions favorable to the development of L. girardianum, we used a set of permanent plots distributed along a topographical gradient in eleven French salt marshes. We monitored intensity of flooding, water table depth, soil moisture, soil salinity and granulometry. We investigated (i) the abiotic and biotic requirements for L. girardianum and (ii) the effects of environmental conditions on the population structure of L. girardianum. We found a unimodal response of L. girardianum species to flooding, salt and soil moisture gradients. Soil texture modulated the effects of flooding and drought on the presence of the species. Furthermore, flooding induced population renewal, i.e. the highest seedling emergence and adult mortality. We recorded low seedling emergence in higher topographical positions. Proportions of seedlings were lowest on saltier soils and highest in flooded areas and on coarse sand. Prolonged flooding is likely to induce population renewal as long as remaining individuals are capable of reconstituting viable populations. To suggest efficient intermediate and long-term conservation strategies for L. girardianum, it will be necessary to consider the role of human-driven changes in salt marshes with regard to hydrology and control of the vegetation.  相似文献   

18.
该文研究了野外条件下不同深度的沙埋对沙鞭(Psammochloa villosa)种子萌发和幼苗出土的影响,以及温室条件下种子大小对不同深度沙埋后的种子萌发和幼苗出土的影响。结果表明,沙埋深度显著影响沙鞭的种子萌发率、幼苗出土率和种子休眠率。沙子表面的种子不能萌发。2 cm的浅层沙埋时的种子萌发率和幼苗出土率最高,1 cm 沙埋的种子萌发率和幼苗出土率次之。沙埋深度超过2 cm之后,沙鞭的种子萌发率和幼苗出土率与沙埋深度呈负相关。2 cm的种子休眠率最低。从2 ~12 cm,种子休眠率随着沙埋深度的增加而增加。在幼苗能够出土的深度(1~6 cm),幼苗首次出土所需的时间随着沙埋深度的增加而延长。种子大小对沙鞭的种子萌发率没有显著影响。但是在深层沙埋(6 cm)时,与小种子相比,大种子产生的幼苗的出土率较高。从2~6 cm,大种子形成的幼苗的茎长度都较长。  相似文献   

19.
Intense debate surrounds the effects of post‐fire salvage logging (SL) versus nonintervention policies on forest regeneration, but scant support is available from experimental studies. We analyze the effect of three post‐fire management treatments on the recruitment of a serotinous pine (Pinus pinaster) at a Mediterranean mountain. Treatments were applied 7 months after the fire and differ in the degree of intervention, ranging from “no intervention” (NI, all trees left standing) to “partial cut plus lopping” (PCL, felling most of the trees, cutting the main branches, and leaving all the biomass in situ without mastication), and “SL” (felling and piling the logs, and masticating the woody debris). Seedling survival after 3 years was the highest in PCL (47.3% versus 38.7% in SL). This was associated with the amelioration of microclimatic conditions under the scattered branches, which reduced radiation and soil temperature while increasing soil moisture. Seedling density after 2 years was approximately 5.5 times higher in PCL than in SL, as in SL a large fraction of seedlings was lost as a consequence of mechanized mastication. The NI treatment showed the lowest seedling survival (17.3%). Nevertheless, seedling density was similar to SL. Seedling growth scarcely differed among treatments. Our results show that branches left onsite acted as nurse objects that improved key microclimatic conditions for seedling recruitment. This creates a facilitative interaction ideal for seedling establishment in moisture‐deficient ecosystems, as it provides the benefit of a shading overstory but without underground competition.  相似文献   

20.
Predicting the fate of tropical forests under a changing climate requires understanding species responses to climatic variability and extremes. Seedlings may be particularly vulnerable to climatic stress given low stored resources and undeveloped roots; they also portend the potential effects of climate change on future forest composition. Here we use data for ca. 50,000 tropical seedlings representing 25 woody species to assess (i) the effects of interannual variation in rainfall and solar radiation between 2007 and 2016 on seedling survival over 9 years in a subtropical forest; and (ii) how spatial heterogeneity in three environmental factors—soil moisture, understory light, and conspecific neighborhood density—modulate these responses. Community‐wide seedling survival was not sensitive to interannual rainfall variability but interspecific variation in these responses was large, overwhelming the average community response. In contrast, community‐wide responses to solar radiation were predominantly positive. Spatial heterogeneity in soil moisture and conspecific density were the predominant and most consistent drivers of seedling survival, with the majority of species exhibiting greater survival at low conspecific densities and positive or nonlinear responses to soil moisture. This environmental heterogeneity modulated impacts of rainfall and solar radiation. Negative conspecific effects were amplified during rainy years and at dry sites, whereas the positive effects of radiation on survival were more pronounced for seedlings existing at high understory light levels. These results demonstrate that environmental heterogeneity is not only the main driver of seedling survival in this forest but also plays a central role in buffering or exacerbating impacts of climate fluctuations on forest regeneration. Since seedlings represent a key bottleneck in the demographic cycle of trees, efforts to predict the long‐term effects of a changing climate on tropical forests must take into account this environmental heterogeneity and how its effects on regeneration dynamics play out in long‐term stand dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号