首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Due to natural or artificial obstacles, gait is a less automatic and periodic process than it would appear when studying normal walking on the level. Pre-programmed functional electrical stimulation (FES) sequences, therefore, do not appear to be a suitable approach to the control of multichannel electrical stimulators in the restoration of paraplegic walking. Walking in paraplegic subjects must be, to a large extent, under voluntary control. To lessen the burden of this control, the symmetry of walking can be taken into account. Symmetric motion of the legs requires symmetric FES actuation. Symmetry of FES responses was studied in a group of 10 paraplegic subjects who had all undergone the FES training program. Recruitment curve, fatigue index and twitch delay were assessed. An average 80% symmetry was found in all parameters measured, thus allowing a reduction of complexity of control approach for FES locomotor aids.  相似文献   

2.
A group of 35 paraplegic subjects using reciprocating walking orthoses have been examined in order to gain an insight into the potential functional benefits of using such devices. Measurements have been made of walking speeds and of the energy costs of ambulation using an established technique based on heart rate recordings. It was found that orthotically aided walking for paraplegics was slow and energy costly compared with both normal walking and wheelchair propulsion and, as it additionally requires the use of a walking aid in both hands, cannot be considered to confer the functional benefits frequently claimed for it. Nevertheless, the majority of the subjects studied liked their orthosis and did well in it, with many subjectively reporting improvements in mobility and independence.  相似文献   

3.
Muscle mitochondrial content is tightly regulated, and requires the expression of both nuclear and mitochondrial genes. In addition, muscle mitochondrial content is a major determinant of aerobic exercise capacity in healthy subjects. The current study was designed to test the hypothesis that in healthy humans, muscle mitochondrial DNA (mtDNA) content is correlated with citrate synthase activity (a representative nuclear-encoded mitochondrial enzyme) and aerobic exercise capacity as defined by whole-body peak oxygen consumption (VO2). Furthermore, it was postulated that these relationships might be altered with disease. Twelve healthy and five paraplegic subjects underwent exercise testing and vastus lateralis muscle biopsy sampling. An additional ten healthy subjects and eight patients with unilateral peripheral arterial disease (PAD) underwent exercise testing and gastrocnemius muscle biopsy sampling. Citrate synthase activity and mtDNA content were positively correlated in the vastus lateralis muscles from the healthy subjects. This relationship was similar in muscle from paraplegic subjects. mtDNA content was positively correlated with peak VO2 in the healthy subjects and in the paraplegic subjects in whom peak VO2 had been elicited by functional electrical stimulation of the muscle. In contrast, the PAD subjects demonstrated higher mtDNA contents than would have been predicted based on their claudication-limited peak VO2. Thus, in healthy humans there are strong relationships between muscle mtDNA content and both muscle citrate synthase activity and peak VO2. These relationships are consistent with coordinant nuclear DNA and mtDNA expression, and with mitochondrial content being a determinant of aerobic exercise capacity. The relationships seen in healthy humans are quantitatively similar in paraplegic patients, but not in patients with PAD, a disease which is associated with a metabolic myopathy. The relationships between mtDNA content, mitochondrial enzyme activities and exercise capacity provide insight into the physiologic and pathophysiologic regulation of muscle mitochondrial expression.  相似文献   

4.
When two eyes are simultaneously stimulated by two inconsistent images, the observer’s perception switches between the two images every few seconds such that only one image is perceived at a time. This phenomenon is named binocular rivalry (BR). However, sometimes the perceived image is a piecemeal mixed of two stimuli known as piecemeal perceptions. In this study, a BR task was designed in which orthogonal gratings are presented to the two eyes. The subjects were trained to report 3 states: dominant perceptions (two state matching to perceived grating orientation) and the piecemeal perceptions (third state). We explored the scale-freeness of the BR percept durations considering the two dominant monocular states as well as the piecemeal transition state using detrended fluctuation analysis. Our results reproduced the previous finding of memory in the perceptual switches between the monocular perception states. Moreover, we showed that such memory also exists in the transitory periods of dichoptic piecemeal perceptions. These results support our hypothesis that the pool of unstable piecemeal perceptions could be regarded as separate multiple low-depth basin in the perceptual state landscape. Likewise, the transitions from these piecemeal state basins and stable monocular state basins are faced with resistance. Therefore there is inertia and memory (i.e. positive serial correlation) for the piecemeal dichoptic perception states as well as the monocular states.  相似文献   

5.
This paper presents and tests a framework for encoding joint dynamics into energy states using kinematic and kinetic knee joint sensor data and demonstrates how to use this information to predict the future energy state (torque and velocity requirements) of the joint without a priori knowledge of the activity sequence. The intended application is for enhancing micro-controlled prosthetics by making use of the embedded sensory potential of artificial limbs and classical mechanical principles of a prosthetic joint to report instantaneous energy state and most probable next energy state. When applied to the knee during preferred and fast speed walking in 8 human subjects (66 preferred-speed trials and 50 fast-speed trials), it was found that joint energy states could be consistently sequenced (75% consensus) according to mechanical energy transference conditions and subsequences appeared to reflect the stability and energy dissipation requirements of the knee during gait. When simple constraints were applied to the energy transfer input conditions (their signs), simulations indicated that it was possible to predict the future energy state with an accuracy of >80% when 2% cycle in advance (~20 ms) of the switch and >60% for 4% (~40 ms) in advance. This study justifies future research to explore whether this encoding algorithm can be used to identify submodes of other human activity that are relevant to TFP control, such as chair and stair activities and their transitions from walking, as well as unexpected perturbations.  相似文献   

6.
Peripheral sensory feedback is believed to contribute significantly to maintaining walking stability. Patients with diabetic peripheral neuropathy have a greatly increased risk of falling. Previously, we demonstrated that slower walking speeds in neuropathic patients lead to improved local dynamic stability. However, all subjects exhibited significant local instability during walking, even though no subject fell or stumbled during testing. The present study was conducted to determine if and how significant changes in peripheral sensation and walking speed affect orbital stability during walking. Trunk and lower extremity kinematics were examined from two prior experiments that compared patients with significant neuropathy to healthy controls and walking at multiple different speeds in young healthy subjects. Maximum Floquet multipliers were computed for each time series to quantify the orbital stability of these movements. All subjects exhibited orbitally stable walking kinematics, even though these same kinematics were previously shown to be locally unstable. Differences in orbital stability between neuropathic and control subjects were small and, with the exception of knee joint movements (p=0.001), not statistically significant (0.380p0.946). Differences in knee orbital stability were not mediated by differences in walking speed. This was supported by our finding that although orbital stability improved slightly with slower walking speeds, the correlations between walking speed and orbital stability were generally weak (r(2)16.7%). Thus, neuropathic patients do not gain improved orbital stability as a result of slowing down and do not experience any loss of orbital stability because of their sensory deficits.  相似文献   

7.
The incidence of falls in the elderly is increasing with the aging of society and is becoming a major public health issue. From the viewpoint of prevention of falls, it is important to evaluate the stability of the gait in the elderly people. The pelvic movement, which is a critical factor for walking stability, was analyzed using a posture monitoring system equipped with a triaxial accelerometer and a gyroscope. The subjects were 95 elderly people over 60 years of age. The criteria for instability were open-eye standing on one leg for 15s or less, and 11s or more on 3m timed up and go test. Forty subjects who did not meet both of these criteria comprised the stable group, and the remaining 55 subjects comprised the unstable group. Pelvic movement during walking was compared between the two groups. The angle, angular velocity, and acceleration were analyzed based on the wave shape derived from the device worn around the second sacral. The results indicated that pelvic movement was lower in all three directions in the unstable group compared to the stable group, and the changes in the pelvic movement during walking in unstable elderly people were also reduced. This report is the first to evaluate pelvic movement by both a triaxial accelerometer and a triaxial gyroscope simultaneously. The characteristics of pelvic movement during walking can be applied in screening to identify elderly people with instability, which is the main risk factor associated with falls.  相似文献   

8.
1 Vascular tone is higher in paraplegics than in normals, both in capacitance and resistance vessels. This is possibly correlated with the increase in circulating catecholamines which has recently been reported. 2 Tilting at 30 degrees from horizontal induces a hydrostatic increase in transmural pressure in the affected vascular bed. This pressure change causes: an initial decrease in resistance, followed by a progressive increase which can be explained by the Bayliss reflex. The time sequence and amplitude of the responses are comparable for normal and paraplegic subjects; an increase in vascular tone of the capacitance vessels (increase in venous pressure, decrease in local blood volume). This response was constantly observed in paraplegic subjects and was absent or weak in normal subjects. 3 In conclusion, reflex changes in vascular tone due to upright posture persist after traumatic section of the spinal chord. Orthostatic hypotension and blood pooling in the lower limbs in paraplegic subjects is probably due primarly to a deficit of the pumping action of the leg muscles.  相似文献   

9.
The purpose of this study was to examine cardiac hemodynamics during acute head-up tilt (HUT) and calf venous function during acute head-down tilt (HDT) in subjects with paraplegia compared with sedentary nondisabled controls. Nineteen paraplegic males (below T6) and nine age-, height-, and weight-matched control subjects participated. Heart rate, stroke volume, and cardiac output were assessed using the noninvasive acetylene uptake method. Venous vascular function of the calf was assessed using venous occlusion plethysmography. After supine measurements were collected, the table was moved to 10 degrees HDT followed by the three levels of HUT (10, 35, and 75 degrees ) in random order. Cardiac hemodynamics were similar between the groups at all positions. Calf circumference was significantly reduced in the paraplegic group compared with the control group (P < 0.001). Venous capacitance and compliance were significantly reduced in the paraplegic compared with control group at supine and HDT. Neither venous capacitance (P = 0.37) nor compliance (P = 0.19) increased from supine with 10 degrees HDT in the paraplegic group. A significant linear relationship was established between supine venous compliance and supine cardiac output in the control group (r = 0.80, P < 0.02) but not in the paraplegic group. The findings of reduced calf circumference and similar venous capacitance at supine rest and 10 degrees HDT in the paraplegic group imply that structural changes may have limited venous dispensability in individuals with chronic paraplegia. Furthermore, the lack of a relationship between supine venous compliance and supine cardiac output suggests that cardiac homeostasis does not rely on venous compliance in subjects with paraplegia.  相似文献   

10.
Falls pose a tremendous risk to those over 65 and most falls occur during locomotion. Older adults commonly walk slower, which many believe helps improve walking stability. While increased gait variability predicts future fall risk, increased variability is also caused by walking slower. Thus, we need to better understand how differences in age and walking speed independently affect dynamic stability during walking. We investigated if older adults improved their dynamic stability by walking slower, and how leg strength and flexibility (passive range of motion (ROM)) affected this relationship. Eighteen active healthy older and 17 healthy younger adults walked on a treadmill for 5min each at each of 5 speeds (80-120% of preferred). Local divergence exponents and maximum Floquet multipliers (FM) were calculated to quantify each subject's inherent local dynamic stability. The older subjects walked with the same preferred walking speeds as the younger subjects (p=0.860). However, these older adults still exhibited greater local divergence exponents (p<0.0001) and higher maximum FM (p<0.007) than the younger adults at all walking speeds. These older adults remained more locally unstable (p<0.04) even after adjusting for declines in both strength and ROM. In both age groups, local divergence exponents decreased at slower speeds and increased at faster speeds (p<0.0001). Maximum FM showed similar changes with speed (p<0.02). Both younger and older adults exhibited decreased instability by walking slower, in spite of increased variability. These increases in dynamic instability might be more sensitive indicators of future fall risk than changes in gait variability.  相似文献   

11.
The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis anterior (TA) muscles and the soleus Hoffmann (H-) reflex were measured at 4.0 km/h on a motor driven treadmill to reveal the underlying motor strategies in each walking condition. The ApEn of the ankle joint angle was significantly higher (p<0.01) during high-heeled (0.38±0.08) than during barefooted walking (0.28±0.07). During high-heeled walking, coactivation between the SO and TA muscles increased towards heel strike and the H-reflex was significantly increased in terminal swing by 40% (p<0.01). These observations show that high-heeled walking is characterized by a more complex and less predictable pattern than barefooted walking. Increased coactivation about the ankle joint together with increased excitability of the SO H-reflex in terminal swing phase indicates that the motor strategy was changed during high-heeled walking. Although, the participants were young, healthy and accustomed to high-heeled walking the results demonstrate that that walking on high-heels needs to be controlled differently from barefooted walking. We suggest that the higher variability reflects an adjusted neural strategy of the nervous system to control the ankle joint during high-heeled walking.  相似文献   

12.
Currently there is no commonly accepted way to define, much less quantify, locomotor stability. In engineering, "orbital stability" is defined using Floquet multipliers that quantify how purely periodic systems respond to perturbations discretely from one cycle to the next. For aperiodic systems, "local stability" is defined by local divergence exponents that quantify how the system responds to very small perturbations continuously in real time. Triaxial trunk accelerations and lower extremity sagittal plane joint angles were recorded from ten young healthy subjects as they walked for 10 min over level ground and on a motorized treadmill at the same speed. Maximum Floquet multipliers (Max FM) were computed at each percent of the gait cycle (from 0% to 100%) for each time series to quantify the orbital stability of these movements. Analyses of variance comparing Max FM values between walking conditions and correlations between Max FM values and previously published local divergence exponent results were computed. All subjects exhibited orbitally stable walking kinematics (i.e., magnitudes of Max FM < 1.0), even though these same kinematics were previously found to be locally unstable. Variations in orbital stability across the gait cycle were generally small and exhibited no systematic patterns. Walking on the treadmill led to small, but statistically significant improvements in the orbital stability of mediolateral (p = 0.040) and vertical (p = 0.038) trunk accelerations and ankle joint kinematics (p = 0.002). However, these improvements were not exhibited by all subjects (p < or = 0.012 for subject x condition interaction effects). Correlations between Max FM values and previously published local divergence exponents were inconsistent and 11 of the 12 comparisons made were not statistically significant (r2 < or = 19.8%; p > or = 0.049). Thus, the variability inherent in human walking, which manifests itself as local instability, does not substantially adversely affect the orbital stability of walking. The results of this study will allow future efforts to gain a better understanding of where the boundaries lie between locally unstable movements that remain orbitally stable and those that lead to global instability (i.e., falling).  相似文献   

13.
Ecological systems can show complex and sometimes abrupt responses to environmental change, with important implications for their resilience. Theories of alternate stable states have been used to predict regime shifts of ecosystems as equilibrium responses to sufficiently slow environmental change. The actual rate of environmental change is a key factor affecting the response, yet we are still lacking a non-equilibrium theory that explicitly considers the influence of this rate of environmental change. We present a metacommunity model of predator–prey interactions displaying multiple stable states, and we impose an explicit rate of environmental change in habitat quality (carrying capacity) and connectivity (dispersal rate). We study how regime shifts depend on the rate of environmental change and compare the outcome with a stability analysis in the corresponding constant environment. Our results reveal that in a changing environment, the community can track states that are unstable in the constant environment. This tracking can lead to regime shifts, including local extinctions, that are not predicted by alternative stable state theory. In our metacommunity, tracking unstable states also controls the maintenance of spatial heterogeneity and spatial synchrony. Tracking unstable states can also lead to regime shifts that may be reversible or irreversible. Our study extends current regime shift theories to integrate rate-dependent responses to environmental change. It reveals the key role of unstable states for predicting transient dynamics and long-term resilience of ecological systems to climate change.  相似文献   

14.
A major limitation in the utilization of a functional electrical stimulation (FES) orthosis for routine, daily standing and walking of the spinal-cord-injured person is that visual monitoring is required to maintain balance and the walking pace. For standing and walking to be continuous and automatic with such an orthosis, a closed-loop sensory feedback system is proposed and evaluated; it provides vibrotactile feedback as a substitute to one's own visual sensation. Eight blindfolded experimental subjects were utilized as ‘imitators’ to interpret the footfalls of a second person (the pace setter). The experimental objective was to test the hypothesis that sufficient information could be transferred by way of the sensory (tactile) feedback system to the ‘imitator’ and to determine effectively foot position and anticipate the next step of the pacesetter. Quantitative analysis evaluated the effect of three different levels of training, under two different levels of cognitive load. The results disclosed a significant improvement in subject performance at the higher training levels compared with the ‘no training’ level (P = 0.01). Neither the cognitive load nor the interaction of training and cognitive load altered significantly the effect of training on subject performance. The experimental hypothesis is therefore satisfied that sufficient information was indeed transferred using the apparatus described. Such information (when utilized in conjunction with a thorough training programme) could be used in a practical sense by a paraplegic individual to interpret his own foot steps. Through continued use and training, it is likely that this information could become subconscious and automatic. Therefore, the spinal-cord-injured person would walk with an FES orthosis in various environments and minimize or remove their reliance on visual sensory information.  相似文献   

15.
BackgroundFalls are a common complication of advancing Parkinson''s disease (PD). Although numerous risk factors are known, reliable predictors of future falls are still lacking. The objective of this prospective study was to investigate clinical and instrumented tests of balance and gait in both OFF and ON medication states and to verify their utility in the prediction of future falls in PD patients.MethodsForty-five patients with idiopathic PD were examined in defined OFF and ON medication states within one examination day including PD-specific clinical tests, instrumented Timed Up and Go test (iTUG) and computerized dynamic posturography. The same gait and balance tests were performed in 22 control subjects of comparable age and sex. Participants were then followed-up for 6 months using monthly fall diaries and phone calls.ResultsDuring the follow-up period, 27/45 PD patients and 4/22 control subjects fell one or more times. Previous falls, fear of falling, more severe motor impairment in the OFF state, higher PD stage, more pronounced depressive symptoms, higher daily levodopa dose and stride time variability in the OFF state were significant risk factors for future falls in PD patients. Increased stride time variability in the OFF state in combination with faster walking cadence appears to be the most significant predictor of future falls, superior to clinical predictors.ConclusionIncorporating instrumented gait measures into the baseline assessment battery as well as accounting for both OFF and ON medication states might improve future fall prediction in PD patients. However, instrumented testing in the OFF state is not routinely performed in clinical practice and has not been used in the development of fall prevention programs in PD. New assessment methods for daylong monitoring of gait, balance and falls are thus required to more effectively address the risk of falling in PD patients.  相似文献   

16.
Load carriage perturbs the neuromuscular system, which can be impaired due to ageing. The ability to counteract perturbations is an indicator of neuromuscular function but if the response is insufficient the risk of falls will increase. However, it is unknown how load carriage affects older adults. Fourteen older adults (65 ± 6 years) attended a single visit during which they performed 4 min of walking in 3 conditions, unloaded, stable backpack load and unstable backpack load. During each walking trial, 3-dimensional kinematics of the lower limb and trunk movements and electromyographic activity of 6 lower limb muscles were recorded. The local dynamic stability (local divergence exponents), joint angle variability and spatio-temporal variability were determined along with muscle activation magnitudes. Medio-lateral dynamic stability was lower (p = 0.018) and step width (p = 0.019) and step width variability (p = 0.015) were greater in unstable load walking and step width variability was greater in stable load walking (p = 0.009) compared to unloaded walking. However, there was no effect on joint angle variability. Unstable load carriage increased activity of the Rectus Femoris (p = 0.001) and Soleus (p = 0.043) and stable load carriage increased Rectus Femoris activity (p = 0.006). These results suggest that loaded walking alters the gait of older adults and that unstable load carriage reduces dynamic stability compared to unloaded walking. This can potentially increase the risk of falls, but also offers the potential to use unstable loads as part of fall prevention programmes.  相似文献   

17.
R J Tallarida 《Life sciences》1990,46(22):1559-1568
The law of mass action is almost universally applied to interactions of both endogenous ligands and drugs with their specific receptors and results in the familiar hyperbolic equilibrium binding curve of bound (y) vs free (z) concentrations. Whereas the concentration of a drug molecule is governed by its pharmacokinetic properties and, possibly, by intrinsic control mechanisms, natural ligands are certainly controlled since their concentrations normally remain within specific limits. This paper represents a further study of control of this kinetic process in a model based on ligand production (rate F), first-order elimination (rate constant E) and a feedback function of occupancy, phi(y), that modulates these. In the controlled situation the system equilibrium occurs at states called critical points (yc,zc) at which both dy/dt and dz/dt are simultaneously zero. There are only a finite number of such points along the hyperbolic binding curve and these may be either stable or unstable. The basal state is the normal operating point of the system and is necessarily stable; that is, perturbations producing states away from it will return in time to this point. We have previously shown that phi'(y) less than or equal to 0 is a sufficient condition for stability. Accordingly, for a continuous control curve, an adjacent critical point will be unstable, and have phi'(y) greater than 0. If the system coordinates get sufficiently close to such an unstable point there is propulsion to extreme states and loss of control. The distance between the stable and unstable points determines whether a dose (or release) of the ligand will be controlled or not. The current paper focuses on the geometrical properties of the binding and control curves and how these relate to the stability of critical points and the overall control of ligand doses. In particular we show how the magnitude of the (negative) slope of the control curve at the basal point affects the frequency of oscillation about the basal state. It is further shown that high frequency control results in lower receptor occupancy, a result that may explain desensitization.  相似文献   

18.
The authors previously compared energetic costs of bipedal and quadrupedal walking in bipedally trained macaques used for traditional Japanese monkey performances (Nakatsukasa et al. 2004 Am. J. Phys. Anthropol. 124:248-256). These macaques used inverted pendulum mechanics during bipedal walking, which resulted in an efficient exchange of potential and kinetic energy. Nonetheless, energy expenditure during bipedal walking was significantly higher than that of quadrupedal walking. In Nakatsukasa et al. (2004 Am. J. Phys. Anthropol. 124:248-256), locomotor costs were measured before subjects reached a steady state due to technical limitations. The present investigation reports sequential changes of energy consumption during 15 min of walking in two trained macaques, using carbon dioxide production as a proxy of energy consumption, as in Nakatsukasa et al. (2004 Am. J. Phys. Anthropol. 124:248-256). Although a limited number of sessions were conducted, carbon dioxide production was consistently greater during bipedal walking, with the exception of some irregularity during the first minute. Carbon dioxide production gradually decreased after 1 min, and both subjects reached a steady state within 10 min. Energy expenditure during bipedalism relative to quadrupedalism differed between the two subjects. It was considerably higher (140% of the quadrupedal walking cost) in one subject who walked with more bent-knee, bent-hip gaits. This high cost strongly suggests that ordinary macaques, who adopt further bent-knee, bent-hip gaits, consume a far greater magnitude of energy during bipedal walking.  相似文献   

19.
Upper limb loadings of gait with crutches   总被引:1,自引:0,他引:1  
Long-term crutch users and patients with arthritis are particularly susceptible to upper limb joint degeneration during aided gait. The function of the walking aid for stability, support, and restraint/propulsion must be optimized with the upper limb loadings caused by the aids. Post-operative total hip replacement (THR) patients, tibial fracture, and paraplegic subjects using sticks and elbow crutches were analyzed in this study. Elbow and shoulder joint centers and aid orientations were monitored simultaneously in three dimensions and combined with aid forces to determine upper limb moment loadings. Three loading effects were observed: tendency for the aids to cause 1) the elbow to flex and shoulder to extend, 2) the elbow and shoulder to extend, and 3) the shoulder to abduct. Moment values of up to 0.10 Nm per body weight (BW) causing the shoulder to extend were measured, i.e., of similar magnitude to the moments at the hip in unaided gait. A modification of the elbow crutch, designed to improve medial-lateral stability, was unsuccessful in use due to wrist instability. This reinforced the requirement that crutch designs integrate the aid's function in gait with the ability of the upper limb joints to balance the applied loads.  相似文献   

20.
Movement variability has become an important field of research and has been studied to gain a better understanding of the neuro-muscular control of human movements. In addition to studies investigating "amplitude variability" there are a growing number of studies assessing the "temporal variability" in movements by applying non-linear analysis techniques. One limitation of the studies available to date is that they quantify variability features in specific, pre-selected biomechanical or physiological variables. In many cases it remains unclear if and to what degree these pre-selected variables quantify characteristics of the whole body movement. This technical note proposes to combine two analysis techniques that have already been applied for gait analysis in order to quantify variability features in walking with variables whose significance for the whole movements are known. Gait patterns were recorded using a full-body marker set on the subjects whose movements were captured with a standard motion tracing system. For each time frame the coordinates of all markers were interpreted as a high-dimensional "posture vector". A principal component analysis (PCA) conducted on these posture vectors identified the main one-dimensional movement components of walking. Temporal variability of gait was then quantified by calculating the maximum Lyapunov Exponent (LyE) of these main movement components. The effectiveness of this approach was demonstrated by determining differences in temporal variability between walking in unstable shoes and walking in a normal athletic-type control shoe. Several additional conceptual and practical advantages of this combination of analysis methods were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号