首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以人视觉诱发电位(VEP)反应为指标,在视野的不同位置测定了VEP对四个方位的闪烁方波光栅刺激(时间频率2.9Hz,空间频率1.4c/deg,对比度0.94)的反应幅度。在距中央凹20°视角同心圆的八个刺激位置上,VEP反应幅度对与向心线垂直方位的光栅刺激(同心圆的切线方向),有统计意义上的优势。这一规律在垂直、水平向心线上尤为明显。从总体上未发现VEP反应幅度与刺激光栅方位有着明显的关系。这说明在人视野周边区,VEP反应幅度与光栅方位和向心线的夹角(偏向角)相关,而与光栅的绝对方位无关。在相同的刺激条件下,中央区的VEP反应幅度与刺激光栅方位之间也未发现明显关系。  相似文献   

2.
Pattern electroretinograms (P-ERGs) and visual evoked potentials (VEPs) to 4 Hz alternating square-wave gratings were simultaneously recorded in 23 subjects. Responses were Fourier analyzed and amplitude and phase of the 2nd and 4th temporal harmonics were measured.The spatial frequency-amplitude function of the P-ERG 2nd harmonic component displayed either a bandpass tuning behavior, or a low-pass behavior. The peak amplitude for subjects with bandpass tuning was at 1.5 c/deg. The phase of the P-ERG 2nd harmonic decreased monotonically as spatial frequency increased. The VEP 2nd harmonic had a bimodal spatial frequency function with a peak at 3 c/deg and a second increase at spatial frequencies below 1 c/deg, regardless of the P-ERG characteristics. The phase of VEP 2nd and 4th harmonic had an inverted U-shaped function with peak at 3 c/deg and 1.5 c/deg respectively.Comparison of simultaneously recorded P-ERG and VEP spatial frequency functions demonstrated different tuning behavior for cortical and retinal responses. It is concluded that the proposed technique permits the separate analysis of retinal and cortical processing of visual information. The 2nd and 4th harmonic components of VEP behave independently of each other suggesting they may be generated by different subsystems.  相似文献   

3.
The Authors have studied the behaviour of checkerboard pattern visual evoked potential (VEP) latencies by using different spatial frequency stimuli and different stimulating visual fields in order to demonstrate whether spatial frequency might constitute a parameter capable of exciting different retinal regions like different stimulus fields. According to the recent literature low spatial frequency stimuli generate VEP with latencies which are significantly shorter than high spatial frequency stimuli, making this method more reliable for the differentiation of macular and peripheral retinal fields.  相似文献   

4.
Visually evoked potentials were used to determine the spatial contrast response function of the visual system and the visual acuity of the pigeon. The spatial contrast response describes the relationship between the contrast in a pattern of vertical stripes, whose luminance is a function of position, and the amplitude of the visually evoked response at various spatial frequencies for a given temporal frequency (pattern reversal frequency); it indicates how particular spatial frequencies are attenuated in the visual system. The visually evoked responses were recorded using monopolar stainless steel electrodes inserted into the stratum griseum superficiale of the optic tectum; the depth of penetration was determined on the basis of a stereotactic atlas. The stimulus patterns were generated on a video monitor placed 75 cm in front of the animal's eye perpendicular to the optic axis. The spatial contrast response function measured at 10% contrast and 0.5 Hz reversal frequency shows a peak at a spatial frequency of 0.5 c/deg, corresponding to 1 degree of visual angle, and decreases progressively at higher spatial frequencies. The high-frequency limit (cut-off frequency) for resolution of sinusoidal gratings, estimated from the contrast response function, is 15.5 c/deg, corresponding to a visual acuity of 1.9 min of arc.  相似文献   

5.
Brain resonance phenomena and induced rhythms in the brain recently gained importance in electroencephalographic, magnetoencephalographic and cellular studies (Ba\c sar and Bullock 1992). It was hypothesized that evoked potentials are superpositions of induced rhythms caused by resonance phenomena in neural populations (Ba\c sar et al. 1992). According to Ba\c sar (1972), such resonance phenomena are reflected in the main peaks of the amplitude frequency characteristics computed from EEG responses. The present study is based on a frequency domain approach for the evaluation of topography- and modality-dependent properties of oscillatory brain responses. EEG and evoked potentials were recorded from vertex, parietal and occipital scalp locations in 24 volunteers. Two combined methods were applied: (1) amplitude frequency characteristics were computed from the transient evoked responses, and (2) frequency components of the transient responses were obtained by adaptive digital filtering. Our main goal was to investigate theta (4--7 Hz) and alpha (8--15 Hz) response components. (1) Amplitude frequency characteristics. Auditory stimuli elicited theta-alpha compound responses in the 4--11 Hz frequency band (e.g. typical peaking frequency around 7 Hz for vertex recordings). Visual stimuli elicited alpha responses (e.g. typical peaking frequency for vertex recordings around 9--12 Hz). Frequency maxima for visual stimuli thus had main peaks at higher frequency values than frequency maxima for auditory stimuli. (2) Digital filtering confirmed these results: for vertex recordings, theta vs. alpha response amplitudes were 9 vs 6 for auditory stimuli and 5 vs 5 for visual stimuli, thus confirming a shift towards higher frequencies, i.e. a more prominent contribution of the alpha range, in the case of visual stimulation. We hypothesize that these properties might reflect site- and modality-specific features of stimulus encoding in the brain in which resonance properties of neuron populations are involved. Furthermore we emphasize the utility of the systems theory approach for a better understanding of brain function by means of EPs. Received: 25 February 1994 / Accepted in revised form: 5 August 1994  相似文献   

6.
Depression of the cat cortical visual evoked potential by soman   总被引:1,自引:0,他引:1  
The effects of intravenous administration of the anticholinesterase agent soman (pinacolyl methylphosphonofluoridate, 3-15 micrograms/kg) on the visual evoked potential (VEP) were examined in cats using phase-reversed sine wave grating stimuli of different spatial frequencies and contrasts. Doses of 5-7 micrograms/kg caused a depression of the VEP across all spatial frequencies in an abrupt, non-graded fashion. Studies in which contrast was varied showed that VEP depression resulted primarily from a decrease in the system gain rather than a change in the contrast sensitivity, and that response depression increased with increasing contrast. The dominant changes in gain revealed by these studies are consistent with a modulation of potassium conductance in the cell membrane which previous studies have shown to be dependent on a cholinergic mechanism.  相似文献   

7.
Yu HB  Shou TD 《生理学报》2000,52(5):411-415
采用基于内源信号的脑光学成像方法,在大范围视皮层研究了不同空间拓扑位置对应的皮层区的对光栅刺激空间频率反应特性。结果表明,周边视野对应区对高空间频率刺激反应极弱或没有反应,中心视野对应区对较宽的空间频率范围内的刺激均有反应,但对高频刺激反应更强;无论在周边对应区还是中心对应区,其视野越靠近中心,其空间频率调谐曲线和截止空间频率越靠近高频,而且这种过渡是平缓的。以上结果说明,猫初级视皮层空间频率反应  相似文献   

8.
The amplitudes of transient and steady-state visual evoked potentials (VEPs) were measured during hemifield stimulation of the left eye in 10 healthy adults. Pattern reversal of a checkerboard was produced at 4 stimulation frequencies: 1, 5, 10 and 15 Hz. The amplitudes of pattern VEPs were evaluated using the paired t test to determine significant differences between right and left hemifields. The transient VEP amplitudes from midoccipital, midparietal, ipsilateral occipital and contralateral occipital electrodes were significantly greater with right hemifield stimulation. The steady-state VEP amplitudes from the midoccipital electrode during 15 Hz stimulation were significantly greater with right hemifield stimulation. Our neurophysiological data may be compatible with neuroanatomical asymmetries of the occipital lobes in humans.  相似文献   

9.
The present study was designed to investigate whether administration of indomethacin (IMC), a non-selective cyclooxygenase (COX-1 and COX-2) inhibitor, and Rofecoxib, a highly selective COX-2 inhibitor, affect the regulation of regional cerebral blood flow response evoked by somatosensory activation (evoked rCBF). IMC and Rofecoxib were applied intravenously (6.25 and 3 mg/kg/hr, respectively). Somatosensory activation was induced by electrical hind paw stimuli of 0.2, 1, and 5 Hz (5-sec duration, 1.5 mA). The evoked rCBF was measured in alpha-chloralose anesthetized rats using laser-Doppler flowmetry. Before and after drug application, the evoked rCBF showed a frequency-dependent increase in the range of 0.2-5 Hz stimulation. IMC reduced significantly (about 50%-60%) evoked rCBF in response to all frequencies of hind paw stimulation (P< 0.05). Rofecoxib reduced significantly (about 50%) evoked rCBF in response to 1 and 5 Hz stimulation (P< 0.05), but did not affect evoked rCBF at 0.2 Hz. After IMC or Rofecoxib application, the normalized evoked rCBF curves peaked earlier as compared with that before their application (P< 0.05), although the rise time of 0.5 sec was nearly constant regardless of the stimulus frequency. The termination time of evoked rCBF curves was changed significantly after IMC application at 0.2 Hz stimulation (P< 0.05), but was not affected after Rofecoxib application. Neither COX inhibitor significantly affected the baseline level of CBF. The results suggest a participation of COX products in the regulation of evoked rCBF in response to somatosensory stimulation in the brain.  相似文献   

10.
The visual acuity of seven midland banded water snakes was measured by recording evoked responses from telencephalon to temporally modulated square wave grating patterns. Using conventional electrophysiological techniques and signal averaging, high contrast square wave gratings of different spatial frequencies were presented. Acuity was estimated by extrapolating relative response amplitude/log10 spatial frequency functions which yielded an average acuity of 4.25 cycles/degree. Refractive state was also estimated by recording evoked potentials to intermediate spatial frequencies with different lenses in front of the eye. Polynomial fits indicated that under the experimental conditions the snakes were around 6.4 diopters hyperopic suggesting a corrected acuity of 4.89 cycles/degree. Reduction of grating luminance resulted in a reduction in evoked potential acuity measurements. These results indicate that the spatial resolution of midland banded water snakes is the equal of cat; about 20/120 in human clinical terms.  相似文献   

11.
S Matsumoto 《Life sciences》1999,65(1):103-112
The present study was carried out to investigate whether there is the difference between low and high frequencies of vagal stimulation on the functional appearance of M2 receptors in the rabbit. The animals were anesthetized, artificially ventilated and bilaterally vagotomized. Bilateral vagus nerve stimulation (5 to 30 Hz) for 30 sec caused bronchoconstriction (measured as an increase in R(L) and a decrease in Cdyn) in a frequency-dependent manner. The bronchoconstriction evoked by ACh injection (1 and 3 microg/kg) was dose-dependent. Although administration of methoctramine (50 and 300 microg/kg), a selective M2 receptor antagonist, had no significant effect on ACh-induced bronchoconstriction, methoctramine dose-dependently augmented the R(L) and Cdyn responses to vagal stimulation at 5-15 Hz but did not potentiate bronchoconstrictive responses to the stimulation at 30 Hz. Administration of [D-Pro2, D-Try(7,9)]-SP (0.5 mg/kg, a selective tachykinin receptor antagonist) that had no significant effect on the R(L) and Cdyn responses to vagal stimulation (5-15 Hz) attenuated the bronchoconstrictive response to the stimulation at 30 Hz. Conversely, thiorphan (2 mg/kg, a neutral endopeptidase inhibitor) potentiated the bronchoconstriction evoked by vagal stimulation at 30 Hz only. These results suggest that M2 receptors function as the inhibitory receptors in the bronchoconstrictive response to vagal stimulation at the lower frequencies (5-15 Hz), but that the M2 receptor antagonism is diminished when vagal stimulation at a higher frequency (30 Hz) results in the release of SP from the lungs.  相似文献   

12.
Several studies have reported optimal population decoding of sensory responses in two-alternative visual discrimination tasks. Such decoding involves integrating noisy neural responses into a more reliable representation of the likelihood that the stimuli under consideration evoked the observed responses. Importantly, an ideal observer must be able to evaluate likelihood with high precision and only consider the likelihood of the two relevant stimuli involved in the discrimination task. We report a new perceptual bias suggesting that observers read out the likelihood representation with remarkably low precision when discriminating grating spatial frequencies. Using spectrally filtered noise, we induced an asymmetry in the likelihood function of spatial frequency. This manipulation mainly affects the likelihood of spatial frequencies that are irrelevant to the task at hand. Nevertheless, we find a significant shift in perceived grating frequency, indicating that observers evaluate likelihoods of a broad range of irrelevant frequencies and discard prior knowledge of stimulus alternatives when performing two-alternative discrimination.  相似文献   

13.
An ignored region of the visual field might be monitored by an intermittent full visual analysis or by a more continuous but restricted analysis. We investigated which type of process is more likely in early vision by studying the effects of diverting attention on adaptation to a range of spatial (0.5, 2, 4. and 6 c/deg) and temporal (1.5 and 10 Hz) frequencies. During adaptation, subjects either fixated an unchanging digit (normal attention). or named the sequence of changing digits which formed the fixation point (diverted). The test field was always a static version of the adapting field, and the strength of adaptation was measured through the velocity and duration of subsequent Motion Aftereffects (MAEs). When attention during adaptation was normal MAE durations rose with spatial frequency for the 1.5 Hz stimuli, and declined with spatial frequency for the 10 Hz stimuli. When attention was diverted from the 10 Hz stimuli, MAE durations and velocities fell by a similar amount at all spatial frequencies. However, for the 1.5 Hz stimuli, the effects of diversion were very small at 0.5 c/deg, and rose progressively with spatial frequency, so that MAE reductions were largest at 6 c/deg. It appears that diversion hardly affects the encoding of coarse, slow stimuli, but attenuates the encoding of finer and/or faster stimuli. This is consistent with the idea that during diversion the visual system monitors the scene continuously, but over a restricted range of spatial and temporal scales.  相似文献   

14.
Replicable oscillatory potentials, time-locked to pattern stimuli (9.0° central; counterphase reversal at 2.13 Hz) were dissociated from conventional, broad-band VEPs recorded in healthy volunteers at occipital scalp locations by high-pass digital filtering at 17.0–20.0 Hz. Nine consecutive wavelets were identified with a 56.4 ± 8.4 msec mean latency of the first replicable wavelet and mean peak-to-peak amplitude varying between 0.9 and 2.0 μV. The first 2 wavelets had significantly shorter latencies than wave N70 of unfiltered VEP, whereas the last 2 wavelets had longer latencies than N145. Latency and amplitude values varied as a function of contrast and spatial frequency of the stimulus, with shorter latencies and larger amplitudes at 60–90% contrast level and tuning of amplitude at 5.0 c/deg. All wavelets were correlated with wave P100 of unfiltered VEP, while a correlation with N70 of VEP was observed only for those wavelets with latencies in the range of wave P100. Two patients with documented brain lesions involving the visual system are described as examples of oscillatory responses occurring irrespective of filter bandpass and instead of the expected conventional VEP when the generation of these is interfered with by brain pathology. A substantial cortical contribution to the origin of the oscillatory response is conceivable. It is suggested that the oscillatory response to pattern-reversal stimulation reflects events in the visual system that are parallel to, and partly independent of, the conventional VEP, with potential application in research or for clinical purposes.  相似文献   

15.
To investigate the encoding of behaviorally relevant stimuli in the rodent whisker-somatosensory system, we recorded responses to moving gratings from trigeminal ganglion neurons. This allowed us to quantify how spike patterns in these neurons encode behaviorally distinguishable tactile stimuli presented with the variability inherent in a freely moving whisker paradigm. Our stimulus set consisted of three grating plates with raised bars of the same thickness (275 microm) having different spatial periods (1.0, 1.1, and 1.5 mm) swept rostro-caudally past the whiskers at velocities ranging from 50 to 330 mm/s. This resulted in 20 presentations each of nine different temporal frequencies (ranging from 50 to 220 Hz) for every grating plate. We found that despite the additional degrees of freedom introduced in this freely moving whisker paradigm, firing patterns from the majority (83%) of trigeminal ganglion neurons were statistically distinguishable, and corresponded to the temporal frequency of stimulation. The range of velocities (100-160 mm/s) that resulted in the most accurate and least variable representation of stimulus temporal frequency by trigeminal firing patterns closely corresponds to the whisking velocities employed by trained rats performing similar discrimination tasks. This suggests that, during naturally occurring whisking, individual primary afferents faithfully encode temporal frequency evoked by whisker contacts.  相似文献   

16.
In experiments on 8 rabbits and 12 rats changes in electrograms of the visual cortex of alert animals were studied under photic stimulation in conditions of pharmacological action on monoamine (MA) brain systems. After injection of MA precursors (5-oxitriptophane and d, 1-dioxiphenylalanine) following phenomena were observed: a) decrease of the amplitude of the averaged evoked potentials to rhythmic photic stimuli (1-20 imp. sec.-1); b) an enhancement of fast (15-25 Hz) oscillations in the cortical spontaneous electrical activity and weakening and modification of the effects of the blockader of synthesis of MA-alpha-methyl-dioxiphenylalanine. Under light stimulation potentiation of MA precursors effects was observed in the frequency spectra of electrocorticograms. In the same conditions the specificity of action of cathecholamines precursor was revealed in the form of an increase of power of rhythms of 5-7 Hz and it; decrease in 2-3 Hz. Possible mechanisms of the revealed phenomena are discussed.  相似文献   

17.

Objectives

During surgeries that put the visual pathway at risk of injury, continuous monitoring of the visual function is desirable. However, the intraoperative monitoring of the visual evoked potential (VEP) is not yet widely used. We evaluate here the clinical utility of intraoperative VEP monitoring.

Methods

We analyzed retrospectively 46 consecutive surgeries in 2011-2013. High luminance stimulating devices delivered flash stimuli on the closed eyelid during intravenous anesthesia. We monitored VEP features N75 and P100 and took patients'' preoperative and postoperative visual function from patient charts. Postoperative ophthalmologic workup was performed in 25 (54%) patients and preoperatively in 28 (61%) patients.

Results

VEP recordings were feasible in 62 of 85 eyes (73%) in 46 patients. All 23 eyes without VEP had impaired vision. During surgery, VEPs remained stable throughout surgery in 50 eyes. In 44 of these, visual function did not deteriorate and three patients (6 eyes) developed hemianopia. VEP decreased transiently in 10 eyes and visual function of all was preserved. VEPs were lost permanently in 2 eyes in two patients without new postoperative visual impairment.

Conclusions

Satisfactory intraoperative VEP monitoring was feasible in all patients except in those with severe visual impairment. Preservation of VEPs predicted preserved visual function. During resection of lesions in the visual cortex, VEP monitoring could not detect new major visual field defects due to injury in the posterior visual pathway. Intraoperative VEPs were sensitive enough to detect vascular damage during aneurysm clipping and mechanical manipulation of the anterior visual pathway in an early reversible stage. Intraoperative VEP monitoring influenced surgical decisions in selected patients and proved to be a useful supplement to the toolbox of intraoperative neurophysiological monitoring.  相似文献   

18.
Crewther DP  Crewther SG 《PloS one》2010,5(12):e15266
Physiological studies of color processing have typically measured responses to spatially varying chromatic stimuli such as gratings, while psychophysical studies of color include color naming, color and light, as well as spatial and temporal chromatic sensitivities. This raises the question of whether we have one or several cortical color processing systems. Here we show from non-linear analysis of human visual evoked potentials (VEP) the presence of distinct and independent temporal signatures for form and surface color processing. Surface color stimuli produced most power in the second order Wiener kernel, indicative of a slowly recovering neural system, while chromatic form stimulation produced most power in the first order kernel (showing rapid recovery). We find end-spectral saturation-dependent signals, easily separable from achromatic signals for surface color stimuli. However physiological responses to form color stimuli, though varying somewhat with saturation, showed similar waveform components. Lastly, the spectral dependence of surface and form color VEP was different, with the surface color responses almost vanishing with yellow-grey isoluminant stimulation whereas the form color VEP shows robust recordable signals across all hues. Thus, surface and form colored stimuli engage different neural systems within cortex, pointing to the need to establish their relative contributions under the diverse chromatic stimulus conditions used in the literature.  相似文献   

19.
Repetitive visual training paired with electrical activation of cholinergic projections to the primary visual cortex (V1) induces long-term enhancement of cortical processing in response to the visual training stimulus. To better determine the receptor subtypes mediating this effect the selective pharmacological blockade of V1 nicotinic (nAChR), M1 and M2 muscarinic (mAChR) or GABAergic A (GABAAR) receptors was performed during the training session and visual evoked potentials (VEPs) were recorded before and after training. The training session consisted of the exposure of awake, adult rats to an orientation-specific 0.12 CPD grating paired with an electrical stimulation of the basal forebrain for a duration of 1 week for 10 minutes per day. Pharmacological agents were infused intracortically during this period. The post-training VEP amplitude was significantly increased compared to the pre-training values for the trained spatial frequency and to adjacent spatial frequencies up to 0.3 CPD, suggesting a long-term increase of V1 sensitivity. This increase was totally blocked by the nAChR antagonist as well as by an M2 mAChR subtype and GABAAR antagonist. Moreover, administration of the M2 mAChR antagonist also significantly decreased the amplitude of the control VEPs, suggesting a suppressive effect on cortical responsiveness. However, the M1 mAChR antagonist blocked the increase of the VEP amplitude only for the high spatial frequency (0.3 CPD), suggesting that M1 role was limited to the spread of the enhancement effect to a higher spatial frequency. More generally, all the drugs used did block the VEP increase at 0.3 CPD. Further, use of each of the aforementioned receptor antagonists blocked training-induced changes in gamma and beta band oscillations. These findings demonstrate that visual training coupled with cholinergic stimulation improved perceptual sensitivity by enhancing cortical responsiveness in V1. This enhancement is mainly mediated by nAChRs, M2 mAChRs and GABAARs. The M1 mAChR subtype appears to be involved in spreading the enhancement of V1 cortical responsiveness to adjacent neurons.  相似文献   

20.
Sleep deprivation (SD) adversely affects brain function and is accompanied by frequency dependent changes in EEG. Recent studies have suggested that BOLD fluctuations pertain to a spatiotemporal organization with different frequencies. The present study aimed to investigate the frequency-dependent SD-related brain oscillatory activity by using the amplitude of low-frequency fluctuation (ALFF) analysis. The ALFF changes were measured across different frequencies (Slow-4: 0.027–0.073 Hz; Slow-5: 0.01–0.027 Hz; and Typical band: 0.01–0.08 Hz) in 24 h SD as compared to rested wakeful during resting-state fMRI. Sixteen volunteers underwent two fMRI sessions, once during rested wakefulness and once after 24 h of SD. SD showed prominently decreased ALFF in the right inferior parietal lobule (IPL), bilateral orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC), while increased ALFF in the visual cortex, left sensorimotor cortex and fusiform gyrus. Across the Slow-4 and Slow-5, results differed significantly in the OFC, DLPFC, thalamus and caudate in comparison to typical frequency band; and Slow-4 showed greater differences. In addition, negative correlations of behavior performance and ALFF patterns were found mainly in the right IPL across the typical frequency band. These observations provided novel insights about the physiological responses of SD, identified how it disturbs the brain rhythms, and linked SD with frequency-dependent alterations in amplitude patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号