首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interface pressure measurement is needed to assess beds designed to prevent pressure sores, so it is therefore important to establish the accuracy of interface pressure measuring systems. In this study, the Talley SA500 pressure evaluator (with 28 mm and 100 mm sensor pads), the DIPE (with 100 mm sensor pad), and a water-filled bladder system (with 0.1 ml and 0.3 ml water) were assessed. Measurement errors were evaluated using a loading system with pressures up to 7.4 kPa (55 mm Hg) in steps of 0.9 kPa (6.9 mm Hg). All systems tested over-measured interface pressure, the error being approximately linearly proportional to the loading pressure. The repeatability for a given system was approximately constant. The mean error (± SD) (%) and repeatability (kPa) for the systems were: 28 mm Talley 12 ± 1%, ± 0.07 kPa; 100 mm Talley 15 ± 1%, ± 0.07 kPa; DIPE 27 ± 3%, ± 0.12 kPa; 0.1 ml water bladder 17 ± 1%, ± 0.13 kPa; 0.3 ml water bladder 26 ± 3%, ± 0.07 kPa. Different interfaces affected accuracy markedly, and repeatability was affected when an inhomogeneous interface was used. The study shows that the errors associated with interface pressure measurement systems can be substantial, and can vary from one system to another.  相似文献   

2.
Background: Physiotherapy of edema in cases with obstructed main lymphatics of lower limbs requires knowledge of how high external pressures should be applied manually or set in compression devices in order to generate tissue pressures high enough to move tissue fluid to nonswollen regions and to measure its flow rate. Methods: We measured tissue fluid pressure and flow in subcutaneous tissue of lymphedematous limbs stages II to IV at rest and during pneumatic compression under various pressures and inflation timing. An 8-chamber sequential compression device inflated to pressures 50-120?mmHg, for 50 sec each chamber, with no distal deflation, was used. Pressures were measured using a wick-in-needle and electronic manometer. Fluid flow was calculated from continuously recorded changes in limb circumference using strain gauge plethysmography. Results: Before massage, in all stages of lymphedema, stagnant tissue fluid pressures in subcutaneous tissue ranged between -1 and +10 mmHg and did not differ from those measured in normal subjects. Pressures generated in tissue fluid by pneumatic compression reached 40-100 mmHg and were lower than those in inflated chambers. High pressure gradient through the skin was caused by its rigidity (fibrosis) and dissipation of applied compression force to proximal noncompressed limb regions. The calculated volumes of displaced tissue fluid ranged from 10 to 30 ml per compression cycle, to reach in some cases 100 ml in the groin region. Conclusions: Tissue fluid pressures generated by a pneumatic device were found lower than in the compression chambers. The obtained results point to the necessity of applying high pressures and longer compression times to generate effective tissue fluid pressures and to provide enough time for moving the stagnant fluid.  相似文献   

3.
This paper describes the construction and performance of a simple pressure sensing device with a continuous electrical output. It was constructed utilizing a commercially available transducer, an electropneumatic sensor capsule and a 1 m long tube. The transducer used was a piezo-resistive pressure-sensitive device producing an output voltage proportional to the applied pressure. This low cost, high accuracy device is temperature compensated and shows good linearity and negligible hysteresis. The sensor cell has a good thickness-to-diameter ratio and is sufficiently flexible to conform to most contours of the body. The tubing that conveys the pressure transmitting fluid also serves as a means of keeping the transducer distant from the measuring site. The device showed a highly satisfactory performance under laboratory conditions and has proven to be robust and reliable when used for clinical studies.  相似文献   

4.
The efficacy of compression therapy using compression bandages is highly dependent on the level of compression applied and the sustenance of the pressure during the course of treatment. This study attempts to predict the pressure profile generated by compression bandages using constitutive equations describing relaxation behavior of viscoelastic materials. It is observed that this pressure profile is highly correlated with the stress relaxation behavior of the bandage. To model the pressure profile, the stress relaxation behavior of compression bandages was studied and modeled using three mechanical models: the Maxwell model, the standard linear solid model and the two-component Maxwell model with a nonlinear spring. It was observed that the models with more component values explained the experimental relaxation curves better. The parameters used for modelling relaxation behavior were used to describe the pressure profile, which is significantly dependent on the longitudinal stress relaxation behavior of the bandage, using the modified Laplace's law equation. This approach thus helps in evaluating the bandage performance with time during compression therapy as novel wound care management.  相似文献   

5.
Contact pressure measurements in total knee replacements are often made using a discrete sensor such as the Tekscan K-Scan sensor. However, no method currently exists for predicting the magnitude of sensor discretization errors in contact force, peak pressure, average pressure, and contact area, making it difficult to evaluate the accuracy of such measurements. This study identifies a non-dimensional area variable, defined as the ratio of the number of perimeter elements to the total number of elements with pressure, which can be used to predict these errors. The variable was evaluated by simulating discrete pressure sensors subjected to Hertzian and uniform pressure distributions with two different calibration procedures. The simulations systematically varied the size of the sensor elements, the contact ellipse aspect ratio, and the ellipse's location on the sensor grid. In addition, contact pressure measurements made with a K-Scan sensor on four different total knee designs were used to evaluate the magnitude of discretization errors under practical conditions. The simulations predicted a strong power law relationship (r(2)>0.89) between worst-case discretization errors and the proposed non-dimensional area variable. In the total knee experiments, predicted discretization errors were on the order of 1-4% for contact force and peak pressure and 3-9% for average pressure and contact area. These errors are comparable to those arising from inserting a sensor into the joint space or truncating pressures with pressure sensitive film. The reported power law regression coefficients provide a simple way to estimate the accuracy of experimental measurements made with discrete pressure sensors when the contact patch is approximately elliptical.  相似文献   

6.
Mechanisms of blood flow during cardiopulmonary resuscitation (CPR) were studied in a canine model with implanted mitral and aortic flow probes and by use of cineangiography. Intrathoracic pressure (ITP) fluctuations were induced by a circumferential pneumatic vest, with and without simultaneous ventilation, and by use of positive-pressure ventilation alone. Vascular volume and compression rate were altered with each CPR mode. Antegrade mitral flow was interpreted as left ventricular (LV) inflow, and antegrade aortic flow was interpreted as LV outflow. The pneumatic vest was expected to elevate ITP uniformly and thus produce simultaneous LV inflow and LV outflow throughout compression. This pattern, the passive conduit of "thoracic pump" physiology, was unequivocally demonstrated only during ITP elevation with positive-pressure ventilation alone at slow rates. During vest CPR, LV outflow started promptly with the onset of compression, whereas LV inflow was delayed. At compression rates of 50 times/min and normal vascular filling pressures, the delay was sufficiently long that all LV filling occurred with release of compression. This is the pattern that would be expected with direct LV compression or "cardiac pump" physiology. During the early part of the compression phase, catheter tip transducer LV and left atrial pressure measurements demonstrated gradients necessitating mitral valve closure, while cineangiography showed dye droplets moving from the large pulmonary veins retrograde to the small pulmonary veins. When the compression rate was reduced and/or when intravascular pressures were raised with volume infusion, LV inflow was observed at some point during the compressive phase. Thus, under these conditions, features of both thoracic pump and cardiac pump physiology occurred within the same compression. Our findings are not explained by the conventional conceptions of either thoracic pump or cardiac compression CPR mechanisms alone.  相似文献   

7.
OBJECTIVES: To evaluate the accuracy of intrapartum foetal pulse oximetry (SO(2POX)) using reusable sensors and the effect of a sensor performance test on data quality. Furthermore, to assess the sensor-related costs by using reusable sensors and sensor performance test. METHODS: 36 reusable sensors were used for SO(2POX) during labour of 289 term foetuses. A sensor performance test device assessing the emitter and receiver capability and the firmness of attachment of the sensors had been developed and used in the last 134 measurements before each resterilisation. Oxygen saturation (SaO(2)) at birth was measured spectrophotometrically after cord blood sampling. The accuracy of SO(2POX) was evaluated by analysing its relationship to SaO(2). The valid SO(2POX) data, as confirmed by subsequent sensor test in the second group, was considered comparable with those with single sensor use. Sensor-related average cost (sensors, test device and sterilisation) of such measurements was compared with that of single sensor use. RESULTS: Eight sensors failed performance test despite valid pulse oximetry signal output during their last measurements. There were significant overall linear correlations between SO(2POX) and SaO(2) (r=0.45, P<0.0001). Separate analyses of regression in the group without sensor performance testing showed an r(2) of 0.41, whereas in the group with subsequent sensor performance testing, the r(2) was 0.52 (P<0.05). By reusing the sensors, the sensor-related cost per valid measurement was $18.9 and 71% lower compared to single use of sensors ($65). CONCLUSIONS: Pulse oximetry may reflect fetal oxygen saturation. Data quality may be compromised by insufficient sensor performance, even though the reflection signal quality is acceptable. If sensor performance is tested before each measurement, reusable sensors may reduce the costs of fetal pulse oximetry.  相似文献   

8.
《IRBM》2008,29(6):375-379
The purpose of MAPI project is to propose a method for interface pressure measurement integrated into a seat. This device must be exact, low cost and must take into consideration viscoelastic characteristics of the skin and of human morphology. The main areas we aim at are ergonomics of seating surfaces and prevention of pressure ulcers using a principle of measurement based on the patent FR 0402037. We passed an additional stage by developing an electropneumatic interface-pressure sensor directly integrated into a seat. The sensor is easy to use and presents acceptable characteristics. The average error is 2.58% and the standard deviation is 1.66 mmHg. Spatial resolution is 3 cm. This first prototype will be optimized, with better spatial resolution, and used for different pressure ulcer study and prevention tests.  相似文献   

9.
In order to determine the accuracy of measurements of Young's modulus of cancellous bone by conventional compression testing, two independent strain measurements were made simultaneously during non-destructive uniaxial compression to 0.8% strain of rectangular specimens (n = 18). Strain was measured by an extensometer attached to the compression anvils close to the specimen and by an optical system covering the central half of the specimens. Mean Young's modulus determined by the extensometer technique was 689 MPa, but was 871 MPa when determined by the optical technique (mean difference = 182 MPa, SED = 50 MPa, p less than 0.002). Uneven strain distribution due to lack of support of cut vertical trabeculae at the anvil-specimen interface is believed to be causing the underestimation of Young's modulus measured by the extensometer technique. The influence of friction at the specimen-anvil interface was studied by performing a finite element analysis. It is concluded that Young's modulus of specimens of the chosen geometry on average is underestimated by about 20% by conventional compressing testing. The underestimation seems not to be dependent upon specimen density.  相似文献   

10.
《IRBM》2023,44(3):100746
Objectivethis paper presents an innovative graphical user interface to visualize the attitude of a sensing device in a three-dimensional space, serving a wide-range of medical applications.Material and methodsbased on inertial measurement units (IMU) or on magnetic, angular rate and gravity (MARG) sensors, a processing unit provides Euler angles using a sensor fusion technique to display the orientation of the device relative to the Earth frame in real-time. The device is schematized by linking six polygonal regions, and is subject to sequential rotations by updating the graph each 350 ms. We conduct comparative studies between the two sensing devices, i.e. IMUs and MARGs, as well as two orientation filters, namely Madgwick's algorithm and Mahony's algorithm.Resultsthe accuracy of the system is reported as a function of (i) the sampling frequency, (ii) the sensing unit, and (iii) the orientation filter, following two elderly care applications, namely fall risk assessment and body posture monitoring. The experiments are conducted using public datasets. The corresponding results show that Madgwick's algorithm is best suited for low sampling rates, whereas MARG sensors are best suited for the detection of postural transitions.Conclusionthis paper addresses the different aspects and discusses the limitations of attitude estimation systems, which are important tools to help clinicians in their diagnosis.  相似文献   

11.
This paper presents a microfluidic chip capable of performing precise continuous pH measurements in an automatic mode. The chip is fabricated using micro-electro-mechanical-systems (MEMS)-based techniques and incorporates polydimethylsiloxane (PDMS) microstructures, pH-sensing electrodes and pneumatic fluid-control devices. Through its enhanced microchannel design and use of pneumatic fluid-control devices, the microfluidic chip reduces the dead volume of the sample and increases the pumping rate. The maximum pumping rate of the developed micro-pump is 28 microL/min at an air pressure of 10 psi and a driving frequency of 10 Hz. The total sample volume consumed in each sensing operation is just 0.515 microL. As a result, the developed chip reduces the sample volume compared to conventional large-scale pH-sensing systems. The microfluidic chip employs the electrochemical sensing method to conduct precise pH level measurements. The sensing electrodes are fabricated by sputtering a layer of SiO(2)-LiO(2)-BaO-TiO(2)-La(2)O(3) (SLBTLO) onto platinum (Pt) electrodes and the pH value of the sample is evaluated by measuring the potential difference between the sensing electrodes and a reference electrode. Additionally, the integration of the microfluidic chip with a pneumatic fluid-control device facilitates automatic sample injection and a continuous sensing operation. The developed system provides a valuable tool with which to examine pH values in a wide range of biomedical and industrial applications.  相似文献   

12.
In this technical note we describe a real-time visual feedback device for use during radiotherapy treatment. The device displays a patient's live pose and position, relative to a reference, to them, helping them to control and maintain their motion. The device uses an optical sensor system developed at The Christie NHS Foundation Trust that is capable of real-time performance of up to 24 unique wide-area body surface measurements per second. The feedback device has integrated audio and three intuitive visualisation modes designed to show different levels of detail with varying degrees of complexity: a ‘2D traffic-light display’, ‘3D flexing lamina display’ and ‘3D colour-mapped surface display’. The performance characteristics of the system were measured, with the frame rate, throughput and latency of the feedback device being 22.4 fps, 47.0 Mbps, 109.8 ms, and 13.7 fps, 86.4 Mbps, 119.1 ms for single and three-channel modes respectively. We additionally present a novel fast method for calculating the vertical displacement map of two 3D surfaces suitable for live, real time display and evaluate its precision with respect to other methodologies.  相似文献   

13.
It is a common belief that bicycle seat pressure compresses neurovascular tissues in the perineum and may lead to perineal and penile pathologies in male cyclists. The purpose of this study was to examine the effect bicycle seat pressure has on compression of the perineal cavernous spaces, which house the penile neurovascular tissues. A second purpose was to identify where peak cavernous compression occurs in relation to a bicycle seat. Five males were assessed for compression of the corpus spongiosum and corpora cavernosa with and without bicycle seat pressure using MRI. Seat pressure was applied using a custom loading device designed to replicate seat pressure recorded during stationary bicycling. The distance between a horizontal midline of the seat and the point of peak cavernous space compression was made on sagittal plane images. Diameter measurements of the cavernous spaces at the point of peak compression were made on coronal plane images. Results revealed that peak cavernous space compression occurred below the pubic symphysis, 40.7(+/-11.4) mm anterior to the midline of the seat. Corpus spongiosum values in the unloaded condition were 148% greater than the loaded condition (p=0.008). Similarly, the left and right corpora cavernosa values for the unloaded condition were 252% and 232% greater, respectively, than the loaded condition (p=0.02-0.03). Cavernous spaces that house penile arteries and nerves were compressed maximally below the pubic symphysis. Because this location of peak compression was not different between subjects, it may be a universal impingement zone that limits blood flow and neural activity to and from the penis. This information can be used to optimize seat design and thus reduce perineal injuries.  相似文献   

14.
Characterization was made of the mechanical properties under compression of four major skin components (collagen, elastin, chondroitin sulfate, and hyaluronic acid) placed in a gel matrix. Using the previous theoretical work of Bert et al., thickness under compression was related to degree of hydration and the results expressed in terms of pressure vs. hydration. All measurements were conducted at 14 degrees C, 21 degrees C, and 25 degrees C. Application of the findings to a model based on the finite deformation strain-energy theory of Aubert indicate that collagen, elastin, and chondroitin sulfate show a viscoelastic response under compression. On the other hand, hyaluronic acid and gelatin exhibit rubber-like behavior.  相似文献   

15.
The surface of spiroplasmas, helically shaped pathogenic bacteria related to the mycoplasmas, is crowded with the membrane-anchored lipoprotein spiralin whose structure and function are unknown. In this work, the secondary structure of spiralin under the form of detergent-free micelles (average Stokes radius, 87.5 A) in water and at the air/water interface, alone or in interaction with lipid monolayers was analyzed. FT-IR and circular dichroism (CD) spectroscopic data indicate that spiralin in solution contains about 25+/-3% of helices and 38+/-2% of beta sheets. These measurements are consistent with a consensus predictive analysis of the protein sequence suggesting about 28% of helices, 32% of beta sheets and 40% of irregular structure. Brewster angle microscopy (BAM) revealed that, in water, the micelles slowly disaggregate to form a stable and homogeneous layer at the air/water interface, exhibiting a surface pressure up to 10 mN/m. Polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) spectra of interfacial spiralin display a complex amide I band characteristic of a mixture of beta sheets and alpha helices, and an intense amide II band. Spectral simulations indicate a flat orientation for the beta sheets and a vertical orientation for the alpha helices with respect to the interface. The combination of tensiometric and PMIRRAS measurements show that, when spiroplasma lipids are used to form a monolayer at the air/water interface, spiralin is adsorbed under this monolayer and its antiparallel beta sheets are mainly parallel to the polar-head layer of the lipids without deep perturbation of the fatty acid chains organization. Based upon these results, we propose a 'carpet model' for spiralin organization at the spiroplasma cell surface. In this model, spiralin molecules anchored into the outer leaflet of the lipid bilayer by their N-terminal lipid moiety are composed of two colinear domains (instead of a single globular domain) situated at the lipid/water interface. Owing to the very high amount of spiralin in the membrane, such carpets would cover most if not all the lipids present in the outer leaflet of the bilayer.  相似文献   

16.
A technique is introduced for simultaneous measurements of the heel pad tissue deformation and the heel–ground contact stresses developing during the stance phase of gait. Subjects walked upon a gait platform integrating the contact pressure display optical method for plantar pressure measurements and a digital radiographic fluoroscopy system for skeletal and soft tissue motion recording. Clear images of the posterior-plantar aspect of the calcaneus and enveloping soft tissues were obtained simultaneously with the pressure distribution under the heel region throughout the stance phase of gait. The heel pad was shown to undergo a rapid compression during initial contact and heel strike, reaching a strain of 0.39±0.05 in about 150 ms. The stress–strain relation of the heel pad was shown to be highly non-linear, with a compression modulus of 105±11 kPa initially and 306±16 kPa at 30% strain. The energy dissipation during heel strike was evaluated to be 17.8±0.8%. The present technique is useful for biomechanical as well as clinical evaluation of the stress–strain and energy absorption characteristics of the heel pad in vivo, during natural gait.  相似文献   

17.
Inert gas narcotics increase intrinsic pressure tolerance (1,000Pc) in CD-1 mice but interfere with development of the protective responses raising seizure thresholds during slower compression (e.g., 60Pc). This secondary narcotic effect can block up to 40% of the total attainable increase in Pc. The narcosis susceptible moiety of this compression rate effect develops early, whereas a narcosis resistant remnant accounts for increase in Pc occurring after 90 min of compression or pressure exposure. Pressure conditioning by multiday pressure exposure entails increases in both 60Pc and 1,000Pc and in virtual annullment of the compression rate effect. The effect can be completely blocked by narcotic gases in the conditioning atmosphere. In addition to blocking part of the compression rate effect the presence of narcotic gases under these conditions can reverse the effects of previously established pressure conditioning. 60Pc regresses much more slowly under these conditions than 1,000Pc. Either reversal rate is much more rapid in air at 1 ATA than at 80 ATA under 0.9 atm N2O. The implications of these data are discussed with regard to evaluation of the hypothesis of antagonism between inert gas narcotics and high pressures and to elaboration of the monoamine hypothesis to account for the modification of the compression rate effect by narcotic gases.  相似文献   

18.
The measurement of blood flow from an assist ventricle is important but sometimes difficult in artificial heart experiments. Along with the development of a pneumatic cylinder-piston driver coupled with a ventricular assist device, a simplified method for measuring pump flow was established. From driving parameters such as the piston (or cylinder) displacement and air pressure, the pump flow could be calculated by the use of the equation of state for an ideal gas. The results of this method are broadly in agreement with electromagnetic and Doppler measurements.  相似文献   

19.
A study was performed to determine whether the pressures routinely produced by bandaging for compression sclerotherapy of varicose veins are adequate to maintain the superfical veins almost empty of blood. The results suggest that well-applied bandages can provide sufficient support to combat the high distending pressures found in varicose veins. The large variation among different surgeons, however, indicates that any clinical assessment of compression sclerotherapy should include measurement of the pressure at which the bandages are applied.  相似文献   

20.
The deformational behavior of articular cartilage has been investigated in confined and unconfined compression experiments and indentation tests, but to date there exist no reliable data on the in situ deformation of the cartilage during static loading. The objective of the current study was to perform a systematic study into cartilage compression of intact human femoro-patellar joints under short- and long-term static loading with MR imaging. A non-metallic pneumatic pressure device was used to apply loads of 150% body weight to six joints within the extremity coil of an MRI scanner. The cartilage was delineated during the compression experiment with previously validated 2D and 3D fat-suppressed gradient echo sequences. We observed a mean (maximal) in situ deformation of 44% (57%) in patellar cartilage after 32 h of loading (mean contact pressure 3.6 MPa), the femoral cartilage showing a smaller amount of deformation than the patella. However, only around 7% of the final deformation (3% absolute deformation) occurred during the first minute of loading. A 43% fluid loss from the interstitial patellar matrix was recorded, the initial fluid flux being 0.217 +/- 0.083 microm/s, and a high inter-individual variability of the deformational behavior (coefficients of variation 11-38%). In conjunction with finite-element analyses, these data may be used to compute the load partitioning between the solid matrix and fluid phase, and to elucidate the etiologic factors relevant in mechanically induced osteoarthritis. They can also provide direct estimates of the mechanical strain to be encountered by cartilage transplants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号