首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Social structure can have a significant impact on divergence and evolution within species, especially in the marine environment, which has few environmental boundaries to dispersal. On the other hand, genetic structure can affect social structure in many species, through an individual preference towards associating with relatives. One social species, the short‐finned pilot whale (Globicephala macrorhynchus), has been shown to live in stable social groups for periods of at least a decade. Using mitochondrial control sequences from 242 individuals and single nucleotide polymorphisms from 106 individuals, we examine population structure among geographic and social groups of short‐finned pilot whales in the Hawaiian Islands, and test for links between social and genetic structure. Our results show that there are at least two geographic populations in the Hawaiian Islands: a Main Hawaiian Islands (MHI) population and a Northwestern Hawaiian Islands/Pelagic population (FST and ΦST < .001), as well as an eastern MHI community and a western MHI community (FST = .009). We find genetically driven social structure, or high relatedness among social units and clusters (< .001), and a positive relationship between relatedness and association between individuals (< .0001). Further, socially organized clusters are genetically distinct, indicating that social structure drives genetic divergence within the population, likely through restricted mate selection (FST = .05). This genetic divergence among social groups can make the species less resilient to anthropogenic or ecological disturbance. Conservation of this species therefore depends on understanding links among social structure, genetic structure and ecological variability within the species.  相似文献   

2.
Network analysis has recently been used to delve into the dynamics of cetacean sociality. Few studies, however, have addressed how habitat shape influences sociality, specifically how linear water bodies constrain the space where individuals might interact. We utilized network and spatiotemporal analyses to investigate association patterns and community structure in a bottlenose dolphin population in a linear estuarine system, the Indian River Lagoon (IRL), Florida. Using sighting histories from a multiyear photo‐identification study we examined association patterns for 185 individuals collected over a 6.5 yr period (2002–2008). The population was highly differentiated (= 0.723) and organized into six distinct social communities (= 0.544), spread in an overlapping pattern along the linear system. Social organization differed between communities, with some displaying highly interconnected networks and others comprising loosely affiliated individuals with more ephemeral associations. Temporal patterns indicated short‐term associations were a significant feature of the fission‐fusion dynamics of this population. Spatial analyses revealed that social structure was shaped by an individual's ranging patterns and by social processes including preference and avoidance behavior. Finally, we found that habitat “narrowness” may be a major driving force behind the sociality observed.  相似文献   

3.
Evidence‐based conservation planning is crucial for informing management decisions for species of extreme rarity, but collection of robust data on genetic status or other parameters can be extremely challenging for such species. The Hainan gibbon, possibly the world's rarest mammal, consists of a single population of ~25 individuals restricted to one protected area on Hainan Island, China, and has persisted for over 30 years at exceptionally low population size. Analysis of genotypes at 11 microsatellite loci from faecal samples for 36% of the current global population and tissue samples from 62% of existing historical museum specimens demonstrates limited current genetic diversity (Na = 2.27, Ar = 2.24, He = 0.43); diversity has declined since the 19th century and even further within the last 30 years, representing declines of ~30% from historical levels (Na = 3.36, Ar = 3.29, He = 0.63). Significant differentiation is seen between current and historical samples (FST = 0.156, = 0.0315), and the current population exhibits extremely small Ne (current Ne = 2.16). There is evidence for both a recent population bottleneck and an earlier bottleneck, with population size already reasonably low by the late 19th century (historical Ne = 1162.96). Individuals in the current population are related at the level of half‐ to full‐siblings between social groups, and full‐siblings or parent–offspring within a social group, suggesting that inbreeding is likely to increase in the future. The species' current reduced genetic diversity must be considered during conservation planning, particularly for expectations of likely population recovery, indicating that intensive, carefully planned management is essential.  相似文献   

4.
Bird's nest ferns (Asplenium spp.) support large numbers of invertebrates, including centipedes. As top invertebrate predators, centipedes drive ecosystem function, for example, by regulating decomposer populations, but we know little of their ecology in forest canopies. We provide the first detailed observations of the diversity and structure of the centipede communities of bird's nest ferns, revealing the importance of these epiphytes as nurseries for centipedes. We collected 305 centipedes equating to ˜11,300 mg of centipede biomass from 44 bird's nest ferns (22 of which were from the high canopy and 22 from the low canopy) in primary tropical rainforest in Sabah, Malaysian Borneo. Most abundant were the Scolopendromorpha (= 227 individuals), followed by the Geophilomorpha (= 59), Lithobiomorpha (= 14), and Scutigeromorpha (= 5). Although we observed very little overlap in species between the forest strata, scolopendromorph centipedes dominated throughout the canopy. Null model analysis revealed no significant competitive interactions; on the contrary, we observed centipedes sharing nest sites within the ferns on three of the ten occasions that we found nests. All nests belonged to centipedes of the family Scolopendridae, which are typically aggressive, and usually show negative spatial association. This study reveals a diverse community of canopy centipedes, providing further evidence of the importance of bird's nest ferns to a wide range of animals, many of which use the ferns at critical life stages. Future conservation strategies should regard these ubiquitous epiphytes as umbrella species and protect them accordingly in landscape management decisions.  相似文献   

5.
The Atlantic bluefin tuna is a highly migratory species emblematic of the challenges associated with shared fisheries management. In an effort to resolve the species’ stock dynamics, a genomewide search for spatially informative single nucleotide polymorphisms (SNPs) was undertaken, by way of sequencing reduced representation libraries. An allele frequency approach to SNP discovery was used, combining the data of 555 larvae and young‐of‐the‐year (LYOY) into pools representing major geographical areas and mapping against a newly assembled genomic reference. From a set of 184,895 candidate loci, 384 were selected for validation using 167 LYOY. A highly discriminatory genotyping panel of 95 SNPs was ultimately developed by selecting loci with the most pronounced differences between western Atlantic and Mediterranean Sea LYOY. The panel was evaluated by genotyping a different set of LYOY (n = 326), and from these, 77.8% and 82.1% were correctly assigned to western Atlantic and Mediterranean Sea origins, respectively. The panel revealed temporally persistent differentiation among LYOY from the western Atlantic and Mediterranean Sea (FST = 0.008, p = .034). The composition of six mixed feeding aggregations in the Atlantic Ocean and Mediterranean Sea was characterized using genotypes from medium (n = 184) and large (n = 48) adults, applying population assignment and mixture analyses. The results provide evidence of persistent population structuring across broad geographic areas and extensive mixing in the Atlantic Ocean, particularly in the mid‐Atlantic Bight and Gulf of St. Lawrence. The genomic reference and genotyping tools presented here constitute novel resources useful for future research and conservation efforts.  相似文献   

6.
We performed a genome-wide association study with 23,465 microsatellite markers to identify genes related to adult height. Selective genotyping was applied to extremely tall and extremely short individuals from the Khalkh-Mongolian population. Two loci, 8q21.13 and 15q22.33, which showed the strongest association with microsatellites were subjected to further analyses of SNPs in 782 tall and 773 short individuals. The most significant association was observed with SNP rs2220456 at 8q21.13 (P = 0.000016). In the LD block at 15q22.32, SNP rs8038652 located in intron 1 of IQCH was strongly associated (P = 0.0003), especially the AA genotype of the SNP under a recessive model was strongly associated with adult height (P = 0.000046).  相似文献   

7.
The field of population genetics is rapidly moving into population genomics as the quantity of data generated by high‐throughput sequencing platforms increases. In this study, we used restriction‐site‐associated DNA sequencing (RADSeq) to recover genomewide genotypes from 70 white‐beaked (Lagenorhynchus albirostris) and 43 Atlantic white‐sided dolphins (L. acutus) gathered throughout their north‐east Atlantic distribution range. Both species are at a high risk of being negatively affected by climate change. Here, we provide a resource of 38 240 RAD‐tags and 52 981 nuclear SNPs shared between both species. We have estimated overall higher levels of nucleotide diversity in white‐sided (π = 0.0492 ± 0.0006%) than in white‐beaked dolphins (π = 0.0300 ± 0.0004%). White‐sided dolphins sampled in the Faroe Islands, belonging to two pods (N = 7 and N = 11), showed similar levels of diversity (π = 0.0317 ± 0.0007% and 0.0267 ± 0.0006%, respectively) compared to unrelated individuals of the same species sampled elsewhere (e.g. π = 0.0285 ± 0.0007% for 11 Scottish individuals). No evidence of higher levels of kinship within pods can be derived from our analyses. When identifying the most likely number of genetic clusters among our sample set, we obtained an estimate of two to four clusters, corresponding to both species and possibly, two further clusters within each species. A higher diversity and lower population structuring was encountered in white‐sided dolphins from the north‐east Atlantic, in line with their preference for pelagic waters, as opposed to white‐beaked dolphins that have a more patchy distribution, mainly across continental shelves.  相似文献   

8.
Little is known about the natural history, biology, and population genetic structure of the Hardhead Silverside, Atherinomorus stipes, a small schooling fish found around islands throughout the Caribbean. Our field observations of A. stipes in the cays of Belize and the Florida Keys found that populations tend to be in close association with the shoreline in mangrove habitats. Due to this potential island‐based population structuring, A. stipes represents an ideal system to examine questions about gene flow and isolation by distance at different geographic scales. For this study, the mitochondrial gene nd2 was amplified from 394 individuals collected from seven different Belizean Cays (N = 175) and eight different Floridian Keys (N = 219). Results show surprisingly high haplotype diversity both within and between island‐groups, as well as a high prevalence of unique haplotypes within each island population. The results are consistent with models that require gene flow among populations as well as in situ evolution of rare haplotypes. There was no evidence for an isolation by distance model. The nd2 gene tree consists of two well‐supported monophyletic groups: a Belizean‐type clade and a Floridian‐type clade, indicating potential species‐level differentiation.  相似文献   

9.
We report eight (CA)10?35 unlinked microsatellite loci from the Neotropical freshwater catfish, Pimelodella chagresi (Siluriformes: Pimelodidae). These loci were characterized with 23 individuals collected in Panama. Number of alleles per locus varied from 7 to 23 (mean = 12.9) and observed heterozygosity ranged from 0.522 to 0.909 (mean = 0.732). These loci will be used to investigate the existence of cryptic species within the P. chagresi clade, and to study fine‐scale population structure.  相似文献   

10.
Coccoloba cereifera (Polygonaceae) is an extremely rare endemic shrub found exclusively in the rupestrian fields of Serra do Cipó, southeastern, Brazil. We assessed the genetic diversity and structure across the single occurrence area of C. cereifera. The genetic variation at 13 microsatellite loci was estimated from 139 individuals sampled in nine patches. The number of alleles per locus varied from two to ten; the expected and observed heterozygosity ranged from 0.324 to 0.566 and 0.337 to 0.529, respectively. Microsatellites detected low but statistically significant levels of differentiation among patches (F ST = 0.123, R ST = 0.105), whereas Mantel test results showed a weak but significant pattern of isolation by distance (r 2 = 0.31, P < 0.002). Bayesian clustering indicated two subdivisions connected via admixture. Habitat heterogeneity across the drainage basin of the Rio Indequicé is likely limiting gene flow within patches of the geographically restricted population. While there is currently no evidence for a direct genetic risk to species survival, the apparent natural segregation occurring within the species could be exacerbated by future land use changes and the influx of alien species which could lead to demographic reductions in population size leading to a reduction in genetic diversity and an increase in population subdivision. We suggest that maintaining the integrity of the habitat within the small range of the species and continued monitoring of the effects of alien species would be the wisest use of management resources.  相似文献   

11.
Fine‐scale spatial genetic structure of populations results from social and spatial behaviors of individuals such as sex‐biased dispersal and philopatry. However, the demographic history of a given population can override such socio‐spatial factors in shaping genetic variability when bottlenecks or founder events occurred in the population. Here, we investigated whether socio‐spatial organization determines the fine‐scale genetic structure for both sexes in a Mediterranean mouflon (Ovis gmelini musimon × Ovis sp.) population in southern France 60 years after its introduction. Based on multilocus genotypes at 16 loci of microsatellite DNA (n = 230 individuals), we identified three genetic groups for females and two for males, and concurrently defined the same number of socio‐spatial units using both GPS‐collared individuals (n = 121) and visual resightings of marked individuals (n = 378). The socio‐spatial and genetic structures did not match, indicating that the former was not the main driver of the latter for both sexes. Beyond this structural mismatch, we found significant, yet low, genetic differentiation among female socio‐spatial groups, and no genetic differentiation in males, with this suggesting female philopatry and male‐biased gene flow, respectively. Despite spatial disconnection, females from the north of the study area were genetically closer to females from the south, as indicated by the spatial analysis of the genetic variability, and this pattern was in accordance with the common genetic origin of their founders. To conclude, more than 14 generations later, genetic signatures of first introduction are not only still detectable among females, but they also represent the main factor shaping their present‐time genetic structure.  相似文献   

12.
Ten polymorphic microsatellite loci were developed for Graellsia isabelae. Polymorphism was assessed for 20 individuals from a Spanish population (Els-Ports-de-Beseit, Catalonia) and 39 more individuals from one population in the French Alps and six other Spanish localities. Overall, the number of alleles per locus ranged from 5 to 24. Els-Ports-de-Beseit showed an average number of alleles per locus of 9.80 (SD = 4.32), observed heterozygosity was 0.71 (SD = 0.226), and expected heterozygosity was 0.788 (SD = 0.146). Genotypic frequencies conformed to Hardy–Weinberg equilibrium at the Catalonian population, and no evidence for linkage disequilibrium was observed. Multilocus genotypes resulting from this set of markers will be useful to determine genetic diversity and differentiation within and among populations of this highly protected moth. Several loci amplified and resulted polymorphic in two related species: two loci in Actias neidhoeferi, and three loci in A. luna.  相似文献   

13.
We used demographic, spatial, and microsatellite data to assess fine-scale genetic structure in Ethiopian wolves found in the Bale Mountains and evaluated the impact of historical versus recent demographic processes on genetic variation. We applied several analytical methods, assuming equilibrium and nonequilibrium conditions, to assess demography and genetic structure. Genetic variation (H E = 0.584–0.607, allelic richness = 4.2–4.3) was higher than previously reported for this species and genetic structure was influenced by geography and social structure. Statistically significant F ST values (0.06–0.08) implied differentiation among subpopulations. STRUCTURE analyses showed that neighbouring packs often have shared co-ancestry and spatial autocorrelation showed higher genetic similarity between individuals within packs and between individuals in neighbouring packs compared to random pairs of individuals. Recent effective population sizes were lower than 2n (where n is the number of packs) and lower than the number of breeding individuals with N e /N ratios near 0.20. All subpopulations have experienced bottlenecks, one occurring due to a rabies outbreak in 2003. Nevertheless, differentiation among these subpopulations is consistent with long-term migration rates and fragmentation at the end of the Pleistocene. Enhanced drift due to population bottlenecks may be countered by higher migration into disease-affected subpopulations. Contemporary factors such as social structure and population bottlenecks are clearly influencing the level and distribution of genetic variation in this population, which has implications for its conservation.  相似文献   

14.
Enriched genomic libraries were used to isolate and characterize dinucleotide microsatellite loci in Erica coccinea, a South African Cape fynbos heath species with distinct resprouter and seeder populations. Microsatellites were required to investigate the effect of the contrasting demographic pattern driven by these two post-fire responses in the population genetic structure of seeder and resprouter forms within this species. Eight microsatellite loci were characterised and amplified a total of 106 alleles in 2 samples each of 30 individuals from 1 resprouter and 1 seeder population. Mean allele numbers were 7.88 and 11.0 for the resprouter and seeder population, respectively. Both populations showed similar average observed and expected heterozygosity levels, H O(resprouter) = 0.683, H O(seeder) = 0.696; H E(resprouter) = 0.726, H E(seeder) = 0.756, and average positive inbreeding coefficients F IS(resprouter) = 0.058, F IS(seeder) = 0.080. This set of microsatellite loci will be used to conduct a population genetic survey of seeder and resprouter populations throughout the range of the species. Cross-species transferability was also assayed in four other South African and four European species of the genus Erica, supporting their potential use for population genetic analyses.  相似文献   

15.
The threatened California Black Rail lives under dense marsh vegetation, is rarely observed, flies weakly and has a highly disjunct distribution. The largest population of rails is found in 8–10 large wetlands in San Francisco Bay (SF Bay), but a population was recently discovered in the foothills of the Sierra Nevada Mountains (Foothills), within a wetland network comprised of over 200 small marshes. Using microsatellite and mitochondrial analyses, our objectives were to determine the origins, connectivity and demography of this recently-discovered population. Analyses of individuals from the Foothills (n = 31), SF Bay (n = 31), the Imperial Valley (n = 6) and the East Coast (n = 3), combined with rigorous power evaluations, provided valuable insights into past history and current dynamics of the species in Northern California that challenge conventional wisdom about the species. The Foothills and SF Bay populations have diverged strongly from the Imperial Valley population, even more strongly than from individuals of the East Coast subspecies. The data also suggest a historical presence of the species in the Foothills. The SF Bay and Foothills populations had similar estimated effective population size over the areas sampled and appeared linked by a strongly asymmetrical migration pattern, with a greater probability of movement from the Foothills to SF Bay than vice versa. Random mating was inferred in the Foothills, but local substructure among marshes and inbreeding were detected in SF Bay, suggesting different dispersal patterns within each location. The unexpected dimensions of Black Rail demography and population structure suggested by these analyses and their potential importance for management are discussed.  相似文献   

16.
Colonization of vacant habitat is a fundamental ecological process that affects the ability of species to persist and undergo range modifications in continually shifting landscapes. Thus, understanding factors that affect and limit colonization has important ecological and conservation implications. Epiphytic orchids are increasingly threatened by various factors, including anthropogenic habitat disturbance. As cleared areas (e.g. pastures) are recolonized by suitable host trees, the establishment and genetic composition of epiphytic orchid populations are likely a function of their colonization patterns. We used genetic analyses to infer the prevailing colonization pattern of the epiphytic orchid, Brassavola nodosa. Samples from three populations (i.e. individuals within a tree) from each of five pastures in the dry forest of Costa Rica were genotyped with neutral nuclear and chloroplast markers. Spatial autocorrelation and hierarchical genetic structure analyses were used to assess the relatedness of individuals within populations, among populations within pastures and among populations in different pastures. The results showed significant relatedness within populations (mean = 0.166) and significant but lower relatedness among populations within a pasture (mean = 0.058). Our data suggest that colonization of available habitats is by few individuals with subsequent population expansion resulting from in situ reproduction, and that individuals within a tree are not a random sample of the regional seed pool. Furthermore, populations within a pasture were likely colonized by seeds produced by founders of a neighbouring population within that pasture. These results have important ramifications for understanding conservation measures needed for this species and other epiphytic orchids.  相似文献   

17.
We collected all available information (i.e. international and local journals, conference proceedings, theses, technical reports) on the spawning season (n = 511 stocks, 168 species), gonadosomatic index (n = 237 stocks, 81 species) and sex ratio (n = 97 stocks, 68 species) of Mediterranean marine fish. The 511 stocks represented 20 orders (most were Perciformes, 283 stocks) and 65 families (most were Sparidae: 17 species and 63 stocks). Overall, 346 stocks (128 species) spawned between April and August, 139 stocks (60 species) between September and March, while the remaining 26 stocks (13 species) were all-year-round spawners. In addition, 174 stocks (34.1%) were characterised by an extended (>4 months) spawning season, but, for most stocks (332 stocks, 64.4%), spawning duration ranged from 2 to 4 months inclusive. Regardless of the onset and the duration of spawning, the spawning period of 284 and 287 stocks included June and July, respectively, indicating that most Mediterranean species are summer spawners. Female gonadosomatic index ranged between 0.06 and 37 (mean ± SE = 8.55 ± 0.647, n = 95) and was significantly higher (t-test: t = 5.58, P < 0.001) than the corresponding male one, which ranged between 0.06 and 30 (mean ± SE = 4.21 ± 0.431, n = 95). Congeneric species that occupied the same area and share the same requirements exhibited successive and non-overlapping spawning (e.g. Sparidae in the Adriatic Sea, Mugilidae in the Ionian Sea and Tunisian waters). The knowledge of the spawning period coupled with information on spawning and nursery grounds and detailed knowledge of mating systems, social interactions, maturity and fecundity may be very useful for fisheries management.  相似文献   

18.
Information on site fidelity and ranging patterns of wild animals is critical to understand how they use their environment and guide conservation and management strategies. Delphinids show a wide variety of site fidelity and ranging patterns. Between September 2013 and October 2015, we used boat‐based surveys, photographic identification, biopsy sampling, clustering analysis, and geographic information systems to determine the site‐fidelity patterns and representative ranges of southern Australian bottlenose dolphins (Tursiops cf. australis) inhabiting the inner area of Coffin Bay, a highly productive inverse estuary located within Thorny Passage Marine Park, South Australia. Agglomerative hierarchical clustering (AHC) of individuals’ site‐fidelity index and sighting rates indicated that the majority of dolphins within the inner area of Coffin Bay are “regular residents” (n = 125), followed by “occasional residents” (n = 28), and “occasional visitors” (n = 26). The low standard distance deviation indicated that resident dolphins remained close to their main center of use (range = 0.7–4.7 km, X ± SD = 2.3 ± 0.9 km). Representative ranges of resident dolphins were small (range = 3.9–33.5 km2, X ± SD = 15.2 ± 6.8 km2), with no significant differences between males and females (Kruskal–Wallis, χ2 = 0.426, = .808). The representative range of 56% of the resident dolphins was restricted to a particular bay within the study area. The strong site fidelity and restricted ranging patterns among individuals could be linked to the high population density of this species in the inner area of Coffin Bay, coupled with differences in social structure and feeding habits. Our results emphasize the importance of productive habitats as a major factor driving site fidelity and restricted movement patterns in highly mobile marine mammals and the high conservation value of the inner area of Coffin Bay for southern Australian bottlenose dolphins.  相似文献   

19.
Zooplanktonic taxa have a greater number of distinct populations and species than might be predicted based on their large population sizes and open‐ocean habitat, which lacks obvious physical barriers to dispersal and gene flow. To gain insight into the evolutionary mechanisms driving genetic diversification in zooplankton, we developed eight microsatellite markers to examine the population structure of an abundant, globally distributed mesopelagic copepod, Haloptilus longicornis, at 18 sample sites across the Atlantic and Pacific Oceans (= 761). When comparing our microsatellite results with those of a prior study that used a mtDNA marker (mtCOII,= 1059, 43 sample sites), we unexpectedly found evidence for the presence of a cryptic species pair. These species were globally distributed and apparently sympatric, and were separated by relatively weak genetic divergence (reciprocally monophyletic mtCOII lineages 1.6% divergent; microsatellite FST ranging from 0.28 to 0.88 across loci, P < 0.00001). Using both mtDNA and microsatellite data for the most common of the two species (= 669 for microsatellites, = 572 for mtDNA), we also found evidence for allopatric barriers to gene flow within species, with distinct populations separated by continental landmasses and equatorial waters in both the Atlantic and Pacific Ocean basins. Our study shows that oceanic barriers to gene flow can act as a mechanism promoting allopatric diversification in holoplanktonic taxa, despite the high potential dispersal abilities and pelagic habitat for these species.  相似文献   

20.
Carinotetraodon travancoricus or Malabar puffer fish is an endemic species described from rivers originating from the Western Ghats in South India. This species is captured extensively as an aquarium fish and is having substantial demand in global markets. However, being prone to overfishing and impacts of anthropogenic alterations in its habitats, IUCN has categorized it as a threatened/vulnerable species. Since, knowledge on variability of wild populations could help in their conservation and management, morphometric and genotypic analyses were carried out in natural populations of C. travancoricus inhabiting two geographically separated rivers Pamba and Chalakkudy. Mean values of eleven length parameters measured in 456 males and 439 females inhabiting these rivers revealed significant difference (ANOVA, F = 10.2 p < .001) between sexes and between females inhabiting two rivers. Principal component analysis revealed two factors in males and three factors in females, explained variance of 83.62% and 89.94% in respective sexes. Results of both PCA and discriminant function analysis indicated perceptibly high degree of separation between individuals inhabiting the two rivers. A total of 25 COI sequences were generated from C. travancoricus collected from rivers Pamba (n = 14) and Chalakkudy (n = 11). Sequence alignment revealed considerable base substitutions between samples from both rivers, indicating possibility of population differences. AMOVA analysis also provided significant Fst value (0.622; p-value .00) in support of population difference between individuals of both rivers. Interpopulation genetic distance reached upto 2.50%, high enough to confirm genetic diversity among individuals, revealing perceptible population events within this species. The present results indicated high degree of population difference between C. travancoricus inhabiting geographically separated rivers Pamba and Chalakkudy as evidenced from both morphometric and genotypic analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号