首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yu LC  Xu SL  Xiong W  Lundeberg T 《Regulatory peptides》2001,101(1-3):179-182
The present study investigated the effect of galanin on wide-dynamic range (WDR) neuron activity in the dorsal horn of the spinal cord of rats. The evoked discharge of WDR neurons was elicited by transdermic electrical stimulation applied on the ipsilateral hindpaw of rats. Galanin was administered directly on the spinal dorsal surface of L3-L5. The evoked discharge frequency of the WDR neurons decreased significantly after the administration of galanin and the effect lasted for more than 30 min. Furthermore, the inhibitory effect of galanin on the evoked discharge frequency of WDR neurons was blocked by following administration of the galanin antagonist galantide, indicating that the inhibitory effect of galanin on the activity of WDR neurons was induced by activating galanin receptors in the dorsal horn of the spinal cord. The results suggest that galanin has an inhibitory role in the transmission of presumed nociceptive information in the dorsal horn of the spinal cord in rats.  相似文献   

2.
Hypoxia and ischemia occur in the spinal cord when blood vessels of the spinal cord are compressed under pathological conditions such as spinal stenosis, tumors, and traumatic spinal injury. Here by using spinal cord slice preparations and patch-clamp recordings we investigated the influence of an ischemia-simulating medium on dorsal horn neurons in deep lamina, a region that plays a significant role in sensory hypersensitivity and pathological pain. We found that the ischemia-simulating medium induced large inward currents in dorsal horn neurons recorded. The onset of the ischemia-induced inward currents was age-dependent, being onset earlier in older animals. Increases of sensory input by the stimulation of afferent fibers with electrical impulses or by capsaicin significantly speeded up the onset of the ischemia-induced inward currents. The ischemia-induced inward currents were abolished by the glutamate receptor antagonists CNQX (20 μM) and APV (50 μM). The ischemia-induced inward currents were also substantially inhibited by the glutamate transporter inhibitor TBOA (100 μM). Our results suggest that ischemia caused reversal operation of glutamate transporters, leading to the release of glutamate via glutamate transporters and the subsequent activation of glutamate receptors in the spinal dorsal horn neurons.  相似文献   

3.

Background

Our previous study demonstrated that nitric oxide (NO) contributes to long-term potentiation (LTP) of C-fiber-evoked field potentials by tetanic stimulation of the sciatic nerve in the spinal cord in vivo. Ryanodine receptor (RyR) is a downstream target for NO. The present study further explored the role of RyR in synaptic plasticity of the spinal pain pathway.

Results

By means of field potential recordings in the adult male rat in vivo, we showed that RyR antagonist reduced LTP of C-fiber-evoked responses in the spinal dorsal horn by tetanic stimulation of the sciatic nerve. Using spinal cord slice preparations and field potential recordings from superficial dorsal horn, high frequency stimulation of Lissauer's tract (LT) stably induced LTP of field excitatory postsynaptic potentials (fEPSPs). Perfusion of RyR antagonists blocked the induction of LT stimulation-evoked spinal LTP, while Ins(1,4,5)P3 receptor (IP3R) antagonist had no significant effect on LTP induction. Moreover, activation of RyRs by caffeine without high frequency stimulation induced a long-term potentiation in the presence of bicuculline methiodide and strychnine. Further, in patch-clamp recordings from superficial dorsal horn neurons, activation of RyRs resulted in a large increase in the frequency of miniature EPSCs (mEPSCs). Immunohistochemical study showed that RyRs were expressed in the dorsal root ganglion (DRG) neurons. Likewise, calcium imaging in small DRG neurons illustrated that activation of RyRs elevated [Ca2+]i in small DRG neurons.

Conclusions

These data indicate that activation of presynaptic RyRs play a crucial role in the induction of LTP in the spinal pain pathway, probably through enhancement of transmitter release.  相似文献   

4.
The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET)-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.  相似文献   

5.
Galanin is a 29-amino acid peptide with a suggested role in nociception. The effect of galanin on wide-dynamic range neuron discharge frequency in rats with nerve ligation, used as a model of neurogenic pain, was investigated by extracellular recording methods. Seven to 14 days after sciatic nerve ligation, 0.1, 0.5 or 1 nmol of galanin was administered directly on the dorsal surface of the L3-L5 spinal cord of rats with sciatic nerve ligation. It was found that galanin inhibited the activity of wide-dynamic range neurons dose-dependently, an effect was more pronounced in sciatic nerve ligated rats than intact rats. Furthermore, when 1 nmol of galantide, the galanin antagonist, was administered on the dorsal surface of the L3-L5 spinal cord, the wide-dynamic range neuron discharge frequency increased significantly. The results suggest that galanin plays an important role in the modulation of presumed nociception in mononeuropathy.  相似文献   

6.
Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M(2), M(3), and M(4)) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ~50% neurons from M(3)-single KO and M(1)/M(3) double-KO mice. In addition, the M(3) antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M(5)-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M(2)/M(4) double-KO mice, but not M(2)- or M(4)-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M(2)/M(4) antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M(2) and M(4) receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M(5) is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord.  相似文献   

7.
Tao YX  Zhao ZQ 《生理学报》1998,50(4):361-366
本文用Fos作为背角伤害性反应神经元活动的一个标志物,结合免疫细胞化学和神经药理学方法,观察了速激肽受体拮抗剂对福尔马林诱发的脊髓c-fos原癌基因表达的影响。一侧大鼠后肢跖部皮下注射福尔马林,仅在同侧脊髓背角有c-fos表达。Fos阳性神经元最密集分布于I层和Ⅱ层背侧的内侧部,中等量分布于Ⅳ层和V型,少量定位于Ⅱ层腹侧部、Ⅲ、Ⅵ和Ⅹ层。若预先在一侧大鼠后肢跖部皮下注射福尔马林前,鞘内给予神经激肽  相似文献   

8.
The present study was performed to explore the effect of calcitonin gene-related peptide 8-37 (CGRP8-37) on the electrical stimulation-evoked discharge frequency of wide dynamic range (WDR) neurons in the dorsal horn of the spinal cord in rats. The discharge frequencies of WDR neurons were evoked by transdermic electrical stimulation applied on the ipsilateral hindpaw. CGRP8-37 was applied directly on the dorsal surface of the L3 to L5 spinal cord. After the administration of 3 nmol of CGRP8-37, the evoked discharge frequency of WDR neurons decreased significantly, an effect lasting more than 30 min. The results indicate that CGRP receptors play an important role in the transmission of presumed nociceptive information in the dorsal horn of the spinal cord.  相似文献   

9.
Recent evidence suggests that estrogen is synthesized in the spinal dorsal horn and plays a role in nociceptive processes. However, the cellular and molecular mechanisms underlying these effects remain unclear. Using electrophysiological, biochemical, and morphological techniques, we here demonstrate that 17β-estradiol (E2), a major form of estrogen, can directly modulate spinal cord synaptic transmission by 1) enhancing NMDA receptor-mediated synaptic transmission in dorsal horn neurons, 2) increasing glutamate release from primary afferent terminals, 3) increasing dendritic spine density in cultured spinal cord dorsal horn neurons, and 4) potentiating spinal cord long term potentiation (LTP) evoked by high frequency stimulation (HFS) of Lissauer''s tract. Notably, E2-BSA, a ligand that acts only on membrane estrogen receptors, can mimic E2-induced facilitation of HFS-LTP, suggesting a nongenomic action of this neurosteroid. Consistently, cell surface biotinylation demonstrated that three types of ERs (ERα, ERβ, and GPER1) are localized on the plasma membrane of dorsal horn neurons. Furthermore, the ERα and ERβ antagonist ICI 182,780 completely abrogates the E2-induced facilitation of LTP. ERβ (but not ERα) activation can recapitulate E2-induced persistent increases in synaptic transmission (NMDA-dependent) and dendritic spine density, indicating a critical role of ERβ in spinal synaptic plasticity. E2 also increases the phosphorylation of ERK, PKA, and NR2B, and spinal HFS-LTP is prevented by blockade of PKA, ERK, or NR2B activation. Finally, HFS increases E2 release in spinal cord slices, which can be prevented by aromatase inhibitor androstatrienedione, suggesting activity-dependent local synthesis and release of endogenous E2.  相似文献   

10.
Exposure of organotypic explants of mouse spinal cord with attached dorsal root ganglia (DRGs) to low concentrations (~10nM) of 5-hydroxytryptamine (5-HT) markedly depressed sensory-evoked dorsal-horn network responses, resembling the acute effects of opioids in these cultures. Attenuation of cord responses by 5-HT was not prevented by exposure to the 5-HT antagonists, methysergide and cyproheptadiene, nor to the opiate antagonist, naloxone. Explants that had become tolerant to morphine after chronic exposure (1 μM) for > 2 days often developed cross-tolerance to 5-HT. Acute exposure of morphine-tolerant explants to naloxone (1 μM) further attenuated the effects of 5-HT so that the minimum depressant levels of 5-HT were often increased up to 30-fold. Increasing the extra-cellular Ca++ concentration (to 5 mM) and/or introduction of 4-aminopyridine markedly antagonized the depressant effects of 5-HT on DRG-evoked cord responses, so that 5-HT levels comparable to those used on morphine-tolerant explants were required to depress naive explants. These depressant effects of 5-HT on cord-DRG explants are consonant with antinociceptive actions of 5-HT administered to dorsal cord in situ. Our data suggest that 5-HT may block neuronal components of dorsal horn networks at similar regions to those that are depressed by opiates, e.g. presynaptic DRG nerve terminals where abundant opiate receptors are located. The marked attenuation of the depressant effects of both 5-HT and opiates on cord-DRG explants by high Ca++ raises the possibility that cross-tolerance to 5-HT in morphine-tolerant explants may result from the same neuronal alterations that render dorsal-horn networks tolerant to opiates. Furthermore, the increased degree of cross-tolerance to 5-HT after acute introduction of naloxone in morphine-tolerant cultures may be an expression of opiate dependence.  相似文献   

11.
Muscarinic facilitation of 14C-ACh release from post-ganglionic parasympathetic nerve terminals was studied in bladder strips prepared from spinal intact (SI) and spinal cord transected (SCT) rats. The spinal cord was transected at the lower thoracic spinal segments 3 weeks prior to the experiments. Using non-facilitatory stimulation (2 Hz) the release of ACh in spinal intact rats did not change in the presence of a non-specific muscarinic antagonist, atropine (100 nM), an M(1) specific antagonist (pirenzepine, 50 nM) or an M(1)-M(3) specific antagonist (4-DAMP, 5 nM). However, during a facilitatory stimulation paradigm (10 Hz or 40 Hz, 100 shocks) atropine and pirenzepine, but not 4-DAMP inhibited the release of ACh in bladders from spinal intact rats, indicating an M(1) receptor-mediated facilitation. In spinal cord transected rats, 2 Hz stimulation-induced release was significantly inhibited by atropine or 4-DAMP but not by pirenzepine indicating that a pre-junctional facilitatory mechanism mediated via M(3) muscarinic receptors could be induced by a non-facilitatory stimulation paradigm after spinal injury. In bladders of spinal cord transected rats, 10 Hz stimulation-evoked release of ACh was also inhibited by atropine and 4-DAMP (5 nM) but not by pirenzepine (50 nM). These results indicate that pre-junctional muscarinic receptors at cholinergic nerve endings in the bladder change after chronic spinal cord injury. It appears that low affinity M(1) muscarinic receptors are replaced by high affinity M(3) receptors. This change in modulation of ACh release may partly explain the bladder hyperactivity after chronic spinal cord injury.  相似文献   

12.
Bombesin-like peptides were characterized in rat spinal cord by radio-immunoassay. The density of bombesin-like peptides was eight-fold greater in the dorsal than ventral horn or white matter of the spinal cord. Using high pressure liquid chromatography fractionation techniques, the main peak of immunoreactivity coeluted with synthetic bombesin. Also, the mechanism of release spinal cord peptides was determined. K+ and veratridine stimulated release of immunoreactive bombesin in a Ca++-dependent mechanism. These data indicate that bombesin-like peptides may function as a unique class of neuroregulatory agents in mammalian spinal cord.  相似文献   

13.
The depressant effects of morphine (0.1-1 microM) on sensory-evoked dorsal-horn network responses in explants of mouse spinal cord with attached dorsal root ganglia (DRGs) were rapidly restored after addition of 4-aminopyridine (4-AP; 0.1 mM) and major components of these cord responses were stably maintained in the presence of the opiate. Moreover, prior exposure of cord-DRG explants to 0.1 mM 4-AP prevented the depressant effects of 0.1 microM morphine on DRG-evoked dorsal-horn responses, and the effects of 1-10 microM morphine were at least partly antagonized. Increased Ca++ levels (5 microM) attenuated the depression of dorsal horn responses by 1-10 micro M morphine and these effects of Ca++ were greatly enhanced in the presence of 4-AP--in some cultures, concentrations of morphine as high as 100 micro M were strongly antagonized during test periods up to 2 hours. Receptor assays showed that 0.1 mM 4-AP +/- 5 mM Ca++ had no effect on stereospecific opiate binding, indicating that the antagonist actions of these agents in our cultures do not occur at the level of the opiate receptor. The relevance of our in vitro studies of 4-AP antagonism of opiate-depressant effects on sensory-evoked dorsal-horn network responses for analyses of problems in opiate analgesia has been strengthened by a recent report demonstrating that 4-AP does, in fact, reverse morphine analgesia in rats, as determined by tail flick tests.  相似文献   

14.
《Nitric oxide》2000,4(2):94-102
The purpose of this study was to investigate the in vivo effects of intracavernosal injections of galanin and galantide (a specific galanin receptor antagonist) on penile erection in the anesthetized cat. Erectile responses to galanin and galantide were compared with responses to a standard triple drug combination [1.65 mg papaverine, 25 μg phentolamine, and 0.5 μg prostaglandin E1 (PGE1)]. Intracavernosal injections of galanin (3–100 nmol) and galantide (0.1–3 nmol) induced penile erection in a dose-dependent manner. In terms of relative potency, galantide was approximately 100-fold more potent than galanin at increasing cavernosal pressure. The maximal increases in intracavernosal pressure in response to galanin and galantide were 83 and 95%, respectively, of the control triple drug combination. The total durations of erectile response caused by these peptides were significantly shorter (P < 0.05) than those by the triple drug combination. The nitric oxide synthase inhibitor L-NAME (20 mg) significantly decreased the erectile response in the cat to galantide but not to galanin, while the K+ATP channel antagonist U-37883A (3 mg) had no effect on the erectile response to galanin nor galantide. The results of the present study demonstrate that galantide, a putative antagonist for the galanin receptor, has more potent agonist activity than galanin in increasing intracavernosal pressure in the cat. Moreover, these data suggest that galantide, but not galanin, causes penile erection by an NO/cGMP-dependent mechanism. This is the first study to demonstrate that galanin may play a role in the physiology of penile erection.  相似文献   

15.
Wan YH  Wang YY  Dai F  Hu SJ 《生理学报》2004,56(4):550-557
本文描述了用明胶半包埋法制备带背根脊髓薄片的实验步骤,和在脊髓背角记录由初级传入纤维介导的突触后电流的可视膜片钳法。手术制备一段带背根的脊髓标本,并用20%的明胶包埋在琼脂块上,再用振动切片机切片获得带背根的脊髓薄片。通过红外线可视的引导,在脊髓背角神经元上建立全细胞封接模式。在钳制电压为-70mV条件下,记录自发的和背根刺激引起的兴奋性突触后电流。以传入纤维的传导速度与刺激阈值为指标,可以区分A样纤维与C样纤维兴奋性突触后电流。在钳制电压为0mV条件下,记录自发的和背根刺激引起的抑制性突触后电流。用5μmol/L的士宁或20μmol/L的荷包牡丹碱分离出γ-氨基丁酸能或甘氨酸能的抑制性突触后电流。用可视膜片钳方法可以准确测量脊髓背角神经元的突触后电流,从而研究初级传入突触的传递过程。更重要的是,在红外线可视观察的帮助下,建立膜片钳封接的成功率显著提高,同时也使记录研究脊髓背角深层神经元变得更加容易。本研究为探索初级传入突触传递过程提供了一个有效的方法。  相似文献   

16.
Treatment with prostaglandin (PG) D2 in concentrations (10−8 to 10−7 M) insufficient to alter the basal tone potentiated the contractile response of helical strips of dog mesenteric arteries to transmural electrical stimulation but did not influence the response to norepinephrine. The potentiating effect of PGD2 was not prevented by treatment with diphloretin phosphate, a PG antagonist, whereas contractions of dog cerebral arteries induced by PGD2 were suppressed. The 3H-overflow evoked by transmural stimulation in superfused mesenteric arterial strips previously soaked in 3H-norepinephrine containing media was significantly increased by PGD2. It is concluded that PGD2 increases the stimulation-evoked release of norepinephrine from adrenergic nerves innervating the arterial wall. PGD2 appears to act differently on receptive sites responsible for increasing the release of norepinephrine and for producing arterial contraction.  相似文献   

17.
NMDA受体通道参与大鼠脊髓背角C纤维诱发电位LTP的表达   总被引:3,自引:0,他引:3  
以往研究表明,激动NMDA受体是引起海马长时程增强(LTP)的必备条件,而LTP的表达主要与AMPA受体的磷酸化及其受体组装到突触后膜有关.但是,近年来有研究表明NMDA受体通道也参与了LTP的表达.为探讨NMDA受体通道是否参与了脊髓背角C纤维诱发电位LTP的表达,诱导LTP后,分别静脉或脊髓局部给予NMDA受体拮抗剂MK801或APV,观察其作用.发现静脉注射非竞争性NMDA受体MK801(0.1mg/kg)对脊髓LTP无影响,注射0.5mg/kg显著抑制LTP,但是当剂量增高到1.0mg/kg时,抑制作用并未进一步增大.脊髓局部给予MK801也能抑制脊髓背角LTP.为验证上述结果,使用了竞争性NMDA受体拮抗剂APⅤ.结果显示,脊髓局部给予50μmol/LAPⅤ对LTP无影响,100μmol/L对LTP有显著的抑制作用,当浓度升至200μmol/L时,抑制作用并未见进一步增强.因此认为,NMDA受体通道部分地参与了脊髓背角C纤维诱发电位LTP的表达.  相似文献   

18.
Electrostimulatory forms of therapy can reduce angina that arises from activation of cardiac nociceptive afferent fibers during transient ischemia. This study sought to determine the effects of electrical stimulation of left thoracic vagal afferents (C(8)-T(1) level) on the release of putative nociceptive [substance P (SP)] and analgesic [dynorphin (Dyn)] peptides in the dorsal horn at the T(4) spinal level during coronary artery occlusion in urethane-anesthetized Sprague-Dawley rats. Release of Dyn and SP was measured by using antibody-coated microprobes. While Dyn and SP had a basal release, occlusion of the left anterior descending coronary artery only affected SP release, causing an increase from lamina I-VII. Left vagal stimulation increased Dyn release, inhibited basal SP release, and blunted the coronary artery occlusion-induced release of SP. Dyn release reflected activation of descending pathways in the thoracic spinal cord, because vagal afferent stimulation still increased the release of Dyn after bilateral dorsal rhizotomy of T(2)-T(5). These results indicate that electrostimulatory therapy, using vagal afferent excitation, may induce analgesia, in part, via inhibition of the release of SP in the spinal cord, possibly through a Dyn-mediated neuronal interaction.  相似文献   

19.
Abstract: N -Methyl- d -aspartate (NMDA; 500 μ M ) stimulated the net release of preloaded tritiated norepinephrine from rat hippocampal slices. Both ethanol and the competitive glycine antagonist 7-chlorokynurenic acid (7-CK) dose-dependently inhibited NMDA-stimulated release without affecting basal, nonstimulated efflux. These inhibitory effects were readily reversed upon washout of the drugs. Over the concentration range tested (25–200 m M ), ethanol inhibited ∼65% of NMDA-stimulated release with an estimated IC50 of ∼70 m M . In contrast, 7-CK fully inhibited release (>95%) at a concentration of 30 μ M with half-maximal inhibition occurring at ∼2 μ M . The combination of 7-CK (1–30 μ M ) and ethanol (25–100 m M ) had an additive inhibitory effect on NMDA-stimulated release but did not alter the inhibitory potency of 7-CK. Calculated IC50values for 7-CK in the presence of 25, 50, or 100 m M ethanol were (mean × SEM; μ M ) 2.33 (0.11), 2.38 (0.23), and 1.99 (0.30), respectively. 7-CK (3 μ M ) inhibited NMDA-stimulated [3H]norepinephrine release by ∼50%. This inhibition was fully attenuated by the addition of the glycine agonistserine with complete reversal occurring at 30 μ M d -serine. Increasing the 7-CK concentration to 10 μ M shifted the d -serine dose-effect curve to the right in a parallel fashion as expected for a competitive antagonist. In contrast, the inhibitory effects of ethanol or the combination of 7-CK (3 μ M ) and ethanol (25 or 50 m M ) were not reversed by the addition of d -serine (0.1–1,000 μ M ). Together, these results suggest that ethanol's inhibition of NMDA-stimulated [3H]norepinephrine release from hippocampal slices is not due to a simple competitive interaction with the glycine site on the NMDA receptor.  相似文献   

20.
These studies examined the regulation by GABA of norepinephrine release from hypothalamus, preoptic area and frontal cortex. Using superfused brain slicesfrom female rats, we show that 100 μM GABA enhances both basal and electrically stimulated release of 3H-norepinephrine in all three brain regions. The GABAA agonist muscimol (100 μM) significantly augments 3H-norepinephrine release, but it is somewhat less effective than GABA. The GABAB agonist baclofen has little or no effect on basal 3H-norepinephrine efflux. GABA also augments both the magnitude and duration of electrically evoked 3H-norepinephrine release in slices from all three brain regions. GABA facilitation of electrically stimulated 3H-norepinephrine release is mediated through GABAA receptors as evidenced by its blockad by 10 μM bicuculline, a GABAA antagonist, but not by 200 μM 2-OH-saclofen, a GABAB antagonist. These data show that the inhibitory amino acid neurotransmitter GABA enhances both basal and evoked release of 3H-norepinephrine in brain slices from female rats. These effects are predominantly mediated by GABAA receptors. GABA modulation of hypothalamic norepinephrine release may play a role in the regulation of gonadotropin secretion and reproductive behaviors such as lordosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号