首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Epstein-Barr virus (EBV) is a human tumor virus and a paradigm of herpesviral latency. Mature naïve or memory B cells are EBV's preferred targets in vitro and in vivo. Upon infection of any B cell with EBV, the virus induces cellular proliferation to yield lymphoblastoid cell lines (LCLs) in vitro and establishes a latent infection in them. In these cells a ‘classical’ subset of latent viral genes is expressed that orchestrate and regulate cellular activation and proliferation, prevent apoptosis, and maintain viral latency. Surprisingly, little is known about the early events in primary human B cells infected with EBV. Recent analyses have revealed the initial but transient expression of additional viral genes that do not belong to the ‘classical’ latent subset. Some of these viral genes have been known to initiate the lytic, productive phase of EBV but virus synthesis does not take place early after infection. The early but transient expression of certain viral lytic genes is essential for or contributes to the initial survival and cell cycle entry of resting B cells to foster their proliferation and sustain a latent infection. This review summarizes the recent findings and discusses the presumed function(s) of viral genes expressed shortly but transiently after infection of B-lymphocytes with EBV.  相似文献   

3.
Herpesviruses establish latency in suitable host cells after primary infection and persist in their host organisms for life. Most of the viral genes are silenced during latency, also enabling the virus to escape from an immune response. This study addresses the control of viral gene silencing by epigenetic mechanisms, using Herpesvirus saimiri (HVS) as a model system. Strain C488 of this gamma-2-herpesvirus can transform human T cells to stable growth in vitro, and it persists in the nuclei of those latently infected T cells as a nonintegrating, circular, and histone-associated episome. The whole viral genome was probed for histone acetylation at high resolution by chromatin immunoprecipitation-on-chip (ChIP-on-chip) with a custom tiling microarray. Corresponding to their inactive status in human T cells, the lytic promoters consistently revealed a heterochromatic phenotype. In contrast, the left terminal region of the genome, which encodes the stably expressed oncogenes stpC and tip as well as the herpesvirus U RNAs, was associated with euchromatic histone acetylation marks representing "open" chromatin. Although HVS latency in human T lymphocytes is considered a stable and irreversible state, incubation with the histone deacetylase inhibitor trichostatin A resulted in changes reminiscent of the induction of early lytic replication. However, infectious viral particles were not produced, as the majority of cells went into apoptosis. These data show that epigenetic mechanisms are involved in both rhadinoviral latency and transition into lytic replication.  相似文献   

4.
Resting CD4+ T cells are a reservoir of latent HIV-1. Understanding the turnover of HIV DNA in these cells has implications for the development of eradication strategies. Most studies of viral latency focus on viral persistence under antiretroviral therapy (ART). We studied the turnover of SIV DNA resting CD4+ T cells during active infection in a cohort of 20 SIV-infected pigtail macaques. We compared SIV sequences at two Mane-A1*084:01-restricted CTL epitopes using serial plasma RNA and resting CD4+ T cell DNA samples by pyrosequencing, and used a mathematical modeling approach to estimate SIV DNA turnover. We found SIV DNA turnover in resting CD4+ T cells was slow in animals with low chronic viral loads, consistent with the long persistence of latency seen under ART. However, in animals with high levels of chronic viral replication, turnover was high. SIV DNA half-life within resting CD4 cells correleated with viral load (p = 0.0052) at the Gag KP9 CTL epitope. At a second CTL epitope in Tat (KVA10) there was a trend towards an association of SIV DNA half-life in resting CD4 cells and viral load (p = 0.0971). Further, we found that the turnover of resting CD4+ T cell SIV DNA was higher for escape during early infection than for escape later in infection (p = 0.0084). Our results suggest viral DNA within resting CD4 T cells is more labile and may be more susceptible to reactivation/eradication treatments when there are higher levels of virus replication and during early/acute infection.  相似文献   

5.
6.
The latency of human immunodeficiency virus type 1 (HIV-1) in resting primary CD4+ T cells is the major barrier for the eradication of the virus in patients on suppressive highly active antiretroviral therapy (HAART). Even with optimal HAART treatment, replication-competent HIV-1 still exists in resting primary CD4+ T cells. Multiple restriction factors that act upon various steps of the viral life cycle could contribute to viral latency. Here we show that cellular microRNAs (miRNAs) potently inhibit HIV-1 production in resting primary CD4+ T cells. We have found that the 3' ends of HIV-1 messenger RNAs are targeted by a cluster of cellular miRNAs including miR-28, miR-125b, miR-150, miR-223 and miR-382, which are enriched in resting CD4+ T cells as compared to activated CD4+ T cells. Specific inhibitors of these miRNAs substantially counteracted their effects on the target mRNAs, measured either as HIV-1 protein translation in resting CD4+ T cells transfected with HIV-1 infectious clones, or as HIV-1 virus production from resting CD4+ T cells isolated from HIV-1-infected individuals on suppressive HAART. Our data indicate that cellular miRNAs are pivotal in HIV-1 latency and suggest that manipulation of cellular miRNAs could be a novel approach for purging the HIV-1 reservoir.  相似文献   

7.
8.
9.
10.
R325-beta TK+, a herpes simplex virus 1 mutant carrying a 500-base-pair deletion in the alpha 22 gene and the wild-type (beta) thymidine kinase (TK) gene, was previously shown to grow efficiently in HEp-2 and Vero cell lines. We report that in rodent cell lines exemplified by the Rat-1 line, plating efficiency was reduced and growth was multiplicity dependent. A similar multiplicity dependence for growth and lack of virus spread at low multiplicity was seen in resting, confluent human embryonic lung (HEL) cells. The shutoff of synthesis of beta proteins was delayed and the duration of synthesis of gamma proteins was extended in R325-beta TK+-infected HEL cells relative to cells infected with the wild-type parent, but no significant differences were seen in the total accumulation of viral DNA. To quantify the effect on late (gamma 2) gene expression, a recombinant carrying the deletion in the alpha 22 gene and a gamma 2-TK gene (R325-gamma 2 TK) was constructed and compared with a wild-type virus (R3112) carrying a chimeric gamma 2-TK gene. In Vero cells, the gamma 2-TK gene of R325-gamma 2TK was expressed earlier than and at the same level as the gamma 2-TK gene of R3112. In the confluent resting HEL cells, the expression of the gamma 2-TK gene of the alpha 22- virus was grossly reduced relative to that of the alpha 22+ virus. Electron microscopic studies indicated that the number of intranuclear capsids of R325-beta TK+ virus was reduced relative to that of the parent virus in resting confluent HEL cells, but the number of DNA-containing capsids was higher. Notwithstanding the grossly reduced neurovirulence on intracerebral inoculation in mice, R325-beta TK+ virus was able to establish latency in mice. We conclude that (i) the alpha 22 gene affects late (gamma 2) gene expression, and (ii) a host cell factor complements that function of the alpha 22 gene to a greater extent in HEp-2 and Vero cells than in confluent, resting HEL cells.  相似文献   

11.
12.
13.
14.
15.
Molecular biology and pathogenesis of Kaposi sarcoma-associated herpesvirus   总被引:12,自引:0,他引:12  
Kaposi sarcoma (KS)-associated herpesvirus (KSHV) is the most recently discovered human oncogenic herpesvirus. The virus is associated with KS lesions and other human malignancies, including pleural effusion lymphomas and multicentric castleman's disease. The sequence of the viral genome demonstrated that it belongs to the gammaherpesvirus family similar to the Epstein-Barr virus, the only other known human herpesvirus associated with human cancers. Molecular studies have identified a number of viral genes involved in regulation of cell proliferation, gene regulation, chromatin remodeling and apoptosis. KSHV transforms human endothelial cells in vitro with low efficiency and expresses a repertoire of latent genes involved in the establishment of latency. One of these latent proteins, the latency-associated nuclear antigen (LANA) is required for episomal maintenance and tethers the viral genome to the host chromatin. LANA has now been shown to be a multifunctional protein involved in numerous cellular functions including binding to the retinoblastoma protein and p53, regulating cell proliferation and apoptosis.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号