首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a model of rat membranous nephropathy (MN), we examined the relationship between the development of glomerular epithelial cell injury and the formation and stability of the membrane attack complex (MAC) of complement. Isolated rat kidneys were perfused with buffered bovine albumin (BSA) or various plasmas (complement source). Kidneys containing nephritogenic amounts of complement-fixing sheep antibody to glomerular epithelial antigens (aFx1A) perfused with BSA (n = 5), and normal kidneys perfused with normal human plasma in BSA (50% v/v, n = 6) excreted 0.30 +/- 0.02 mg protein/min/g during 90 min perfusion (control groups). When normal plasma was added to the perfusate of aFx1A kidneys at concentrations of 12.5, 25, and 50% v/v, protein excretion rose in a time- and concentration-dependent manner. Perfusions with 25% plasma resulted in baseline proteinuria from 0 to 20 min that increased to 2.8 +/- 0.9 mg/min/g at 20 to 40 min and 8.6 +/- 2.1 at 40 to 60 min (n = 4, p less than 0.01 vs control groups). Removal of plasma at 20 min did not prevent this rise in protein excretion (3.9 +/- 2.4 and 5.8 +/- 2.6 mg/min/g at 30 to 40 and 55 to 65 min respectively, p less than 0.01, n = 4). Perfusion of aFx1A kidneys with C8-deficient (C8D) human plasma (25% v/v, n = 4) or C6D rabbit serum (25% v/v, n = 2) independently produced low levels of proteinuria comparable with BSA, but in combination, the two reagents restored enhanced protein excretion (n = 2). In aFx1A kidneys containing C5b-7, addition of C8 and C9 (C6D serum) after intervals of 20, 60, or 90 min immediately reconstituted heavy proteinuria. Thus, the magnitude of MAC-induced glomerular epithelial injury in rat MN is related to the complement dose. Altered glomerular permeability is delayed with respect to the onset of complement activation. Once sufficient C5b-9 is formed, proteinuria can develop despite cessation of new MAC assembly, implying that C5b-9 persists after formation. Moreover, the C5b-7 MAC intermediate is not eliminated rapidly in this model.  相似文献   

2.
Transbilayer migration of membrane phospholipid arising from membrane insertion of the terminal human complement proteins has been investigated. Asymmetric vesicles containing pyrene-labeled phosphatidylcholine (pyrenePC) concentrated in the inner monolayer were prepared by outer monolayer exchange between pyrenePC-containing large unilamellar vesicles and excess (unlabeled) small unilamellar vesicles, using bovine liver phosphatidylcholine-specific exchange protein. After depletion of pyrenePC from the outer monolayer, the asymmetric large unilamellar vesicles were isolated by gel filtration and exposed to the purified C5b-9 proteins at 37 degrees C. Transbilayer exchange of phospholipid between inner and outer monolayers during C5b-9 assembly was monitored by changes in pyrene excimer and monomer fluorescence. Membrane deposition of the C5b67 complex (by incubation with C5b6 + C7) caused no change in pyrenePC fluorescence. Addition of C8 to the C5b67 vesicles resulted in a dose-dependent decrease in the excimer/monomer ratio. This change was observed both in the presence and absence of complement C9. No change in fluorescence was observed for control vesicles exposed to C8 (in the absence of membrane C5b67), or upon C5b-9 addition to vesicles containing pyrenePC symmetrically distributed between inner and outer monolayers. These data suggest that a transbilayer exchange of phospholipid between inner and outer monolayers is initiated upon C8 binding to C5b67. The fluorescence data were analyzed according to a "random walk" model for excimer formation developed for the case where pyrenePC is asymmetrically distributed between lipid bilayers. Based on this analysis, we estimate that a net transbilayer migration of approximately 1% of total membrane phospholipid is initiated upon C8 binding to C5b67. The potential significance of this transbilayer exchange of membrane phospholipid to the biological activity of the terminal complement proteins is considered.  相似文献   

3.
Polymerization of C9 occurs spontaneously or can be induced by the tetramolecular complex C5b-8. Spontaneous C9 (0.15 mg/ml) polymerization required more than 3 days at 37 degrees C. In the presence of C5b-8, C9 polymerization was complete within 10 min. The molar C9:C5b-8 ratio determined the extent of tubular poly C9 formation by C5b-8-bearing phospholipid vesicles. When this ratio was 9:1 or 12:1, 72% of complex-bound C9 was present as SDS resistant tubular poly C9 (Mr = 1.1 X 10(6]. At lower C9:C5b-8 ratios, poly C9 was bound primarily in nontubular form. Tubular poly C9, as part of C5b-9, could also be generated on rabbit erythrocytes by using whole human serum as a complement source. At limiting serum concentration (molar C9 to C8 ratio approximately 2), no SDS-resistant tubular poly C9 was detected. At high serum concentration or when using serum that was supplemented with C9, up to 40% of the C9 was SDS-resistant tubular poly C9, and the rest was poly C9, which was incompletely polymerized. It is suggested that the C5b-8 complex acts as an accelerator of C9 polymerization, and that its relative concentration to C9 determines the ultrastructure of the C5b-9 complex.  相似文献   

4.
5.
Shao L  Sun X  Xu L  Young LT  Wang JF 《Life sciences》2006,78(12):1317-1323
The mood stabilizing drug lithium is a highly effective treatment for bipolar disorder. Previous studies in our laboratory found that chronic treatment with the mood stabilizing drug valproate in rat brain increased the expression of endoplasmic reticulum (ER) stress proteins GRP78, GRP94 and calreticulin. We report here that in primary cultured rat cerebral cortical cells, expression of GRP78, GRP94 and calreticulin are increased not only by valproate, but also by lithium after chronic treatment for 1 week at therapeutically relevant concentrations. However, two other mood stabilizing drugs carbamazepine and lamotrigine had no effect on expression of GRP78, GRP94 or calreticulin. Chronic treatment with lithium for 1 week increased both mRNA and protein levels of ER stress proteins. In contrast to a classic GRP78 inducer thapsigargin, an inhibitor of the ER Ca2+ -ATPase, chronic treatment with lithium or valproate for 1 week modestly increased GRP78 expression in neuronal cells, had no effect on basal intracellular free Ca2+ concentration and does not induce cell death. These results indicate that lithium and valproate may increase expression of GRP78, GRP94 and calreticulin in primary cultured rat cerebral cortical cells without causing cell damage. These results also suggest that the mechanism of GRP78 increase induced by lithium and valproate may be different from that of thapsigargin.  相似文献   

6.
Assembly of the terminal complement proteins C5b-9 on human endothelial cells results in increased cytosolic calcium and nonlytic secretion of high molecular weight multimers of von Willebrand factor from intracellular storage granules. We now demonstrate that this C5b-9-induced secretory response is accompanied by vesiculation of membrane particles from the endothelial surface which express binding sites for factor Va and support prothrombinase activity. Exposure of factor Va binding sites after C5b-9 assembly was accompanied by greater than 2-fold increase in prothrombinase activity, which was not observed for cells exposed to C5b-8 (in the absence of C9). By contrast, only a 3-16% increase in prothrombinase activity was observed when these cells were maximally stimulated to secrete by either histamine, thrombin, or the Ca2+ ionophore A23187. Increased prothrombinase activity after C5b-9 was not accompanied by a change in thrombomodulin activity, and was unrelated to cell lysis, the complement-treated cells remaining greater than 99% viable. Endothelial prothrombinase activity was predominately associated with small membrane vesicles (less than 1 microns diameter) released from the cell monolayer. Analysis by fluorescence-gated flow cytometry revealed that these vesicles incorporate the C5b-9 proteins and express binding sites for factor Va. The capacity of the C5b-9 proteins to induce vesiculation of the endothelial plasma membrane and thereby expose catalytic surface for the prothrombinase enzyme complex may contribute to fibrin deposition associated with immune endothelial injury.  相似文献   

7.
8.
The terminal, membrane-derived C5b-9 complex of human complement (C) is an apparently hollow, cylindrical macromolecule vertically oriented on the target membrane. In the present study, an antiserum to the complex has been used to probe its immunobiochemical properties. "Neoantigenic" determinants characteristic of the complex have been detected, which are absent on native C5-C9 molecules. Evidence that the C5b-9 complex is an amphiphilic molecule that possesses apolar, detergent-binding surfaces has been obtained by using charge-shift crossed immunoelectrophoresis, and by direct demonstration of Triton X-100 binding to the complex in quantitative immunoelectrophoresis. By the same criteria, serum C5, C6, and C9 are hydrophilic molecules. The results indicate that assembly of C5-C9 into the terminal membrane C5b-9 complex is accompanied by conformational changes in the individual C components that lead to the exposure of apolar molecular regions in the complex. It is proposed that this constitutes the basis for the lipid-binding properties of the macromolecule, which enable it to become inserted into biologic and artificial lipid membranes with apparent generation of a transmembrane pore.  相似文献   

9.
10.
Focal segmental glomerulosclerosis (FSGS) may be associated with glomerular epithelial cell (GEC; podocyte) apoptosis due to acquired injury or mutations in specific podocyte proteins. This study addresses mediation of GEC injury, focusing on endoplasmic reticulum (ER) stress. We studied signaling in cultured GECs in the presence or absence of the extracellular matrix (ECM). Adhesion to collagen supports cell survival, but adhesion to plastic (loss of contact with ECM) leads to apoptosis. Compared with collagen-adherent cells, GECs on plastic showed increased protein misfolding in the ER, and an adaptive-protective ER stress response, including increased expression of ER chaperones, increased phosphorylation of eukaryotic translation initiation factor-2α (eIF2α), and a reduction in protein synthesis. Activation of these ER stress pathways counteracted apoptosis. However, tunicamycin (a potent stimulator of ER stress) changed the ER stress response from protective to cytotoxic, as tunicamycin induced the proapoptotic ER stress gene, C/EBP homologous protein-10, and exacerbated apoptosis in GECs adherent to plastic, but not collagen. In GECs adherent to plastic, adaptive ER stress was associated with an increase in polyubiquitinated proteins and "choking" of the proteasome. Furthermore, pharmacological inhibition of the proteasome induced ER stress in GECs. Finally, we show that ER stress (induction of ER chaperones and eIF2α phosphorylation) was evident in experimental FSGS in vivo. Thus interactions of GECs with ECM may regulate protein folding and induction of the ER stress response. FSGS is associated with induction of ER stress. Enhancing protective aspects of the ER stress response may reduce apoptosis and possibly glomerulosclerosis.  相似文献   

11.
Isolated C7 (m.w. 120,000) in 1% deoxycholate (DOC) forms dimers with an apparent m.w. of 230,000 and a DOC-binding capacity of 82 mol per mol of dimer. Dimerization of C7 also occurs in the presence of DOC-phospholipid mixed micelles and eventuates in the insertion of C7 dimers into the lipid bilayer upon the removal of the detergent. C5b-7 complex formation in the fluid phase or on lipid vesicles likewise involves polymerization. C5b-7 sedimented with 17-40S, which suggests a dimeric to hexameric composition. In avidin-biotin binding experiments in which two differentially labeled forms of C5b,6 (biotinyl 125I-C5b,6, and 131I-C5b,6) were used in equimolar amounts to assemble C5b-7, more than 50% of the biotinyl 125I-C5b,6-containing complexes also contained 131I label; again suggesting that C5b-7 consisted of oligomers rather than monomers. The conformation of C7 in C5b-7 and in dimeric C7 appeared similar by the following criteria. On formation of C5b-7 from C5b,6 and C7, a 20% increase in beta-pleated sheet structure was observed by circular dichroism spectroscopy, and a similar change occurred on dimerization of isolated C7. Tryptic and thermolytic digests of C5b-7 and C7 dimers containing 125I-C7 were analyzed by autoradiography after SDS-polyacrylamide gel electrophoresis and were found to contain similar peptides that were distinct from those in the digests of monomeric C7. Direct evidence showing that the metastable membrane binding site of the C5b-7 complex resides in the C7 subunit was obtained by using the conjugates of C5b,6 and colloidal gold. Viewed in the electron microscope, these conjugates were aggregated upon the addition of isolated C7. In contrast, when conjugates of C7 and colloidal gold were treated with soluble C5b,6, no such aggregates occurred, but instead, individual C5b-7 complexes were observed arranged around single gold particles, resulting in star-like structures. The results strongly suggest that structures of C7 are responsible for the expression of the membrane binding site of metastable C5b-7.  相似文献   

12.
We have developed a technique in which transglutaminase is used to measure the penetration of terminal complement proteins across the erythrocyte membrane into the cytoplasmic space. Penetration of a given terminal complement protein into the cytoplasmic space was assessed by labeling the protein of interest with radioactive iodine, forming the complement channel using the labeled protein, adding transglutaminase to only one side of the membrane, and allowing the enzyme to cross-link the susceptible proteins on that side of the membrane. Cross-linking was assessed by measuring the increase in molecular weight of the appropriate molecule on sodium dodecyl sulfate gels under reducing conditions. The results of these experiments indicate that C8 and C9 are rapidly cross-linked to high molecular weight from either the interior or the exterior of the membrane. In order to determine whether the cross-linking mediated by enzyme on the interior was occurring from within the ghosts and not via enzyme that had leaked into the extracellular medium, experiments were performed with dimethylcasein in the extracellular medium. In the presence of this protein, cross-linking of C8 and C9 from outside was negligible. Hence, if cross-linking occurs when transglutaminase is trapped inside the ghosts, it cannot be due to leakage of enzyme, but must be attributable to cross-linking from the inside. The results show that C9 definitely penetrated across the membrane into the intracellular space. With respect to C8, statistical evaluation indicates that C8 probably penetrated into the intracellular space.  相似文献   

13.
Expression of mutant surfactant protein C (SFTPC) results in endoplasmic reticulum (ER) stress in type II alveolar epithelial cells (AECs). AECs have been implicated as a source of lung fibroblasts via epithelial-to-mesenchymal transition (EMT); therefore, we investigated whether ER stress contributes to EMT as a possible mechanism for fibrotic remodeling. ER stress was induced by tunicamyin administration or stable expression of mutant (L188Q) SFTPC in type II AEC lines. Both tunicamycin treatment and mutant SFTPC expression induced ER stress and the unfolded protein response. With tunicamycin or mutant SFTPC expression, phase contrast imaging revealed a change to a fibroblast-like appearance. During ER stress, expression of epithelial markers E-cadherin and Zonula occludens-1 decreased while expression of mesenchymal markers S100A4 and α-smooth muscle actin increased. Following induction of ER stress, we found activation of a number of pathways, including MAPK, Smad, β-catenin, and Src kinase. Using specific inhibitors, the combination of a Smad2/3 inhibitor (SB431542) and a Src kinase inhibitor (PP2) blocked EMT with maintenance of epithelial appearance and epithelial marker expression. Similar results were noted with siRNA targeting Smad2 and Src kinase. Together, these studies reveal that induction of ER stress leads to EMT in lung epithelial cells, suggesting possible cross-talk between Smad and Src kinase pathways. Dissecting pathways involved in ER stress-induced EMT may lead to new treatment strategies to limit fibrosis.  相似文献   

14.
A comparative study of proteins adsorbed on outer surface of microsomal membranes was carried out. Electrophoretic differences between endoplasmic reticulum proteins from liver and brain cells were revealed. These differences were not observed in the presence of sodium dodecyl sulphate. Proteins of brain microsomes are shown to bind in vitro with membranes of brain endoplasmic reticulum to a higher extent than with liver microsomal membranes.  相似文献   

15.
The complement membrane attack complex (MAC) forms transmembrane pores in pathogen membranes. The first step in MAC assembly is cleavage of C5 to generate metastable C5b, which forms a stable complex with C6, termed C5b-6. C5b-6 initiates pore formation via the sequential recruitment of homologous proteins: C7, C8, and 12–18 copies of C9, each of which comprises a central MAC-perforin domain flanked by auxiliary domains. We recently proposed a model of pore assembly, in which the auxiliary domains play key roles, both in stabilizing the closed conformation of the protomers and in driving the sequential opening of the MAC-perforin β-sheet of each new recruit to the growing pore. Here, we describe an atomic model of C5b-6 at 4.2 Å resolution. We show that C5b provides four interfaces for the auxiliary domains of C6. The largest interface is created by the insertion of an interdomain linker from C6 into a hydrophobic groove created by a major reorganization of the α-helical domain of C5b. In combination with the rigid body docking of N-terminal elements of both proteins, C5b becomes locked into a stable conformation. Both C6 auxiliary domains flanking the linker pack tightly against C5b. The net effect is to induce the clockwise rigid body rotation of four auxiliary domains, as well as the opening/twisting of the central β-sheet of C6, in the directions predicted by our model to activate or prime C6 for the subsequent steps in MAC assembly. The complex also suggests novel small molecule strategies for modulating pathological MAC assembly.  相似文献   

16.
In experimental membranous nephropathy, complement C5b-9 induces sublethal glomerular epithelial cell (GEC) injury and proteinuria. C5b-9 also activates mechanisms that restrict injury or facilitate recovery. The ubiquitin-proteasome system (UPS) selectively degrades damaged or abnormal proteins, while misfolded proteins in the endoplasmic reticulum (ER) undergo ER-associated degradation (ERAD). In this study, we investigated the effect of complement on the UPS and ERAD. We monitored UPS function by transfection of rat GECs with a UPS reporter, GFP(u) (CL1 degron fused with green fluorescent protein). By analogy, CD3δ-yellow fluorescent protein (YFP) was employed as a reporter of ERAD. We demonstrated decreased GFP(u) levels in GECs after incubation with antibody and complement, compared with control. Using C8-deficient serum with or without purified C8, cycloheximide (an inhibitor of protein synthesis), and the proteasome inhibitor, MG132, we confirmed that the decrease of GFP(u) was mediated by C5b-9, and subsequent proteasomal degradation of the reporter. Inhibition of the c-Jun N-terminal kinase attenuated the effect of complement on GFP(u) degradation. Complement, however, increased the level of CD3δ-YFP in GECs, implying an impairment of ERAD, likely due to an overabundance of misfolded proteins in the ER. The overall ubiquitination of proteins was enhanced in complement-treated GECs and in glomeruli of rats with experimental membranous nephropathy, although ubiquitin mRNA was unchanged in GECs. Proteasome inhibition with MG132 increased the cytotoxic effect of complement in GECs. Complement-stimulated UPS function, by accelerating removal of damaged proteins, may be a novel mechanism to limit complement-induced injury.  相似文献   

17.
Retention of membrane proteins by the endoplasmic reticulum   总被引:2,自引:5,他引:2       下载免费PDF全文
《The Journal of cell biology》1985,101(5):1724-1732
We have used a monoclonal antibody specific for a hydrocarbon-induced cytochrome P450 to localize, by electron microscopy, the epitope- specific cytochrome P450. The cytochrome was found in the rough and smooth endoplasmic reticulum (ER) and the nuclear envelope of hepatocytes. Significant quantities of cytochrome P450 were not found in Golgi stacks. We also could not find any evidence of Golgi- associated processing of the Asn-linked oligosaccharide chains of two well-characterized ER membrane glycoprotein enzymes (glucosidase II and hexose-6-phosphate dehydrogenase), or of the oligosaccharides attached to the bulk of the glycoproteins of the ER membrane. We conclude that these ER membrane proteins are efficiently retained during a process of highly selective export from this organelle.  相似文献   

18.
Higy M  Junne T  Spiess M 《Biochemistry》2004,43(40):12716-12722
Most eukaryotic membrane proteins are cotranslationally integrated into the endoplasmic reticulum membrane by the Sec61 translocation complex. They are targeted to the translocon by hydrophobic signal sequences, which induce the translocation of either their N- or their C-terminal sequence. Signal sequence orientation is largely determined by charged residues flanking the apolar sequence (the positive-inside rule), folding properties of the N-terminal segment, and the hydrophobicity of the signal. Recent in vivo experiments suggest that N-terminal signals initially insert into the translocon head-on to yield a translocated N-terminus. Driven by a local electrical potential, the signal may invert its orientation and translocate the C-terminal sequence. Increased hydrophobicity slows down inversion by stabilizing the initial bound state. In vitro cross-linking studies indicate that signals rapidly contact lipids upon entering the translocon. Together with the recent crystal structure of the homologous SecYEbeta translocation complex of Methanococcus jannaschii, which did not reveal an obvious hydrophobic binding site for signals within the pore, a model emerges in which the translocon allows the lateral partitioning of hydrophobic segments between the aqueous pore and the lipid membrane. Signals may return into the pore for reorientation until translation is terminated. Subsequent transmembrane segments in multispanning proteins behave similarly and contribute to the overall topology of the protein.  相似文献   

19.
20.
In this study, we examined the bacterial constituents associated with the complement C5b-9 complex in detergent extracts from serum-treated Neisseria gonorrhoeae (GC). 125I surface-labeled GC were incubated in 10% serum, were washed, and were solubilized in the zwitterionic sulfobetaine detergent SB12. Immunoprecipitation of 125I-GC from the extract with anti-C5 Sepharose was followed by 12.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis autoradiography of immunoprecipitated material. Polyacrylamide gel analysis of surface-labeled 125I-GC showed prominent bands for proteins I and III for both serum-resistant GC strain 6305 and serum-sensitive GC strain 7189. These same bands were visible with similar intensity in the SB12 extracts from presensitized and non-presensitized 6305 and 7189 after serum incubation. For those organisms bearing bactericidal C5b-9 (6305 + IgG and 7189 +/- IgG), additional distinctive bands immunoprecipitated with antibody to C5 Sepharose. These components were of 93,000, 44,000 40,000, and 15,000 daltons for 6305 + IgG, and were of 90,000, 50,000, 44,000, and 19,000 daltons for 7189 +/- IgG. Nonbactericidal C5b-9 extracted from the surface of 6305 incubated in serum, but not sensitized with antibody, was not associated with these distinctive proteins. However, this nonbactericidal C5b-9 did have a different pattern of associated bacterial surface constituents from that observed in control samples incubated with antibody to human serum albumin, which were similar to those with nonserum-incubated organisms. These studies support our earlier experiments which demonstrated that C5b-9 is in a different molecular configuration on the surface of serum-resistant GC from that on the surface of serum-sensitive GC or resistant GC rendered sensitive with bactericidal antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号