首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH) during sleep, is increasingly recognized as an independent risk factor of cardiovascular diseases. OSA is associated with changes in the levels of circulating oxidative stress/inflammatory markers and dyslipidemia, supporting their mediating roles in cardiovascular pathogenesis. Our aims were to investigate the effect of IH on heart tissue using an IH-exposed rat model and to explore the potential mechanisms involved in the occurrence of cardiac damage. Male Sprague–Dawley rats were exposed to IH and intermittent normoxia as control and sacrificed after 2 or 4 weeks. IH for 4 weeks caused elevation in serum malondialdehyde and cytokine-induced neutrophil chemoattractant-1 and reduction in serum adiponectin levels. In contrast, cardiac oxidative stress and pro-inflammatory markers were suppressed while cardiac adiponectin and cholesterol levels were elevated after IH exposure for 4 weeks. In parallel, there was an increase in apoptosis in the heart of IH-exposed rats, demonstrated by elevations of Bax and cleaved caspase-3 protein and TUNEL staining. Cardiac damage was further evident with decreased arterial vessel and capillary densities, increased cardiac fibrosis, and the loss of troponin I. Our data demonstrated that IH exposure paradoxically caused systemic oxidative and inflammatory responses and cardioprotective responses, i.e., anti-oxidative and anti-inflammatory responses. Despite such a local compensatory protective mechanism, cardiac damage was observed that might be due to IH-induced cholesterol accumulation in the heart and caspase-dependent apoptosis.  相似文献   

2.
The aim of the present study was to evaluate the effects of endothelin-1-elicited cardiovascular events on respiratory gas transfer in the freshwater rainbow trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). In both species, endothelin-1 (666 pmol kg-1) caused a rapid (within 4 min) reduction (ca. 30-50 mmHg) in arterial blood partial pressure of O2. The effects of endothelin-1 on arterial blood partial pressure of CO2 were not synchronised with the changes in O2 partial pressure and the responses were markedly different in trout and dogfish. In trout, arterial CO2 partial pressure was increased transiently by ~1.0 mmHg but the onset of the response was delayed and occurred 12 min after endothelin-1 injection. In contrast, CO2 partial pressure remained more-or-less constant in dogfish after injection of endothelin-1 and was increased only slightly (~0.1 mmHg) after 60 min. Pre-treatment of trout with bovine carbonic anhydrase (5 mg ml-1) eliminated the increase in CO2 partial pressure that was normally observed after endothelin-1 injection. In both species, endothelin-1 injection caused a decrease in arterial blood pH that mirrored the changes in CO2 partial pressure. Endothelin-1 injection was associated with transient (trout) or persistent (dogfish) hyperventilation as indicated by pronounced increases in breathing frequency and amplitude. In trout, arterial blood pressure remained constant or was decreased slightly and was accompanied by a transient increase in systemic resistance, and a temporary reduction in cardiac output. The decrease in cardiac output was caused solely by a reduction in cardiac frequency; cardiac stroke volume was unaffected. In dogfish, arterial blood pressure was lowered by ~10 mmHg at 6-10 min after endothelin-1 injection but then was rapidly restored to pre-injection levels. The decrease in arterial blood pressure reflected an increase in branchial vascular resistance (as determined using in situ perfused gill preparations) that was accompanied by simultaneous decreases in systemic resistance and cardiac output. Cardiac frequency and stroke volume were reduced by endothelin-1 injection and thus both variables contributed to the changes in cardiac output. We conclude that the net consequences of endothelin-1 on arterial blood gases result from the opposing effects of reduced gill functional surface area (caused by vasoconstriction) and an increase in blood residence time within the gill (caused by decreased cardiac output.  相似文献   

3.
The aim of the present study was to evaluate the effects of endothelin-l-elicited cardiovascular events on respiratory gas transfer in the freshwater rainbow trout (Oncorhynchus mykiss) and the marine dogfish (Squalus acanthias). In both species, endothelin-1 (666 pmol kg(-1)) caused a rapid (within 4 min) reduction (ca. 30-50 mmHg) in arterial blood partial pressure of O2. The effects of endothelin-1 on arterial blood partial pressure of CO2 were not synchronised with the changes in O2 partial pressure and the responses were markedly different in trout and dogfish. In trout, arterial CO2 partial pressure was increased transiently by approximately 1.0 mmHg but the onset of the response was delayed and occurred 12 min after endothelin-1 injection. In contrast, CO2 partial pressure remained more-or-less constant in dogfish after injection of endothelin-1 and was increased only slightly (approximately 0.1 mmHg) after 60 min. Pre-treatment of trout with bovine carbonic anhydrase (5 mg ml(-1)) eliminated the increase in CO2 partial pressure that was normally observed after endothelin-1 injection. In both species, endothelin-1 injection caused a decrease in arterial blood pH that mirrored the changes in CO2 partial pressure. Endothelin-1 injection was associated with transient (trout) or persistent (dogfish) hyperventilation as indicated by pronounced increases in breathing frequency and amplitude. In trout, arterial blood pressure remained constant or was decreased slightly and was accompanied by a transient increase in systemic resistance, and a temporary reduction in cardiac output. The decrease in cardiac output was caused solely by a reduction in cardiac frequency; cardiac stroke volume was unaffected. In dogfish, arterial blood pressure was lowered by approximately 10 mmHg at 6-10 min after endothelin-1 injection but then was rapidly restored to pre-injection levels. The decrease in arterial blood pressure reflected an increase in branchial vascular resistance (as determined using in situ perfused gill preparations) that was accompanied by simultaneous decreases in systemic resistance and cardiac output. Cardiac frequency and stroke volume were reduced by endothelin-1 injection and thus both variables contributed to the changes in cardiac output. We conclude that the net consequences of endothelin-1 on arterial blood gases result from the opposing effects of reduced gill functional surface area (caused by vasoconstriction) and an increase in blood residence time within the gill (caused by decreased cardiac output.  相似文献   

4.
The effects of vanadate on cardiovascular function and on the secretion of renin and vasopressin were investigated by infusing sodium orthovanadate (0.32 mu mole/kg X min) intravenously into five conscious dogs. Vanadate caused significant increases in mean arterial pressure, total peripheral resistance, pulmonary arterial pressure, and cardiac output. These data illustrate that the hemodynamic effects of vanadate in the conscious dog are similar to those of the anesthetized dog but that minor differences do exist. Vanadate significantly suppressed plasma renin activity, but plasma vasopressin was unchanged. The effects of vanadate also were investigated in the same dogs on another day after administration of the calcium channel blocker, verapamil (0.3 mg/kg bolus + 0.01 mg/kg X min). After calcium channel blockade, the increases in arterial pressure and pulmonary arterial pressure induced by vanadate were attenuated, and cardiac output did not increase. Calcium channel blockade also prevented the vanadate-induced decrease in plasma renin activity. These data suggest that the cardiovascular and humoral alterations produced by vanadate in the conscious dog are at least partially mediated by changes in intracellular calcium.  相似文献   

5.
Effective arterial elastance(E(A)) is a measure of the net arterial load imposed on the heart that integrates the effects of heart rate(HR), peripheral vascular resistance(PVR), and total arterial compliance(TAC) and is a modulator of cardiac performance. To what extent the change in E(A) during exercise impacts on cardiac performance and aerobic capacity is unknown. We examined E(A) and its relationship with cardiovascular performance in 352 healthy subjects. Subjects underwent rest and exercise gated scans to measure cardiac volumes and to derive E(A)[end-systolic pressure/stroke volume index(SV)], PVR[MAP/(SV*HR)], and TAC(SV/pulse pressure). E(A) varied with exercise intensity: the ΔE(A) between rest and peak exercise along with its determinants, differed among individuals and ranged from -44% to +149%, and was independent of age and sex. Individuals were separated into 3 groups based on their ΔE(A)I. Individuals with the largest increase in ΔE(A)(group 3;ΔE(A)≥0.98 mmHg.m(2)/ml) had the smallest reduction in PVR, the greatest reduction in TAC and a similar increase in HR vs. group 1(ΔE(A)<0.22 mmHg.m(2)/ml). Furthermore, group 3 had a reduction in end-diastolic volume, and a blunted increase in SV(80%), and cardiac output(27%), during exercise vs. group 1. Despite limitations in the Frank-Starling mechanism and cardiac function, peak aerobic capacity did not differ by group because arterial-venous oxygen difference was greater in group 3 vs. 1. Thus the change in arterial load during exercise has important effects on the Frank-Starling mechanism and cardiac performance but not on exercise capacity. These findings provide interesting insights into the dynamic cardiovascular alterations during exercise.  相似文献   

6.
The association of sodium intake with the risk of cardiovascular morbidity and mortality is inconsistent. Thus, the present meta-analysis was conducted to summarize the strength of association between sodium intake and cardiovascular morbidity and mortality. PubMed, Embase, and the Cochrane Library were searched systematically to identify the relevant studies up to October 2017. The effect estimates for 100 mmol/day increase in sodium intake were calculated using 95% confidence intervals (CIs) of cardiac death, total mortality, stroke, or stroke mortality for low (< 3 g/d), moderate (3–5 g/d), or heavy (> 5 g/d) sodium intake, and minimal sodium intake comparison. A total of 16 prospective cohort studies reported data on 205,575 individuals. The results suggested that an increase in sodium intake by 100 mmol/d demonstrated little or no effect on the risk of cardiac death (P = 0.718) and total mortality (P = 0.720). However, the risk of stroke incidence (P = 0.029) and stroke mortality (P = 0.007) was increased significantly by 100 mmol/day increment of sodium intake. Furthermore, low sodium intake was associated with an increased risk of cardiac death (P = 0.003), while moderate (P < 0.001) or heavy (P = 0.001) sodium intake was associated with an increased risk of stroke mortality. These findings suggested that sodium intake by 100 mmol/d increment was associated with an increased risk of stroke incidence and stroke mortality. Furthermore, low sodium intake was related to an increased cardiac death risk, while moderate or heavy sodium intake was related to an increased risk of stroke mortality.  相似文献   

7.
Effects of intravenous injection of sheep hydatid cyst fluid on respiratory and cardiovascular systems were studied in sodium pentobarbital-anesthetized dogs. Under sterile conditions, the fluid was drawn from the liver and lung hydatid cysts of sheep, and centrifuged for 20 min at 500g. The supernatant fluid was used as the test solution. In a majority of animals, administration of 5 ml of the cyst fluid caused a sharp fall in arterial blood pressure, with or without respiratory changes. The latter, when present, included temporary cessation of respiration followed by rapid shallow breathing. There was usually an increase in the heart rate as the arterial blood pressure dropped. Atropine, 0.5 mg/kg body wt, given subcutaneously prior to the cyst fluid administration, did not block the responses. Cardiovascular responses produced by intravenous injection of cyst fluid were similar in dogs with positive pressure breathing and with spontaneous breathing. In 7 out of 10 responsive dogs, pretreatment with the antihistamine, chlorpheniramine, abolished the respiratory and cardiovascular responses.  相似文献   

8.
Newborn animals of a number of species display a brisk increase in ventilation followed by a gradual drop toward or below baseline within minutes of exposure to acute hypoxemia. Heart rate and cardiac output (a determinant of systemic oxygen transport along with the arterial oxygen content) appear to follow a similar pattern, but whether or not the cardiovascular response is influenced by the respiratory response is unknown. We therefore carried out experiments in which the level of ventilation was controlled during normoxemia and hypoxemia to test the hypothesis that the level of ventilation influences the cardiovascular response to acute hypoxemia. Six lambs ranging in age from 17 to 22 days were anesthetized, tracheostomized, and instrumented for measurement of cardiovascular variables. A recovery period of at least 3 days was allowed before the study when each lamb was artificially ventilated with a mixture of 70% nitrous oxide and 30% oxygen in nitrogen. A control respiratory frequency (f) of 30 breaths per min was set and a control tidal volume (VT) was chosen to achieve normocapnia. Cardiovascular measurements were made during normoxemia and hypoxemia (FIO2 0.10) 5 min after f or VT was changed to simulate a decrease, no change, or an increase in ventilation. During normoxemia, the level of ventilation had little effect on the measured cardiovascular variables. At control levels of ventilation, hypoxemia caused an increase in cardiac output that was due solely to an increase in stroke volume as heart rate decreased; blood pressure was unchanged. Increasing ventilation during hypoxemia did not augment cardiac output or alter blood pressure as compared with that observed at control levels of ventilation. Decreasing ventilation during hypoxemia, however, decreased cardiac output due to a profound bradycardia; blood pressure increased significantly. Our data provide evidence that the level of ventilation significantly influences the cardiovascular response to hypoxemia in young lambs.  相似文献   

9.
Because oxidative stress is involved in arterial hypertension, impairment of hepatic antioxidant defences could develop in the course of this disease. Metallothionein (MT), an antioxidant protein, is present in high rates in the liver. The aim of this study was to investigate the effect of a mineralocorticoid-salt treatment on blood pressure, hepatic antioxidant enzyme activities, and cardiac MT levels in transgenic MT null mice compared with control mice to further clarify the role of MT during the experimental development of arterial hypertension. Control and transgenic MT -/- mice were submitted to an 8-week mineralocorticoid-salt treatment. Hepatic glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase activities and cardiac MT and mineral levels were measured. Mineralocorticoid-salt treatment induced an increase in blood pressure in both transgenic MT -/- and control mice that was associated with an impairment of liver antioxidant status. MT deficiency was associated with modifications of hepatic antioxidant enzyme activities and with a decrease in cardiac iron levels. Adaptive processes of antioxidant systems may explain the absence of an effect of metallothionein deficiency on the development of mineralocorticoid-salt hypertension. The interactions that occur between the in vivo antioxidant systems probably produce a complex regulation of the oxidative balance and consequently prevent antioxidant deficiency.  相似文献   

10.
The interaction of dietary iron levels on vanadium toxicity was studied in chicks. Dietary iron levels ranged from a deficiency, ca. 10 ppm, to an adequacy, 100 ppm supplemental iron. to an excess, 1000 ppm supplemental iron. Vanadium was fed at 10, 20, and 40 ppm. Vanadium toxicity as measured by chick growth was more severe in the iron-deficient animals than in those receiving supplemental iron. The increase in degree of toxicity in the iron-deficient animals was accompanied by an increase in the liver vanadium, both total and concentration. The addition, of vanadium to the diet did not influence the iron concentration of the liver or kidney. Radioisotope, studies with48V revealed that the absorption of vanadium was not influenced by the iron concentration of the diet, but that the iron-deficient animals retained more vanadium in the blood and liver and less in the bone than did the iron supplemented animals. It is proposed that the degree of iron saturation of transferrin and ferritin to which vanadium can bind is a possible explanation for the results obtained. Paper No. 10687 of the Journal Series of the NC Agricultural Research Service, Raleigh, NC 27695-7601. The use of trade names implies neither endorsement of the products named nor criticism of similar products not mentioned by the NCARS.  相似文献   

11.
Vanadium and the cardiovascular functions   总被引:5,自引:0,他引:5  
Inorganic and organic compounds of vanadium have been shown to exhibit a large range of insulinomimetic effects in the cardiovascular system, including stimulation of glucose transporter 4 (GLUT-4) translocation and glucose transport in adult cardiomyocytes. Furthermore, administration of vanadium compounds improves cardiac performance and smooth muscle contractility, and modulates blood pressure in various models of hypertension and insulin resistance. Vanadium compounds are potent inhibitors of protein tyrosine phosphatases. As a result, they promote an increase in protein tyrosine phosphorylation of several key components of the insulin signaling pathway, leading to the upregulation of phosphatidylinositol 3-kinase and protein kinase B, two enzymes involved in mediating GLUT-4 trans location and glucose transport. In addition, vanadium has also been shown to activate p38 mitogen-activated protein kinase and increase Ca2+ levels in several cell types. The ability of vanadium compounds to activate these signaling events may be responsible for their ability to modulate cardiovascular functions.  相似文献   

12.
Rats were exposed for ten months to 60 ppm of lead (Pb, as acetate) in drinking water to further assess cardiovascular effects of chronic Pb exposure. At the end of the treatment, mean blood Pb was 3.1+/-0.3 microg/dL in the control rats and 22.8+/-1.2 microg/dL in the Pb-exposed rats (means+/-SE, n=12 in each group); these values were not comparable to those of humans. Pb greatly increased plasma levels of noradrenaline (NA) and adrenaline (A), but not those of L-DOPA and dopamine; monoaminoxidase activity was augmented by Pb, mostly in the aorta and in the liver; the aorta, liver, heart and kidney showed discrete histopathological alterations in the Pb-exposed rats, in which plasma levels of nitric oxide (NO, determined as L-citrulline) were reduced. Pb was able to induce blood hypertension, resulting from increase of cardiac inotropism and, mostly, total peripheral resistance. These data were discussed also in relation to those obtained in our previous studies carried out in rats exposed to Pb in drinking water (15-60 ppm) for periods ranging from five to eighteen months. Pb appeared to increase both sympathetic nerve activity by central mechanisms (thus increasing plasma NA and A) and cyclic adenosine monophosphate (cAMP)-dependent availability of calcium ions (Ca++) for contractile mechanisms in the vascular and cardiac myocells (also through an increased vascular alpha2- and myocardial beta1-adrenoreceptor reactivity). The reduction of plasma NO, contributing to increase vascular resistance and cardiac inotropism, was explained as a result of actions of Pb on enzyme activities concerned with the kallikrein-kinin (KK) and renin-angiotensin-aldosterone (RAA) systems. It was concluded that chronic Pb exposure is able to affect selective neuroendocrine (i.e., catecholamine), au- tacoidal (i.e., KK and RAA) and transductional pathways (i.e., cAMP, NO, Ca++) involved in the cardiovascular function.  相似文献   

13.

Background

Endurance exercise may induce transient cardiac dysfunction. Data regarding the effect of caloric restriction on cardiac function is limited. We studied the effect of physical activity performed during extreme caloric deprivation on cardiac function.

Methods

Thirty-nine healthy male soldiers (mean age 20±0.3 years) were studied during a field training exercise lasted 85–103 hours, with negligible food intake and unlimited water supply. Anthropometric measurements, echocardiographic examinations and blood and urine tests were performed before and after the training exercise.

Results

Baseline VO2 max was 59±5.5 ml/kg/min. Participants'' mean weight reduction was 5.7±0.9 kg. There was an increase in plasma urea (11.6±2.6 to 15.8±3.8 mmol/L, p<0.001) and urine osmolarity (692±212 to 1094±140 mmol/kg, p<0.001) and a decrease in sodium levels (140.5±1.0 to 136.6±2.1 mmol/L, p<0.001) at the end of the study. Significant alterations in diastolic parameters included a decrease in mitral E wave (93.6 to 83.5 cm/s; p = 0.003), without change in E/A and E/E′ ratios, and an increase in iso-volumic relaxation time (73.9 to 82.9 ms, p = 0.006). There was no change in left or right ventricular systolic function, or pulmonary arterial pressure. Brain natriuretic peptide (BNP) levels were significantly reduced post-training (median 9 to 0 pg/ml, p<0.001). There was no elevation in Troponin T or CRP levels. On multivariate analysis, BNP reduction correlated with sodium levels and weight reduction (R = 0.8, p<0.001).

Conclusions

Exposure to prolonged physical activity performed under caloric deprivation resulted in minor alterations of left ventricular diastolic function. BNP levels were significantly reduced due to negative water and sodium balance.  相似文献   

14.
Although studies indicate that 17beta-estradiol administration after trauma-hemorrhage (T-H) improves cardiac and hepatic functions, the underlying mechanisms remain unclear. Because the induction of heat shock proteins (HSPs) can protect cardiac and hepatic functions, we hypothesized that these proteins contribute to the salutary effects of estradiol after T-H. To test this hypothesis, male Sprague-Dawley rats ( approximately 300 g) underwent laparotomy and hemorrhagic shock (35-40 mmHg for approximately 90 min) followed by resuscitation with four times the shed blood volume in the form of Ringer lactate. 17beta-estradiol (1 mg/kg body wt) was administered at the end of the resuscitation. Five hours after T-H and resuscitation there was a significant decrease in cardiac output, positive and negative maximal rate of left ventricular pressure. Liver function as determined by bile production and indocyanine green clearance was also compromised after T-H and resuscitation. This was accompanied by an increase in plasma alanine aminotransferase (ALT) levels and liver perfusate lactic dehydrogenase levels. Furthermore, circulating levels of TNF-alpha, IL-6, and IL-10 were also increased. In addition to decreased cardiac and hepatic function, there was an increase in cardiac HSP32 expression and a reduction in HSP60 expression after T-H. In the liver, HSP32 and HSP70 were increased after T-H. There was no change in heart HSP70 and liver HSP60 after T-H and resuscitation. Estradiol administration at the end of T-H and resuscitation increased heart/liver HSPs expression, ameliorated the impairment of heart/liver functions, and significantly prevented the increase in plasma levels of ALT, TNF-alpha, and IL-6. The ability of estradiol to induce HSPs expression in the heart and the liver suggests that HSPs, in part, mediate the salutary effects of 17beta-estradiol on organ functions after T-H.  相似文献   

15.
《Life sciences》1994,54(22):PL389-PL394
Effects of pituitary adenylate cyclase activating polypeptide with 38 amino acid residues (PACAP-38) on both cardiovascular functions and plasma hormone levels during endotoxin shock were studied in anesthesized dogs. When PACAP-38 (a bolus 420 pmol/kg injection or a bolus 420 pmol/kg injection followed by a continuous 30 pmol/kg/min infusion for 60 min) was administered intravenously 5 min after application of endotoxin, both mean arterial pressure and cardiac output were restored at 10 min. The continuous administration of PACAP-38 was more effective in improving the symptoms of shock. Plasma adrenalin and cortisol levels were significantly increased by both regimens. These results clearly indicate that the anti-shock properties of PACAP-38 may be attributed to its abilities to increase plasma cortisol and adrenalin levels and to stimulate cardiac function.  相似文献   

16.
The present study was undertaken to further characterize the nucleus reticularis gigantocellularis (NRGC) of the medulla oblongata in the central processing of nociceptive and cardiovascular signals, and its modulation by metenkephalin. In Sprague-Dawley rats anesthetized with pentobarbital sodium, we found that all 125 spontaneously active NRGC neurons that responded to noxious stimuli (tail clamp) also exhibited arterial pressure-relatedness. Forty neurons additionally manifested cardiac periodicity that persisted even during nociceptive responses. While maintaining their cardiovascular responsive characteristics, the nociception-related NRGC neuronal activity was blocked, naloxone-reversibly (0.5 mg/kg, i.v.), by morphine (5 mg/kg, i.v.). Microiontophoretically applied met-enkephalin suppressed the responsiveness of NRGC neurons to individually delivered tail clamp or transient hypertension induced by phenylephrine (5 µg/kg, i.v.). Interestingly, in NRGC neurons that manifested both nociception and arterial pressure relatedness, the preferential reduction in the response to noxious stimuli upon simultaneous elevation in systemic arterial pressure was reversed to one that favored nociception in the presence of met-enkephalin. All actions of met-enkephalin were discernibly blocked by the opioid receptor antagonist, naloxone. Our results suggest that individual NRGC neurons may participate in the processing of both nociceptive and cardiovascular information, or in the coordination of the necessary circulatory supports during nociception. In addition, neuropeptides such as met-enkephalin may exert differential modulation on neuronal responsiveness according to the prevailing physiologic status of the animal. They also showed that NRGC may be a central integrator for pain and cardiovascular-related functions.  相似文献   

17.
Cardiovascular responses to hypoxia and hypercapnia in barodenervated rats   总被引:2,自引:0,他引:2  
Experiments were performed to examine the role of the arterial baroreceptors in the cardiovascular responses to acute hypoxia and hypercapnia in conscious rats chronically instrumented to monitor systemic hemodynamics. One group of rats remained intact, whereas a second group was barodenervated. Both groups of rats retained arterial chemoreceptive function as demonstrated by augmented ventilation in response to hypoxia. The cardiovascular effects to varying inspired levels of O2 and CO2 were examined and compared between intact and barodenervated rats. No differences between groups were noted in response to mild hypercapnia (5% CO2); however, the bradycardia and reduction in cardiac output observed in intact rats breathing 10% CO2 were eliminated by barodenervation. In addition, hypocapnic hypoxia caused a marked fall in blood pressure and total peripheral resistance (TPR) in barodenervated rats compared with controls. Similar differences in TPR were observed between the groups in response to isocapnic and hypercapnic hypoxia as well. It is concluded that the arterial baroreflex is an important component of the overall cardiovascular responses to both hypercapnic and hypoxic stimuli in the conscious rat.  相似文献   

18.
ABSTRACT: BACKGROUND: It has been suggested that the antioxidant properties of olmesartan (OLM), an angiotensin II type 1 receptor (AT1R) blocker, contribute to renal protection rather than blood pressure lowering effects despite the fact that causal relationships between hypertension and renal artery disease exist. This study aimed to examine the hypothesis whether the antioxidative activities of OLM were correlated to arterial stiffness, reactive oxygen species and advanced glycation end products (AGEs) formation in rats with chronic renal failure (CRF). METHODS: CRF rats were induced by 5/6 nephrectomy and randomly assigned to an OLM (10 mg/day) group or a control group. Hemodynamic states, oxidative stress, renal function and AGEs were measured after 8 weeks of OLM treatment. RESULTS: All the hemodynamic derangements associated with renal and cardiovascular dysfunctions were abrogated in CRF rats receiving OLM. Decreased cardiac output was normalized compared to control (p <0.05). Mean aortic pressure, total peripheral resistance and left ventricular weight/body weight ratio were reduced by 21.6 % (p <0.05), 28.2 % (p <0.05) and 27.2 % ((p <0.05). OLM also showed beneficial effects on the oscillatory components of the ventricular after-load, including 39 % reduction in aortic characteristic impedance (p < 0.05), 75.3 % increase in aortic compliance (p <0.05) and 50.3 % increase in wave transit time (p < 0.05). These results implied that OLM attenuated the increased systolic load of the left ventricle and prevented cardiac hypertrophy in CRF rats. Improved renal function was also reflected by increases in the clearances of BUN (28.7 %) and serum creatinine (SCr, 38.8 %). In addition to these functional improvements, OLM specifically reduced the levels of malondialdehyde (MDA) equivalents in aorta and serum by 14.3 % and 25.1 %, as well as the amount of AGEs in the aortic wall by 32 % (p < 0.05) of CRF rats. CONCLUSION: OLM treatment could ameliorate arterial stiffness in CRF rats with concomitant inhibition of MDA and AGEs levels through the reduction of oxidative stress in aortic wall.  相似文献   

19.

Background/Aim

Hypercaloric diet ingestion and sedentary lifestyle result in obesity. Metabolic syndrome is a cluster of clinical features secondary to obesity, considered as a pre-diabetic condition and recognized as an independent risk factor for cardiovascular diseases. To better understand the relationship between obesity, metabolic syndrome and cardiovascular disease as well as for the development of novel therapeutic strategies, animal models that reproduce the etiology, course and outcomes of these pathologies are required. The aim of this work was to characterize the long-term effects of high-fat diet-induced obesity on the mice cardiovascular system, in order to make available a new animal model for diabetic cardiomyopathy.

Methods/Results

Male C57BL/6 mice were fed with a standardized high-fat diet (obese) or regular diet (normal) for 16 months. Metabolic syndrome was evaluated testing plasma glucose, triglycerides, cholesterol, insulin, and glucose tolerance. Arterial pressure was measured using a sphygmomanometer (non invasive method) and by hemodynamic parameters (invasive method). Cardiac anatomy was described based on echocardiography and histological studies. Cardiac function was assessed by cardiac catheterization under a stress test. Cardiac remodelling and metabolic biomarkers were assessed by RT-qPCR and immunoblotting. As of month eight, the obese mice were overweight, hyperglycaemic, insulin resistant, hyperinsulinemic and hypercholesterolemic. At month 16, they also presented normal arterial pressure but altered vascular reactivity (vasoconstriction), and cardiac contractility reserve reduction, heart mass increase, cardiomyocyte hypertrophy, cardiac fibrosis, and heart metabolic compensations. By contrast, the normal mice remained healthy throughout the study.

Conclusions

Mice fed with a high-fat diet for prolonged time recapitulates the etiology, course and outcomes of the early phases of human diabetic cardiomyopathy.  相似文献   

20.
Cocaine or air jet stress evokes pressor responses due to either a large increase in systemic vascular resistance (vascular responders) or small increases in both cardiac output and vascular resistance (mixed responders) in conscious rats. Repeated cocaine administration results in elevated arterial pressure in vascular responders but not in mixed responders. The present study examined the hypothesis that the pattern of cardiovascular responses to an unconditioned stimulus (UCS; air jet) is related to responses to a conditioned stimulus (CS; tone followed by brief foot shock) in individual rats. Our data demonstrate that presentation of the UCS produced variable cardiac output responses that correlated with responses to the CS (n = 60). We also determined whether individual cardiovascular response patterns to acute stress correlated with predisposition to a sustained stress-induced elevation in arterial pressure. Rats were exposed to three different stressors presented one per day successively for 4 wk and during a poststress period of 3 wk while arterial pressure was recorded periodically. Mean arterial pressure was elevated in all rats during chronic stress but, during the poststress period, remained at significantly higher levels in vascular responders but not mixed responders. Therefore, we conclude that acute behavioral stress to a conditioned stimulus elicits variable hemodynamic responses that predict the predisposition to a sustained stress-induced elevation in arterial pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号