首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mouse and human TPSB2 and TPSAB1 genes encode tetramer-forming tryptases stored in the secretory granules of mast cells (MCs) ionically bound to heparin-containing serglycin proteoglycans. In mice these genes encode mouse MC protease-6 (mMCP-6) and mMCP-7. The corresponding human genes encode a family of serine proteases that collectively are called hTryptase-β. We previously showed that the α chain of fibrinogen is a preferred substrate of mMCP-7. We now show that this plasma protein also is highly susceptible to degradation by hTryptase-β· and mMCP-6·heparin complexes and that Lys(575) is a preferred cleavage site in the protein α chain. Because cutaneous mouse MCs store substantial amounts of mMCP-6·heparin complexes in their secretory granules, the passive cutaneous anaphylaxis reaction was induced in the skin of mMCP-6(+)/mMCP-7(-) and mMCP-6(-)/mMCP-7(-) C57BL/6 mice. In support of the in vitro data, fibrin deposits were markedly increased in the skin of the double-deficient mice 6 h after IgE-sensitized animals were given the relevant antigen. Fibrinogen is a major constituent of the edema fluid that accumulates in tissues when MCs degranulate. Our discovery that mouse and human tetramer-forming tryptases destroy fibrinogen before this circulating protein can be converted to fibrin changes the paradigm of how MCs hinder fibrin deposition and blood coagulation internally. Because of the adverse consequences of fibrin deposits in tissues, our data explain why mice and humans lack a circulating protease inhibitor that rapidly inactivates MC tryptases and why mammals have two genes that encode tetramer-forming serine proteases that preferentially degrade fibrinogen.  相似文献   

2.
In the brain, Serpinb6 was identified as an endogenous inhibitor of neuropsin, a member of the S1 (clan SA) family of serine proteases [J. Biol. Chem. 276 (2001) 14562]. In the present study, we investigated the localization of Serpinb6 in the adult mouse brain using in situ hybridization histochemistry and immunohistochemistry. Region-specific patterns of expression were observed and two characteristics were recognized. First, the forebrain limbic area that expressed neuropsin mRNA contained Serpinb6 mRNA at moderate levels but not the lateral septum. On the other hand, Serpinb6 mRNA was also expressed moderately in the substantia nigra-ventral tegmental area system, whose fibers projected to the lateral septum. Additionally, Serpinb6 protein was detected in the lateral septum. Together, it was suggested that the expression of neuropsin in the brain is regulated entirely by Serpinb6. Second, Serpinb6 mRNA and the protein were strongly expressed in most somatic and visceral motoneurons among cranial nerve nuclei. This suggests that another serine protease is regulated by Serpinb6 in motoneurons and/or fibers.  相似文献   

3.
4.
Mast cells (MCs) are highly specialized immune cells present in mammals and in lower organisms that predate the development of adaptive immunity. The strong evolutionary pressure to retain MCs for >500 million years suggests critical roles for these cells in our survival. In support of this conclusion, no human has been identified to date that lacks MCs, despite the adverse roles of MCs in systemic anaphylaxis and varied inflammatory disorders. MCs express numerous lineage-restricted neutral proteases, and four members of the chromosome 17A3.3 family of tryptases are preferentially expressed in mouse MCs. The anatomical location of MCs at host-environment interfaces has raised the possibility that some of these enzymes are evolutionally conserved because they are needed for combating infectious organisms. Here we review recent insights into the structure and function of MC tryptases in inflammation and host defense against bacteria and other infectious organisms.  相似文献   

5.
6.
We have cloned and characterised the expression of a new opsin gene, neuropsin (Opn5), in mice and humans. Neuropsin comprises seven exons on mouse chromosome 17. Its deduced protein sequence suggests a polypeptide of 377 amino acids in mice (354 in humans), with many structural features common to all opsins, including a lysine in the seventh transmembrane domain required to form a Schiff base link with retinaldehyde. Neuropsin shares 25-30% amino acid identity with all known opsins, making it the founding member of a new opsin family. It is expressed in the eye, brain, testis and spinal cord.  相似文献   

7.
SG (serglycin) PGs (proteoglycans) are strongly implicated in the assembly of MC (mast cell) granules. However, this notion has mainly been on the basis of studies of MCs of the connective tissue subtype, whereas the role of SG PG in mucosal MCs has not been explored. In the present study, we have addressed the latter issue by using mice with an inactivated SG gene. Bone marrow cells were differentiated in vitro into the mucosal MC phenotype, expressing the markers mMCP (mouse MC protease) -1 and -2. Biosynthetic labelling experiments performed on these cells revealed an approximately 80% reduction of 35SO4(2-) incorporation into PGs recovered from SG-/- cells as compared with SG+/+ counterparts, indicating that SG is the dominating cell-associated PG of mucosal MCs. Moreover, the absence of SG led to defective metachromatic staining of mucosal MCs, both in vivo and in the in vitro-derived mucosal MCs. Ultrastructural analysis showed that granules were present in similar numbers in SG+/+ and SG-/- cells, but that their morphology was markedly affected by the absence of SG, e.g. with electron-dense core formation only seen in SG+/+ granules. Analysis of the MC-specific proteases showed that mMCP-1 and mMCP-7 were completely independent of SG for storage, whereas mMCP-2 showed a partial dependence. In contrast, mMCP-4 and -6, and carboxypeptidase A were strongly dependent on SG for storage. Together, our data indicate that SG PG is of crucial importance for assembly of mature mucosal MC granules, but that the specific dependence on SG for storage varies between individual granule constituents.  相似文献   

8.
9.

Background

Upon IgE-mediated activation, mast cells (MC) exocytose their cytoplasmic secretory granules and release a variety of bioactive substances that trigger inflammatory responses. Polyamines mediate numerous cellular and physiological functions. We report here that MCs express antizyme inhibitor 2 (AZIN2), an activator of polyamine biosynthesis, previously reported to be exclusively expressed in the brain and testis. We have investigated the intracellular localization of AZIN2 both in resting and activated MCs. In addition, we have examined the functional role of polyamines, downstream effectors of AZIN2, as potential regulators of MC activity.

Methodology/Principal Findings

Immunostainings show that AZIN2 is expressed in primary and neoplastic human and rodent MCs. We demonstrate that AZIN2 localizes in the Vamp-8 positive, serotonin-containing subset of MC granules, but not in tryptase-containing granules, as revealed by double immunofluorescence stainings. Furthermore, activation of MCs induces rapid upregulation of AZIN2 expression and its redistribution, suggesting a role for AZIN2 in secretory granule exocytosis. We also demonstrate that release of serotonin from activated MCs is polyamine-dependent whereas release of histamine and β-hexosaminidase is not, indicating a granule subtype-specific function for polyamines.

Conclusions/Significance

The study reports for the first time the expression of AZIN2 outside the brain and testis, and demonstrates the intracellular localization of endogenous AZIN2 in MCs. The granule subtype-specific expression and its induction after MC activation suggest a role for AZIN2 as a local, in situ regulator of polyamine biosynthesis in association with serotonin-containing granules of MCs. Furthermore, our data indicates a novel function for polyamines as selective regulators of serotonin release from MCs.  相似文献   

10.
We have identified human and mouse cDNAs encoding a novel ubiquitin-specific protease designated USP23. Both cDNAs encode a 62-kDa protein containing the highly conserved His and Cys domains characteristic of the C19 cysteine protease family of ubiquitin-specific processing proteases (UCH-2). Human tissue Northern blots revealed USP23 to be ubiquitously expressed, whereas USP12, its closest human paralogue, displayed a more restricted expression pattern. The human USP23 gene mapped to chromosome 1q22.  相似文献   

11.
12.
Ammonium transporters play a key functional role in nitrogen uptake and assimilation in microorganisms and plants; however, little is known about their structural counterpart in mammals. Here, we report the molecular cloning and biochemical characterization of Rh type B glycoproteins, human RhBG and mouse Rhbg, two new members of the Rh family with distinct tissue specificities. The RhBG orthologues possess a conserved 12-transmembrane topology and most resemble bacterial and archaeal ammonium transporters. Human RHBG resides at chromosome 1q21.3, which harbors candidate genes for medullary cystic kidney disease, whereas mouse Rhbg is syntenic on chromosome 3. Northern blot and in situ hybridization revealed that RHBG and Rhbg are predominantly expressed in liver, kidney, and skin, the specialized organs involving ammonia genesis, excretion, or secretion. Confocal microscopy showed that RhBG is located in the plasma membrane and in some intracellular granules. Western blots of membrane proteins from stable HEK293 cells and from mouse kidney and liver confirmed this distribution. N-Glycanase digestion showed that RhBG/Rhbg has a carbohydrate moiety probably attached at the NHS motif on exoloop 1. Phylogenetic clustering, tissue-specific expression, and plasma membrane location suggest that RhBG homologous proteins are the long sought major ammonium transporters in mammalians.  相似文献   

13.
Neuropsin is a secreted-type serine protease involved in learning and memory. The type II splice form of neuropsin is abundantly expressed in the human brain but not in the mouse brain. We sequenced the type II-spliced region of neuropsin gene in humans and representative nonhuman primate species. Our comparative sequence analysis showed that only the hominoid species (humans and apes) have the intact open reading frame of the type II splice form, indicating that the type II neuropsin originated recently in the primate lineage about 18 MYA. Expression analysis using RT-PCR detected abundant expression of the type II form in the frontal lobe of the adult human brain, but no expression was detected in the brains of lesser apes and Old World monkeys, indicating that the type II form of neuropsin only became functional in recent time, and it might contribute to the progressive change of cognitive abilities during primate evolution.  相似文献   

14.
Human mast cells (MCs) are divided in two types depending on the expression of tryptase and chymase in their granules. Literature data indicate that both tryptase and chymase are angiogenic, but there is currently no evidence of their direct angiogenic activity in vivo. In this study, we have investigated the capacity of tryptase and chymase to promote vasoproliferation in chick embryo chorioallantoic membrane (CAM), a well established in vivo assay to study angiogenesis and anti-angiogenesis. The results showed that both tryptase and chymase stimulate angiogenesis and that the response is similar to that obtained with vascular endothelial growth factor (VEGF), a well-known angiogenic cytokine, and confirm the angiogenic activity of these two proteases stored in MC granules.  相似文献   

15.
A characteristic feature of tissue resident human mast cells (MCs) is their hTryptase-β-rich cytoplasmic granules. Mouse MC protease-6 (mMCP-6) is the ortholog of hTryptase-β, and we have shown that this tetramer-forming tryptase has beneficial roles in innate immunity but adverse roles in inflammatory disorders like experimental arthritis. Because the key tissue factors that control tryptase expression in MCs have not been identified, we investigated the mechanisms by which fibroblasts mediate the expression and granule accumulation of mMCP-6. Immature mouse bone marrow-derived MCs (mBMMCs) co-cultured with fibroblast-like synoviocytes (FLS) or mouse 3T3 fibroblasts markedly increased their levels of mMCP-6. This effect was caused by an undefined soluble factor whose levels could be increased by exposing FLS to tumor necrosis factor-α or interleukin (IL)-1β. Gene expression profiling of mBMMCs and FLS for receptor·ligand pairs of potential relevance raised the possibility that IL-33 was a sought after fibroblast-derived factor that promotes tryptase expression and granule maturation via its receptor IL1RL1/ST2. MCs lacking IL1RL1 exhibited defective fibroblast-driven tryptase accumulation, whereas recombinant IL-33 induced mMCP-6 mRNA and protein accumulation in wild-type mBMMCs. In agreement with these data, synovial MCs from IL1RL1-null mice exhibited a marked reduction in mMCP-6 expression. IL-33 is the first factor shown to modulate tryptase expression in MCs at the mRNA and protein levels. We therefore have identified a novel pathway by which mesenchymal cells exposed to inflammatory cytokines modulate the phenotype of local MCs to shape their immune responses.  相似文献   

16.
We describe the discovery and characterization of ADAMTS10, a novel metalloprotease encoded by a locus on human chromosome 19 and mouse chromosome 17. ADAMTS10 has the typical modular organization of the ADAMTS family, with five thrombospondin type 1 repeats and a cysteine-rich PLAC (protease and lacunin) domain at the carboxyl terminus. Its domain organization and primary structure is similar to a novel long form of ADAMTS6. In contrast to many ADAMTS proteases, ADAMTS10 is widely expressed in adult tissues and throughout mouse embryo development. In situ hybridization analysis showed widespread expression of Adamts10 in the mouse embryo until 12.5 days of gestation, after which it is then expressed in a more restricted fashion, with especially strong expression in developing lung, bone, and craniofacial region. Mesenchymal, not epithelial, expression in the developing lung, kidney, gonad, salivary gland, and gastrointestinal tract is a consistent feature of Adamts10 regulation. N-terminal sequencing and treatment with decanoyl-Arg-Val-Lys-Arg-chloromethylketone indicate that the ADAMTS10 zymogen is processed by a subtilisin-like proprotein convertase at two sites (Arg64/Gly and Arg233/Ser). The widespread expression of ADAMTS10 suggests that furin, a ubiquitously expressed proprotein convertase, is the likely processing enzyme. ADAMTS10 expressed in HEK293F and COS-1 cells is N-glycosylated and is secreted into the medium, as well as sequestered at the cell surface and extracellular matrix, as demonstrated by cell surface biotinylation and immunolocalization in nonpermeabilized cells. ADAMTS10 is a functional metalloprotease as demonstrated by cleavage of alpha2-macroglobulin, although physiological substrates are presently unknown.  相似文献   

17.
Krylova MI 《Tsitologiia》2010,52(9):749-759
Electron microscopic observations of the lymph hearts of tadpoles and yearling frogs of Rana temporaria showed that mast cells (MCs) were present not only between muscle fibers (population of resident MCs), but in the cavities of lymph heart (population of circulating MCs), too. There were some differences in the ultrastructure of the resident MCs at each studied stage of larval development. The first recognizable MCs were revealed in the lymph hearts at premetamorphosis (stages 39-41). MCs presented as mononuclear relatively small and slightly elongated cells with a few immature secretory granules and numerous free ribosomes, polysomes and short cisternae of rough endoplasmic reticulum (RER) in the cytoplasm. Chromatin of their nuclei was poorly condensed; the Golgi apparatus was moderately developed. At pro-metamorphosis (stages 44-45), we revealed MCs at different levels of their differentiation. Some MCs demonstrated an active process of granulogenesis in their cytoplasm. Among densely packed cytoplasmic organelles, immature secretory granules were closely associated with cisternae of RER and free ribosomes. Other MCs appeared as more differentiated cells. They were characterized by a predominantly heterochromatic nuclei and cytoplasm filled with polymorphic and heterogeneous granules. MCs also showed a reduction in the number of free ribosomes and cisternae of RER in the cytoplasm. On the contrary, the Golgi apparatus was well developed. Stacks of Golgi cisternae, detaching vacuoles, and progranules occupied the perinuclear region. The majority of the outlines above ultrastructural features of differentiated MCs were typical for MCs of yearling frogs. At metamorphic climax (stages 52-53), MCs often tightly contacted with macrophages. We did not reveal apoptotic MCs. However, some MCs exhibited morphological features typical for programmed necrosis-like death, which was characterized by mitochondria swelling, dilatation of cisternae of RER and nuclear envelope, plasma membrane rupture and subsequent loss of intracellular contents. Electron microscopical immunocytochemistry revealed the localization of atrial natriuretic peptide (ANP), substance S (SP) and heat shock protein (Hsp70) in the secretory granules of the resident and circulating MCs at different stages of tadpole development and in yearling frogs.  相似文献   

18.
19.
20.
We have cloned and characterized human and mouse ovary cDNAs encoding a new protein of the astacin family of metalloproteinases, called ovastacin because of its predominant expression in ovarian tissues. Human and mouse ovastacins exhibit the same domain organization as other astacins, including signal sequence, propeptide, and metalloproteinase domain. However, ovastacins show an additional C-terminal domain of about 150 amino acids with no similarity to other ancillary domains present in the equivalent region of most astacins. Northern blot analysis of human tissues and cell lines revealed that ovastacin is only detected at significant levels in leukemia and lymphoma cells of different origin. In addition, RT-PCR analysis demonstrated that ovastacin is expressed in human and mouse ovary, in unfertilized mouse oocytes, and in 1.5-day-postcoitum preimplantation embryos. Further studies showed that superovulation caused a dramatic increase in the expression of mouse ovastacin, indicating that the production of this enzyme is under hormonal regulation. Human ovastacin was expressed in Escherichia coli and the purified recombinant protein hydrolyzed synthetic substrates used for assaying metalloproteinases. These activities were abolished by inhibitors of metalloproteinases, but not by inhibitors of other classes of proteases. On the basis of these results, we suggest that ovastacin could play in mammals a physiological function similar to that performed by hatching proteases in evolutionary distant species from arthropods to fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号