首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Callus cultures were initiated from in vitro grown leaf, stem and root segments of Lonicera japonica “Hall's Prolific”, on a medium containing 10.7 μM α-naphthtylacetic acid and 2.7 μM benzyladenine, while media with 2,4-dichlorophenoxyacetic acid led to a rapid necrosis of explants. Shoot regeneration from true-callus (i.e. without any part of the original explant) was achieved for the three different source tissues within 12 weeks. The highest rate of regeneration was obtained by using benzyladenine (4.4 to 44.4 μM) as the sole hormone in the medium. The regenerated shoots were readily elongated and rooted on the same medium as used for multiplication, and plantlets were subsequently transferred to greenhouse conditions, where nearly 100% of them were successfully acclimatized. This is the first example of plant regeneration from aged (≥6 month-old) true-callus of a woody ornamental species.  相似文献   

2.
The regenerative ability of small strips of stem of the Dutch elm hybrid ‘Commelin’ was tested as well as its sensitivity to neomycins. Cambium explants (1 mm thick), were excised from woody stems collected in the field. Up to 20 buds/explant were induced within 2–3 weeks giving 2–5 rootable shoots/explant after 5–6 weeks. Shoot excision every week from week three improved the yield up to 7 shoots per explant. Fourteen and 2.9 μM GA3 promoted shoot growth. Cytokinins (1 μM zeatin or 5 μM BA or 0.05 μM TDZ) completely inhibited shoot production and promoted callus formation. Kanamycin and paromomycin at between 240 and 360 μM inhibited shoot formation as did geneticin at 80 μM. The shoot-forming ability of the explants was high from leaf fall in the autumn to the spring flush, but could be maintained up to September by using cold storage (5–7 °C). Ninety-six percent of the shoots rooted with 0.5 μM IBA and were successfully acclimatized despite having a large basal callus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Vitis vinifera L. cv. ‘Manicure Finger’ is one of the major table grape varieties in China. To provide a strong foundation for genetic transformation with potential for crop improvement, we undertook plant regeneration via somatic embryogenesis. Anthers and gynoecia were harvested from immature flowers and used as explants to induce embryogenic calli. Explants cultured in MS1 medium (based on Murashige and Skoog basal salts), supplemented with 4.5-μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.4-μM 6-benzylaminopurine (6-BA) showed the highest rates of embryogenic callus induction (3.7%?±?1.3% for anthers and 4.8%?±?2.5% for gynoecia). After several months, somatic embryos were produced from embryogenic calli cultured in plant growth regulator-free MS2 medium (with reduced sucrose). Somatic embryos (SE) at the cotyledonary stage were isolated and cultured on three different media (MS2, MS3, or B) for conversion into plantlets, the efficiency of which ranged from 63.9%?±?4.8% to 83.9%?±?8.4%. After 1 mo of in vitro culture, 80% of plants with at least six leaves were successfully transplanted into soil. SE was repeatedly induced from previously induced somatic embryos for up to 1.5 yr. Using embryogenic calli as starting material, suspension cultures containing embryogenic cell aggregates were also established in liquid MS medium supplemented with 4.5-μM 2,4-D. The embryogenic cell aggregates continued to proliferate without differentiating for successive subculture cycles. After transfer to 2,4-D-free liquid medium for 4 wk, an average of 63.7%?±?9.0% mature SEs were produced per 20 mL of liquid medium. More than 40% of somatic embryos at cotyledonary stage, derived from the suspension cultures, successfully germinated into plants using solid medium.  相似文献   

4.
Summary Direct shoot and cormlet regeneration from leaf explants were obtained in triploid dessert banana cultivar Nanjanagud Rasabale (NR) that is classified under the group ‘Silk’ and has the genotype AAB. The response for both cormlet and direct shool formation was observed only in leaf explants obtained from shoots cultured in liquid medium but not in similar explants obtained from shoots grown on gelled medium. Shoot initiation occurred after a sequential culture of leaf (sheath) explants on modified Murashige and Skoog (MS) medium supplemented with different growth regulators. In the sequence, the leaf explants were cultured first on medium with a high level (22.4 μM) of benzyladenine (BA), second on indolc-3-butyric acid (IBA) supplemented medium, and third on reduced BA medium under incubation in the dark. The highest adventitious shoot regeneration in 24% of the explants, with the number of shoots ranging from 2 to 3 per explant, occurred in the explants incubated at the first step in medium with 22.4 and 0.198 μM IBA. Further growth and complete shoot formation occurred under incubation in a 16-h photoperiod. While keeping the culture conditions constant and replacing BA with picloram (0.83–20.71 μM) in the initial step, adventious origin of cormlets occurred in 12% of the explants. However, when rhizome explants (also obtained from shoots grown in liquid medium) were cultured with various growth regulators in the first step, medium containing 2,4,5-trichlorophenoxyacctic acid (7.82 μM) produced friable callus that re-differentiated into roots only. Physical forms of the medium, ie.e. agar-gelled or liquid, imparted specific effects on the extent of multiplication of leaf-regenerated shoots with no differences in morphology and growth patterns when compared to those of meristem-derived plants.  相似文献   

5.
Two rare anthocyanins, cyanidin 3-(6-malonylglucoside)-7,3′-di(6-sinapylglucoside) and the demalonyl derivative, were characterised as the purple floral pigments of Dendrobium cv. ‘Pompadour’. Nine known flavonol glycosides were also identified, including the 3-rutinoside-7-glucosides of kaempferol and quercetin. One new glycoside was detected: the ferulyl ester of quercetin 7-rutinoside-7-glucoside. These flavonoid patterns are typical for plants in the family Orchidaceae.  相似文献   

6.
Callus cultures from cotyledon and hypocotyl explants of a Spanish cultivar of melon (Amarillo Oro) have been tested for their growth and morphogenic capacity on a series of media with different concentrations of indole-3-acetic acid (IAA) and 6-furfurylaminopurine (kinetin). Melon tissues were able to undergo morphogenesis both via organogenesis and embryogenesis, depending on culture conditions and explant source. Shoot buds were obtained at high rates in cotyledon explants. In response to 1.5 mg/l IAA and 6.0 mg/l kinetin, more than 90% of the calli produced well-developed shoots. Hypocotyls failed to form shoots but formed somatic embryos on auxin containing media while cotyledon explants usually gave abundant shoots but only rarely formed embryos. It was possible to maintain organogenic callus lines for at least 12 months under defined conditions. Plants were recovered from adventitious shoots produced both in cotyledon-derived calli and from organogenic cell lines.  相似文献   

7.
The mature seeds, mesocotyls, and young leaf tips of Elymus sibiricus L. cv. ‘chuancao No. 2’ were cultured on Murashige and Skoog (MS) medium supplemented with 5.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-d) and 0.05 mg/L kinetin in the dark at 26°C, the calluses were produced. The rate of callus regeneration depended on the explants source and plant growth regulators. Plants regenerated from whitish-yellow-coloured compact nodular callus formed after subculturing for 8 weeks. Higher frequency (54%) of shoot differentiation was obtained from the embryo tissues of mature seed than from either mesocotyls (24%) or young leaf tip tissues (6%) when these calluses from different types of explants were cultured on plant regeneration medium containing half strength MS salts supplemented with 0.1 mg/L kinetin, 1.5 mg/L 2,4-D and 20 g/L sucrose. The green plants were rooted within 6 weeks in the root regeneration medium, and over 97% of these soil-established plants were obtained in the greenhouse when potted in a sand and peat mixture medium.  相似文献   

8.
Mildew resistance in the ornamental apple White Angel was found to be determined by complementary genes. The gene R w was found to be necessary for the expression of resistance controlled by the resistance gene Pl w . The close linkage between the isoenzyme gene, Lap-2, for leucine aminopeptidase and P1 w was confirmed. The efficiency of Lap-2 as a marker in screening for mildew resistance is limited, as it cannot account for susceptible plants with the r w r w P1 w p1 w genotype. It has, however, an important role to play in combining resistance genes from different sources. The genotypes of White Angel (R w r w , Pl w pl w , Lap-2an), Jester (R w r w , p1 w p w , Lap-2an) Katja (R w r w ,p1 w p1 w , Lap-2an) and Gloster 69 (r w r w , p1 w p1 w , Lap-2an) were determined. It also appeared that R w might influence Lap-2 activity in young seedlings.  相似文献   

9.
An efficient and rapid plant regeneration system through somatic embryogenesis was developed using 13-week-old zygotic embryos of oil palm (Elaeis guineensis Jacq.) cv. ‘Tenera’. Zygotic embryos were cultured on MS and N6 media supplemented with 2.0 mg L−1 picloram, 2,4-D and dicamba. The highest embryogenic callus formation (32%) was observed on N6 medium with 2,4-D after 3 month culture on callus induction medium. Somatic embryos were continuously formed from nodular calli on embryo maturation medium [N6 + 0.1 mg L−1 2,4-D, 0.16 g L−1 putrescine, 0.5 g L−1 casein amino acids and 2.0 g L−1 activated charcoal(AC)] for 3–5 months. Histological analysis confirmed that embryo development occurred via somatic embryogenesis. For plant regeneration, modified N6 medium (MN6) with AC (0.5 g L−1) without growth regulators, induced both shoot and root formation simultaneously with the highest regeneration rate of 56%. This combined shoot and root induction protocol shortened the culture time to 9–12 months. Furthermore, after acclimatization, more than 85% of transferred plants from our protocol developed successfully in the soil.  相似文献   

10.
Chili (Capsicum chinense) cv. ‘Bhut jalakia’ is used in India for extraction of oleoresin and capsaicin as it is characterized by a very high capsaicin content. The conventional method of propagation of ‘Bhut jalakia’ is through seeds, but this is beset by short viability and low germination rates. Developing a suitable regeneration protocol for ‘Bhut jalakia’ was the focus of this study; as to date, in vitro regeneration for this cultivar has not been investigated. Cotyledon and shoot tip explants were cultured on Murashige and Skoog (MS) media supplemented with different concentrations of cytokinins and auxins. In the case of cotyledon explants, MS medium supplemented with 6-benzylaminopurine (BAP) at 35 μM and kinetin (KIN) at 15 μM were found to be optimal (4.00?±?0.57) for induction of multiple shoots per explant, whereas BAP at 14.8 μM and KIN at 60 μM were best (5.00?±?0.57) for growth of shoot tip explants. Shoots developed from cotyledon explants produced the maximum (8.67?±?0.32) number of roots on MS medium supplemented with low concentration (2.6 μM) of 2-naphthaleneacetic acid (NAA). Supplementation of indole-3-butyric acid (IBA) at 5 μM was found optimal for root formation (16.67?±?2.60) for shoots derived from of shoot tip explants. One month after transfer of in vitro regenerated plantlets to various potting mixes, the highest survival rate (40%) was observed in a mixture of sand, soil, and cow dung in a ratio of 1:1:1. Thus, both shoot tip and cotyledon explants may be cultured on MS medium modified with BAP, IBA, NAA, and KIN to regenerate ‘Bhut jalakia’ chili plants within 90 d.  相似文献   

11.
In the rosaceous subtribe Pyrinae (formerly subfamily Maloideae), pathogen attack leads to formation of biphenyls and dibenzofurans. Accumulation of these phytoalexins was studied in greenhouse-grown grafted shoots of Malus domestica cv. ‘Holsteiner Cox’ and Pyrus communis cv. ‘Conference’ after inoculation with the fire blight bacterium, Erwinia amylovora. No phytoalexins were found in leaves. However, both classes of defence compounds were detected in the transition zone of stems. The flanking stem segments above and below this zone, which were necrotic and healthy, respectively, were devoid of detectable phytoalexins. The transition zone of apple stems contained the biphenyls 3-hydroxy-5-methoxyaucuparin, aucuparin, noraucuparin and 2′-hydroxyaucuparin and the dibenzofurans eriobofuran and noreriobofuran. In pear, aucuparin, 2′-hydroxyaucuparin, noreriobofuran and in addition 3,4,5-trimethoxybiphenyl were detected. The total phytoalexin content in the transition zone of pear was 25 times lower than that in apple. Leaves and stems of mock-inoculated apple and pear shoots lacked phytoalexins. A number of biphenyls and dibenzofurans were tested for their in vitro antibacterial activity against some Erwinia amylovora strains. The most efficient compound was 3,5-dihydroxybiphenyl (MIC = 115 μg/ml), the immediate product of biphenyl synthase which initiates phytoalexin biosynthesis.  相似文献   

12.
13.

Background

Rootstocks play an essential role to determining orchard performance of fruit trees. Pyrus communis and Cydonia oblonga are widely used rootstocks for European pear cultivars. The lack of rootstocks adapted to different soil conditions and different grafted cultivars is widely acknowledged in pear culture. Cydonia rootstocks (clonal) and Pyrus rootstocks (seedling or clonal) have their advantages and disadvantages. In each case, site-specific environmental characteristics, specific cultivar response and production objectives must be considered before choosing the best rootstock. In this study, the influence of three Quince (BA 29, Quince A = MA, Quince C = MC) and a local European pear seedling rootstocks on the scion yield, some fruit quality characteristics and leaf macro (N, P, K, Ca and Mg) and micro element (Fe, Zn, Cu, Mn and B) content of ‘Santa Maria’ pear (Pyrus communis L.) were investigated.

Results

Trees on seedling rootstock had the highest annual yield, highest cumulative yield (kg tree−1), largest trunk cross-sectional area (TCSA), lowest yield efficiency and lowest cumulative yield (ton ha−1) in the 10th year after planting. The rootstocks had no significant effect on average fruit weight and fruit volume. Significantly higher fruit firmness was obtained on BA 29 and Quince A. The effect of rootstocks on the mineral element accumulation (N, K, Ca, Mg, Fe, Zn, Cu, Mn and B) was significant. Leaf analysis showed that rootstocks used had different mineral uptake efficiencies throughout the early season.

Conclusion

The results showed that the rootstocks strongly affected fruit yield, fruit quality and leaf mineral element uptake of ‘Santa Maria’ pear cultivar. Pear seedling and BA 29 rootstock found to be more prominent in terms of several characteristics for ‘Santa Maria’ pear cultivar that is grown in highly calcareous soil in semi-arid climate conditions. We determined the highest N, P (although insignificant), K, Ca, Mg, Fe and Cu mineral element concentrations on the pear seedling and BA 29 rootstocks. According to the results, we recommend the seedling rootstock for normal density plantings (400 trees ha−1) and BA 29 rootstock for high-density plantings (800 trees ha−1) for ‘Santa Maria’ pear cultivar in semi-arid conditions.  相似文献   

14.
 Dormant scions of ‘Bing’ were exposed to 1–2.5 krad of gamma radiation in order to induce useful mutations. The main buds were excised and the scions grafted to allow the growth of accessory buds into primary (V1) shoots. The frequency and types of mutations on secondary (V2) populations are described. In a population of 3324 V2 shoots, the overall mutation frequency was 6.4%: 4.2% partial, 1.6% total and 0.3% growth-reduced mutants were identified. The experiment was repeated using 3 krad- and 4 krad-fractionated doses in water. Differences in mutation frequency at 3 krad and 4 krad were not significant. Of 2562 surviving V2 shoots derived from the irradiation of accessory buds of both standard and V1 shoots, the overall mutation frequency was 3.3%: 1.7% were partial-leaf mutants, 1.0% were total-leaf mutants, and 0.54% were growth-reduced mutants. For maximum mutation rate with adequate survival we suggest acute irradiation of accessory buds in air at dosages approximating LD50 (2.75–3 krad). A larger mutant sector was present in V1 shoots derived from accessory buds than those from main buds as revealed by the higher number of total mutant repeats in the families. Received: 21 August 1997 / Accepted: 17 November 1997  相似文献   

15.
Mass propagation of date palm through indirect somatic embryogenesis or organogenesis has attracted the interest of commercial producers. But, this technique still faces some problems that hindered the production of date palm plantlets in vitro. Tissue browning is one of the serious problems that reduce callus growth and shoot regeneration. So the objective of the present study is to investigate the effect of cold pretreatment on callus growth, shoot regeneration, and polyphenol oxidase (PPO) activity during the callus culture. Results showed that a high survival rate of callus cultures (100%) were obtained when cultures were incubated in low temperature (cold treatment) for 45 and 75?days. On the other hand, total amount on phenolic compounds was also reduced to 0.47 and 0.53?mg GAE/g after same period of incubation (45 and 75?days respectively) at low temperature. In additional, our results showed that the highest frequency of shoot formation (66.67 and 73.34, %) and the highest shoot numbers (7.8 and 8.6 shoots/100?mg) were obtained from callus treated with low temperature for 45 and 75?days, respectively.  相似文献   

16.
Summary The effect of different sealing materials [i.e., polyvinyl chloride (PVC) transparent film, and Parafilm (PARA) for Petri dishes was investigated on shoot regeneration from quince (Cydonia oblonga L.) ‘BA 29’ leaf explants. Leaves were excised from proliferating shoot cultures, transversally scored, and placed with the abaxial side down in 60-mm Petri dishes containing 10 ml of Murashige and Skoog modified medium, with 5.4 μM α-naphthaleneacetic acid, 4.5 μM thidiazuron, 200 mg l−1 cefotaxime, and 0.25% (w/v) Phytagel (IM medium) for shoot bud induction, and cultured in darkness at 22±2°C for 28 d. Then the explants were transferred to standard conditions (16-h photoperiod at 30 μmol m−2 s−1 photosynthetically active radiation) on a medium similar to IM, except for lack of NAA, and with 0.65% (w/v) agar instead of Phytagel, for an additional 15–28 d. The sealing combinations PARA-PARA, PARA-PVC, PVC-PARA, and PVC-PVC (in the induction-expression phases) were compared during regeneration and for their carry-over effect on shoot development after transfer of explants to an elongation medium (0.9 μM 6-benzyladenine). Carbon dioxide accumulated at 27.2 mmol mol−1 at the end of induction, and gradually decreased from 35.4 mmol mol−1 on day 9 to 22.5 mmol mol−1 on day 28 of the expression phase in PARA-sealed Petri dishes, being always much higher than after sealing with PVC (1–2 mmol mol−1). Ethylene concentration was 0.1 and 0.04 μmol mol−1 in the first part of the induction and expression phase, respectively, in PARA-sealed Petri dishes, and slightly decreased with duration of exposure to light during expression; while it was absent in most PVC-sealed dishes. The PARA-PARA and PVC-PVC (induction-expression) combinations gave, respectively, the worst and best results of regeneration and successive shoot development.  相似文献   

17.
Conventional multiplication of cherry (Prunus cerasus L.) rootstocks utilizes division, cuttings, and propagation through seed, which are relatively slow and labor intensive and result in genetic variability. Tissue culture, on the other hand, ensures rapid, large-scale, and low-cost production of genetically identical, physiologically uniform, and pathogen-free plants. In the cherry rootstocks CAB-6P, Gisela 6, and MxM 14, sodium nitroprusside (SNP) promoted callus induction, in vitro shoot proliferation, and rooting from leaf explants in a medium containing 17.6 μM benzyladenine and 2.68 μM α-naphthaleneacetic acid. CAB-6P explants treated with 10 μM SNP gave the maximum shoot number (5), whereas 30 μM SNP gave the longest shoots and the greatest shoot induction rate (26.67%). Best rooting was obtained with 50 μM SNP. In Gisela 6 rootstock, the shoot number (10) and shoot length (20.5 mm) were maximal in the control group without plant growth regulators. The shoot induction rate was enhanced (40%) with 40 μM SNP. SNP at 40 μM resulted in root formation, while 30 μM produced the largest callus size, and 10 μM SNP resulted in the maximum callus fresh weight. MxM 14 leaves treated with 30 μM SNP gave the maximum shoot number (3), root number (7.56), and shoot induction rate (40%), whereas 40 μM SNP gave the longest shoots (12 mm) and roots (20 mm). Best results for callus size, callus fresh weight, and callus induction rate (100%) in the CAB-6P and MxM 14 rootstocks were observed with 30 and 40 μM SNP, respectively. Rooted explants with shoots were gradually acclimatized to the external environment with a high survival percentage (85%). An efficient protocol of indirect organogenesis was established for the three cherry rootstocks using SNP.  相似文献   

18.
Shoot tip explants of the hybrid cultivar Pioneer responded poorly to initial attempts to establish shoot proliferating cultures on Murashige and Skoog (MS) medium containing 2 or 4 µM benzyladenine (BA) with a four week subculture interval. A combination of weekly subcultures and an MS medium containing 2 µM BA produced shoot proliferating cultures sufficient for micropropagation. Shoot organogenesis was obtained when callus derived from internodes of actively elongating shoots was transferred from a primary medium containing various cytokinins to a secondary medium containing MS salts and 10 µM BA. These small shoots elongated when transferred to a medium containing 2.5 µM BA. Adventitious shoots also differentiated on leaf tissue of Pioneer elm. These shoots appeared to differentiate with little if any intervening callus from the margins of leaves of in vitro grown shoots where these leaves touched the medium (MS medium containing 2 µM BA). Tissue cultured shoots from all sources were rooted, acclimated, and transplanted to the greenhouse or field with good success.Salaries and research aupport provided by State and Federal Funds appropriated to the Ohio Agricultural Research and Development Center, The Ohio State University, and The Nursery Crops Research Laboratory. Journal Article No. 23-86.  相似文献   

19.
The main goal of the study was to determine the structure of endophytic bacteria inhabiting different parts (endosperm, germ, roots, coleoptiles, and leaves) of two wheat species, Triticum aestivum L. (cv. ‘Hondia’) and Triticum spelta L. (cv. ‘Rokosz’), in order to provide new knowledge about the stability and/or changeability of the core microbiome in different plant organs. The endophytic core microbiome is associated with plants throughout their whole life cycle; however, plant organs can determine the actual endophytic community. Therefore, next generation sequencing with MiSeq Illumina technology was applied to identify the endophytic microbiome of T. aestivum and T. spelta. Bioinformatic analyses were performed with the use of the DADA2(1.8) package and R software (3.5.1).It was demonstrated that wheat, which is an important crop plant, was associated with beneficial endophytic bacteria inside the endosperms, germs, roots, leaves, and coleoptiles. Importantly, for the first time, biodiversity was recognized in the coleoptiles of the investigated wheat species. Flavobacterium, Pseudomonas and Janthinobacterium were shown to be common genera for both tested wheat cultivars. Among them, Pseudomonas was found to be the only endophytic genus accompanying both wheat species from the endosperm stage to the development of the leaf. Paenibacillus was recognized as a core genus for the ‘Hondia’ cv., whereas Pedobacter and Duganella constituted the core microbiome in the ‘Rokosz’ cv. In addition, the first insight into the unique and yet unrecognized endophytic microbiome of T. spelta is presented.  相似文献   

20.
Twenty five years ago it was proposed that conserved components of constitutive heterochromatin assemble heterochromatin-like complexes in euchromatin and this could provide a general mechanism for regulating heritable (cell-to-cell) changes in gene expressibility. As a special case, differences in the assembly of heterochromatin-like complexes on homologous chromosomes might also regulate the parent-of-origin-dependent gene expression observed in placental mammals. Here, the progress made in the intervening period with emphasis on the role of heterochromatin and heterochromatin-like complexes in parent-of-origin effects in animals is reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号