首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The human alpha satellite repetitive DNA family is organized as distinct chromosome-specific subsets localized to the centromeric region of each chromosome. Here, we report he isolation and characterization of cloned repeat units which define a hierarchical subset of alpha satellite on human chromosome 1. This subset is characterized by a 1.9-kb higher-order repeat unit which consists of 11 tandem approximately 171-bp alpha satellite monomer repeat units. The higher-order repeat unit is itself tandemly repeated, present in at least 100 copies at the centromeric region of chromosome 1. Using pulsed-field gel electrophoresis we estimate the total array length of these tandem sequences at the centromere of chromosome 1 to be several hundred kilobase pairs. Under conditions of high stringency, the higher-order repeat probe hybridizes specifically to chromosome 1 and can be used to detect several associated restriction fragment length DNA polymorphisms. As such, this probe may be useful for molecular and genetic analyses of the centromeric region of human chromosome 1.  相似文献   

2.
The human alpha satellite DNA family, like many highly repeated satellite DNAs in eukaryotic genomes, is organized in distinct chromosome-specific subsets. As part of investigations into the molecular and evolutionary basis for the chromosome-specific nature of such subsets, we report the isolation and characterization of alpha satellite sequences specific for human chromosome 3. This subset is characterized by a predominant tandemly arranged 2.9 kb higher-order repeat unit which, in turn, consists of 17 tandem diverged monomer repeat units of 171 bp. Nucleotide sequence analysis reveals that the chromosome 3 higher-order repeat units are comprised, at least in part, of diverged dimeric ( 340 bp) sub-repeats and that this divergence accounts for the chromosome-specific behavior of this subset. Pulsed-field gel electrophoresis demonstrates that the chromosome 3 higher-order repeat units are localized in large domains, at least 1000 kb in length. Familial restriction fragment length polymorphisms associated with the satellite subset can be detected by pulsed field gel electrophoresis and may facilitate molecular analysis of interchromosomal variation.  相似文献   

3.
To understand evolutionary events in the formation of higher-order repeat units in alpha satellite DNA, we have examined gorilla sequences homologous to human X chromosome alpha satellite. In humans, alpha satellite on the X chromosome is organized as a tandemly repeated, 2.0 x 10(3) base-pairs (bp) higher-order repeat unit, operationally defined by the restriction enzyme BamHI. Each higher-order repeat unit is composed of 12 tandem approximately 171 base-pair monomer units that have been classified into five distinct sequence homology groups. BamHI-digested gorilla genomic DNA hybridized with the cloned human 2 x 10(3) bp X alpha satellite repeat reveals three bands of sizes approximately 3.2 x 10(3), 2.7 x 10(3) and 2 x 10(3) bp. Multiple copies of all three repeat lengths have been isolated and mapped to the centromeric region of the gorilla X chromosome by fluorescence in situ hybridization. Long-range restriction mapping using pulsed-field gel electrophoresis shows that the 2.7 x 10(3) and 3.2 x 10(3) bp repeat arrays exist as separate but likely neighboring arrays on the gorilla X, each ranging in size from approximately 200 x 10(3) to 500 x 10(3) bp, considerably smaller than the approximately 2000 x 10(3) to 4000 x 10(3) bp array found on human X chromosomes. Nucleotide sequence analysis has revealed that monomers within all three gorilla repeat units can be classified into the same five sequence homology groups as monomers located within the higher-order repeat unit on the human X chromosome, suggesting that the formation of the five distinct monomer types predates the divergence of the lineages of contemporary humans and gorillas. The order of 12 monomers within the 2 x 10(3) and 2.7 x 10(3) bp repeat units from the gorilla X chromosome is identical with that of the 2 x 10(3) bp repeat unit from the human X chromosome, suggesting an ancestral linear arrangement and supporting hypotheses about events largely restricted to single chromosome types in the formation of alpha satellite higher-order repeat units.  相似文献   

4.
To examine the molecular organization of DNA sequences located in the centromeric region of human chromosome 16 we have isolated and characterized a chromosome 16-specific member of the alpha satellite DNA family. The probe obtained is specific for the centromere of chromosome 16 by somatic cell hybrid analysis and by fluorescence in situ hybridization and allows detection of specific hybridizing domains in interphase nuclei. Nucleotide sequence analysis indicates that this class of chromosome 16 alpha satellite (D16Z2) is organized as a series of diverged 340-bp dimers arranged in a tandem array of 1.7-kb higher-order repeat units. As measured by pulsed-field gel electrophoresis, the total D16Z2 array spans approximately 1,400-2,000 kb of centromeric DNA. These sequences are highly polymorphic, both by conventional agarose-gel electrophoresis and by pulsed-field gel electrophoresis. Investigation of this family of alpha satellite should facilitate the further genomic, cytogenetic, and genetic analysis of chromosome 16.  相似文献   

5.
A complete understanding of chromosomal disjunction during mitosis and meiosis in complex genomes such as the human genome awaits detailed characterization of both the molecular structure and genetic behavior of the centromeric regions of chromosomes. Such analyses in turn require knowledge of the organization and nature of DNA sequences associated with centromeres. The most prominent class of centromeric DNA sequences in the human genome is the alpha satellite family of tandemly repeated DNA, which is organized as distinct chromosomal subsets. Each subset is characterized by a particular multimeric higher-order repeat unit consisting of tandemly reiterated, diverged alpha satellite monomers of approximately 171 base pairs. The higher-order repeat units are themselves tandemly reiterated and represent the most recently amplified or fixed alphoid sequences. We present evidence that there are at least two independent domains of alpha satellite DNA on chromosome 7, each characterized by their own distinct higher-order repeat structure. We determined the complete nucleotide sequences of a 6-monomer higher-order repeat unit, which is present in approximately 500 copies per chromosome 7, as well as those of a less-abundant (approximately 10 copies) 16-monomer higher-order repeat unit. Sequence analysis indicated that these repeats are evolutionarily distinct. Genomic hybridization experiments established that each is maintained in relatively homogeneous tandem arrays with no detectable interspersion. We propose mechanisms by which multiple unrelated higher-order repeat domains may be formed and maintained within a single chromosomal subset.  相似文献   

6.
Alphoid and satellite III sequences are arranged as large tandem arrays in the centromeric regions of human chromosomes. Several recent studies using in situ hybridisation to investigate the relative positions of these sequences have shown that they occupy adjacent but non-overlapping domains in metaphase chromosomes. We have analysed the DNA sequence at the junction between alphoid and satellite III sequences in a cosmid previously mapped to chromosome 10. The alphoid sequence consists of tandemly arranged dimers which are distinct from the known chromosome 10-specific alphoid family. Polymerase chain reaction experiments confirm the integrity of the sequence data. These results, together with pulsed field gel electrophoresis data place the boundary between alphoid and satellite III sequences in the mapping interval 10 centromere-10q11.2. The sequence data shows that these repetitive sequences are separated by a partial L1 interspersed repeat sequence less than 500bp in length. The arrangement of the junction suggests that a recombination event has brought these sequences into close proximity.  相似文献   

7.
Human DNA consists of a large number of tandem repeat sequences. Such sequences are usually called satellites, with the primary example being the centromeric alpha-satellite DNA. The basic repeat unit of the alpha-satellite DNA is a 171 bp monomer. Arbitrary monomer pairs usually have considerable sequence divergence (20-40%). However, with the exception of peripheral alpha-satellite DNA, monomers can be grouped into blocks of k-monomers (4 < or = k < or = 20) between which the divergence rate is much smaller (e.g., 5%). Perhaps the simplest and best understood mechanism for tandem repeat array evolution is unequal crossover. Although it is possible that alpha-satellite sequences developed as a result of subsequent unequal crossovers only, no formal computational framework seems to have been developed to verify this possibility. In this paper, we develop such a framework and report on experiments which imply that pericentromeric alpha-satellite segments (which are devoid of higher order structure) are evolutionarily distinct from the higher order repeat segments. It is likely that the higher order repeats developed independently in distinct regions of the genome and were carried into their current locations through an unknown mechanism of transposition.  相似文献   

8.
Summary The centromeric regions of human chromosomes are characterized by diverged chromosome-specific subsets of a tandemly repeated DNA family, alpha satellite, which is based on a fundamental monomer repeat unit 171 bp in length. We have compared the nucleotide sequences of 44 alphoid monomers derived from cloned representatives of the multimeric higher-order repeat units of human chromosomes 1, 11, 17, and X. The 44 monomers exhibit an average 16% divergence from a consensus alphoid sequence, and can be assigned to five distinct homology groups based on patterns of sequence substitutions and gaps relative to the consensus. Approximately half of the overall sequence divergence can be accounted for by sequence changes specific to a particular homology group; the remaining divergence appears to be independent of the five groups and is randomly distributed, both within and between chromosomal subsets. The data are consistent with the proposal that the contemporary tandem arrays on chromosomes 1, 11, 17, and X derive from a common multimeric repeat, consisting of one monomer each from the five homology groups. The sequence comparisons suggest that this pentameric repeat must have spread to these four chromosomal locations many millions of years ago, since which time evolution of the four, now chromosome-specific, alpha satellite subsets has been essentially independent.  相似文献   

9.
The spread of sequence variants in Rattus satellite DNAs   总被引:2,自引:1,他引:1       下载免费PDF全文
The genus Rattus has two related families of satellite DNA: Satellite I consists of tandem arrays of a 370 base pair repeat unit which is a dimer of two 185 base pair portions (a, b) which are about 60% homologous. Satellite I' consists of tandem arrays of a 185 base pair repeat unit (a') which is about 85% homologous to a and 60% homologous to b. R. norvegicus contains only satellite I but R. rattus contains both satellites I and I'. We examined certain aspects of satellite DNA evolution by comparing the spacing at which variant repeat units of each satellite have spread among non-variant repeat units in these two species. With but one exception, in R. rattus, 15 different variant repeat units have spread among non-variant repeat units of satellite I, with a spacing equal to the length of the (a,b) dimer. Similarly, fourteen different variant repeat units of the monomeric satellite I' have mixed among non-variant repeat units with a spacing equal to the length of the (a') monomer. These results suggest that a mechanism involving homologous interaction among satellite sequences could account for the spread of variant family members. We also found that a sequence variant present in certain portions of the dimeric repeat unit of satellite I is more efficiently amplified (or less efficiently corrected) than variants occurring in other regions. This was not true for the monomeric repeat unit of satellite I'.  相似文献   

10.
T Haaf  H F Willard 《Genomics》1992,13(1):122-128
The general usefulness of alpha-satellite DNA probes for the molecular, genetic, and cytogenetic analysis of the human genome is enhanced by their being chromosome specific. Here, we describe the isolation and characterization of an alpha-satellite subset specific for human chromosome 2. Three clones, p2-7, p2-8, and p2-11, obtained from an EcoRI-digested lambda phage library from flow-sorted chromosome 2, are specific for the centromere of chromosome 2 by somatic cell hybrid mapping and chromosomal in situ hybridization. Nucleotide sequence analysis identifies the chromosome 2-specific alpha-satellite subset D2Z1 as a member of the suprachromosomal subfamily II, which is based on a characteristic two-monomer repeat. The D2Z1 subset is further organized as a series of diverged 680-bp tetramers, revealed after digestion of genomic DNA with HaeIII, HindIII, HinfI, StuI, and XbaI. Using pulsed-field gel electrophoresis (PFGE), probes p2-7, p2-8, and p2-11 detect polymorphic restriction patterns within the alpha-satellite array. Among 15 different chromosomes 2 (in two two-generation families and one three-generation family), the length of the D2Z1 alpha-satellite array varied between 1050 and 2900 kb (mean = 1850 kb, SD = 550 kb). The inheritance of the chromosome 2 alpha-satellite arrays and their associated polymorphisms was strictly Mendelian.  相似文献   

11.
M M Mahtani  H F Willard 《Genomics》1990,7(4):607-613
Using pulsed-field gel analysis (PFGE), we have characterized the large array of alpha-satellite DNA located in the centromeric region of the human X chromosome. The tandem repetitive nature of this DNA family lends itself to examination by PFGE using restriction enzymes that cleave frequently in unique sequence DNA but which cut only rarely within the repetitive alpha-satellite array. Several such restriction enzymes (BglI, BglII, KpnI, ScaI) have proven highly informative in sizing the alpha-satellite array and in following the segregation of individual X-chromosome centromeres using PFGE polymorphisms. Among 29 different X chromosomes, alpha-satellite array length varied between 1380 and 3730 kb (mean = 2895 kb; SD = 537). In three large CEPH families comprising 24 meioses, inheritance of these PFGE polymorphisms was strictly Mendelian, with no indication of intraarray recombination. Such DXZ1 alpha-satellite polymorphisms, therefore, may prove useful in the study of pericentromeric X-linked disorders.  相似文献   

12.
T.A. Kursar   《Gene》1988,70(2):263-270
The genomic structure and sequence variation of a 3.3-kb repeat DNA element, representing 5% of the genome of the kangaroo rat Dipodomys ordii, has been investigated. Most of the repeats are arranged in tandem arrays of 50 kb or more. Thirteen randomly selected genomic clones have been mapped with twelve restriction enzymes. The frequency of sequence divergence in the genomic clones is 0.5%. The clone maps and the genomic structure studies have permitted the characterization of a number of variant members of the 3.3-kb repeat family. The genomic organization of the repeat resembles that for repeated DNAs found in large tandem arrays or satellites.  相似文献   

13.
Repetitive DNA sequences in the terminal heterochromatin of rye (Secale cereale) chromosomes have consequences for the structural and functional organization of chromosomes. The large-scale genomic organization of these regions was studied using the telomeric repeat from Arabidopsis and clones of three nonhomologous, tandemly repeated, subtelomeric DNA families with complex but contrasting higher order structural organizations. Polymerase chain reaction analysis with a single primer showed a fraction of the repeat units of one family organized in a "head-to-head" orientation. Such structures suggest evolution of chromosomes by chromatid-type breakage-fusion-bridge cycles. In situ hybridization and pulse field gel electrophoresis showed the order of the repeats and the heterogeneity in the lengths of individual arrays. After Xbal digestion and pulse field gel electrophoresis, the telomeric and two subtelomeric clones showed strong hybridization signals from 40 to 100 kb, with a maximum at 50 to 60 kb. We suggest that these fragments define a basic higher order structure and DNA loop domains of regions of rye chromosomes consisting of arrays of tandemly organized sequences.  相似文献   

14.
In cloning adenovirus homologous sequences, from a human cosmid library, we identified a moderately repetitive DNA sequence family consisting of tandem arrays of 2.5 kb members. A member was sequenced and several non-adjacent, 15-20 bp G-C rich segments with homology to the left side of adenovirus were discovered. The copy number of 400 members is highly conserved among humans. Southern blots of partial digests of human DNA have verified the tandem array of the sequence family. The chromosomal location was defined by somatic cell genetics and in situ hybridization. Tandem arrays are found only on chromosomes 4 (4q31) and 19 (q13.1-q13.5). Homologous repetitive sequences are found in DNA of other primates but not in cat or mouse. Thus we have identified a new family of moderately repetitive DNA sequences, unique because of its organization in clustered tandem arrays, its length, its chromosomal location, and its lack of homology to other moderately repetitive sequence families.  相似文献   

15.
A 5S rRNA gene (5S DNA) from the coniferPinus radiata D. Don has been cloned and characterized at the nucleotide, genomic and chromosomal levels. Sequencing revealed a repeat unit of 524 base pairs which is present in approximately 3000 copies per diploid genome. Two-dimensional gel electrophoresis indicated that these copies are organized in tandem arrays of various length. Using in situ hybridization techniques, the tandem arrays appear to be present on all of the chromosomes. This complexity of chromosomal organization contrasts markedly with the few sites of uniform length found in angiosperm plants such as wheat, pea, and maize.  相似文献   

16.
Summary Repetitive DNA sequences in the genus Oryza (rice) represent a large fraction of the nuclear DNA. The isolation and characterization of major repetitive DNA sequences will lead to a better understanding of rice genome organization and evolution. Here we report the characterization of a novel repetitive sequence, CC-1, from the CC genome. This repetitive sequence is present as long tandem arrays with a repeat unit 194 bp in length in the CC-diploid genome but 172 bp in length in the BBCC and CCDD tetraploid genomes. This repetitive sequence is also present, though at lower copy numbers, in the AA and BB genomes, but is absent in the EE and FF genomes. Hybridization experiments revealed considerable differences both in copy numbers and in restriction fragment patterns of CC-1 both between and within rice species. The results support the hypothesis that the CC genome is more closely related to the AA genome than to the BB genome, and most distantly related to the EE and FF genomes.  相似文献   

17.
We have investigated the long-range organization and the intrinsic curvature of satellite 1 DNA, an unusual tandemly-repeated DNA family of Xenopus laevis presenting sequence homologies to SINEs. PFGE was used in combination with frequent-cutter restriction enzymes not likely to cut within satellite 1 DNA and revealed that almost all the repeating units are tandemly organized to form large arrays (200 kb to 2 Mb) that are marked by restriction length polymorphism and contain intra-array domains of sequence variation. Besides that, we have analysed the secondary structure of satellite 1 DNA by computer modelling. Theoretical maps of curvature obtained from three independent models of DNA bending (the dinucleotide wedge model of Trifonov, the junction model of Crothers and the model of de Santis) showed that satellite 1 DNA is intrinsically curved and these results were confirmed experimentally by polyacrylamide gel electrophoresis. Moreover, we observed that this bending element is highly conserved among all the members of the satellite 1 DNA family that are accessible to analysis. A potential genetic role for satellite 1 DNA based on this unusual structural feature is discussed.  相似文献   

18.
E Falistocco  V Passeri  G Marconi 《Génome》2007,50(10):927-938
Here we report the first results of a study of 5S rDNA of Vitis vinifera. 5S rDNA sequences from seven genotypes were amplified by PCR, cloned, and sequenced. Three types of repeats were found. Two variants, denominated long repeat and short repeat, appeared to be the main components of the 5S rDNA of this species, since they were found in all genotypes analyzed. They differed markedly from each other in both the length and the nucleotide composition of the spacers. The third variant, classified as DEL short repeat, differs from the short repeat owing to a large deletion in the spacer region. It appears to be the most recent repeat type, since it was identified in only one genotype. The organization of the 5S rDNA repeat unit variants was investigated by amplifying the genomic DNA with primers designed on the sequence of the long and short spacers. The PCR-amplified fragments showed that the long repeat is associated with the other two repeats, indicating that in V. vinifera different repeat units coexist within the same tandem array. FISH analysis demonstrated that 5S rRNA genes are localized at a single locus. The variability of 5S rDNA repeats is discussed in relation to the putative allopolyploid origin of V. vinifera.  相似文献   

19.
Segments of Drosophila melanogaster DNA containing 5S rRNA genes have been propagated in recombinant plasmids using E. coli as a host and Col E1 as a vector. Electron microscope partial denaturation mapping, mapping by ferritin labeling and restriction enzyme-gel electrophoresis analysis all indicate that the Drosophila DNA inserts of these plasmids consist of tandem repeats of 5S genes and spacer regions. The repeat length is approximately 380 nucleotide pairs (ntp), corresponding to a gene of length 120 ntp and a spacer of length 260 ntp. The insert in one plasmid (pCIT9) consists of 32 contiguous repeats. Restriction enzyme-gel electrophoresis analysis shows that all these repeats have the same length within ± 5 nucleotides. This repeat length is estimated as 370 ± 20 ntp by gel electrophoresis and 390 ± 40 ntp by partial denaturation mapping. A second plasmid (pCIT19) contains three complete genes, two complete spacers and incomplete flanking spacer sequences. The two complete repeat units released by suitable restriction endonuclease digestions differ in length by 20 ± 5 ntp, with estimated lengths of 370 and 390 ntp. The positions and spacings of the genes on this plasmid have been observed directly by ferritin labeling and by partial denaturation mapping. The A+T content of the 5S DNA spacer region is calculated to be 68%. By in situ hybridization, cRNA transcribed from one plasmid hybridizes to polytene chromosomes only at band 56F, the known locus of the 5S rRNA genes. Spontaneous excision of some of the tandem repeat units from the recombinant plasmids occurs during growth in E. coli; the frequency of excision does not depend upon the recA character of the host, but is greatly increased by chloramphenicol treatment.  相似文献   

20.
The sequence similarity among chromosome-specific alpha-satellite DNA was quantitatively evaluated by a novel procedure: nucleotide frequency calculation. Tandem-arrayed repetitive DNA segments were aligned with unit length repeat, and the nucleotide frequency at each position was used to estimate the phylogenetic distance between repetitive DNA segments. The calculations for human and chimpanzee X chromosome alpha-satellites showed that the results were consistent with the known relationships of primates, indicating that the nucleotide frequency calculation worked effectively to estimate the distances between satellite arrays. Human chromosome-specific alpha-satellites had been grouped into three suprachromosomal families (I, II, and III), and in the current work the nucleotide frequency analysis has defined the quantitative distances between the chromosome-specific alpha-satellite DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号