首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
噬菌体是微生物遗传学研究的有力工具及源泉.分枝杆菌噬菌体也是构建分枝杆菌,尤其是结核分枝杆菌遗传研究工具的基础.目前,基于分枝杆菌噬菌体重组酶的重组系统是国际热点.总结了近年来基于分枝杆菌噬菌体Che9c重组酶gp60、gp61所构建的分枝杆菌重组工程体系及其在分枝杆菌基因组研究方面的应用,并结合实验室工作展望了其研究前景.该体系不依赖细菌自身的RecA系统,不需要限制性内切核酸酶和DNA连接酶,不需要复杂的体外操作,只需表达分枝杆菌噬菌体重组酶,从而使结核分枝杆菌基因敲除、基因敲入及点突变和构建分枝杆菌噬菌体突变株更方便.这为分枝杆菌及其噬菌体基因诱变及基因功能研究提供了迅捷的新途径.  相似文献   

2.
大肠杆菌重组工程   总被引:4,自引:0,他引:4  
源于噬菌体的大肠杆菌同源重组系统不需要限制性内切酶和DNA连接酶就可以进行DNA克隆和亚克隆,还能快速地改造质粒、细菌人工染色体及细菌基因组染色体,是基因工程技术的一大突破,被称为重组基因工程或重组工程。该技术操作简单,效率较高,可望为功能基因组学研究提供一个有力的工具。  相似文献   

3.
噬菌体是能感染细菌的病毒。为了抵抗噬菌体的感染,细菌进化出多种抵抗噬菌体感染的机制,这些机制的阐析极大地促进了基因编辑领域的发展,同时也为噬菌体治疗的开展奠定了基础。本文就细菌针对噬菌体感染的各个环节所进行的抵抗及其分子机制进行了简要综述,同时讨论了这些防御系统的存在对细菌自身的影响,分析了当前细菌耐受噬菌体机制研究存在的局限性,并对未来研究进行了展望。  相似文献   

4.
为了揭示有机肥和化肥长期施用对农田土壤噬菌体携带的抗生素抗性基因(antibiotic resistance genes,ARGs)多样性和丰度的影响,并与土壤细菌携带的ARGs进行对比,本文将土壤抗生素抗性分为细菌和噬菌体两个部分,利用微滴数字PCR(droplet digital PCR,ddPCR)技术定量分析了土壤噬菌体和细菌DNA中25种ARGs亚型和I类整合子(intl1)的丰度。结果表明,土壤噬菌体中ARGs的检出率和总丰度以及intl1丰度均低于土壤细菌,其中噬菌体中检测到20种ARGs亚型,在不施肥、单施化肥和单施有机肥土壤的噬菌体中,目标ARGs的检出率分别为68%、72%和76%。土壤噬菌体中ARGs的总丰度在有机肥施用土壤中显著高于不施肥和化肥施用土壤(P<0.05),其中多耐药类、大环内酯-林肯酰胺-链阳性菌素B(MLSB)类和β-内酰胺类抗性基因丰度占显著优势。除了β-内酰胺类抗性基因blaTEM,噬菌体中其他ARGs亚型的丰度均显著低于细菌(P<0.05)。噬菌体与细菌携带ARGs在不同施肥处理中均存在显著正相关(P<0.05)。冗余分析结果显示,施肥可能通过改变土壤pH、重金属和营养因子水平来影响细菌和噬菌体中ARGs的赋存特征。本研究结果表明,噬菌体是除细菌之外的农田土壤另一个重要ARGs储存库,施用有机肥能同时显著提高土壤细菌和噬菌体中ARGs的多样性和丰度。  相似文献   

5.
噬菌体相互作用与细菌毒力进化   总被引:2,自引:0,他引:2  
李明  胡福泉 《生命的化学》2005,25(5):372-375
细菌的毒力是细菌的重要生物学特性,在细菌致病过程中起着非常重要的作用。细菌的毒力基因可以编码在质粒、致病岛或噬菌体上。近些年,研究者们发现噬菌体之间的相互作用也是构成细菌毒力的一个重要因素。  相似文献   

6.
《重组DNA实验室手册》(Recombinant DNA laboratory manual)修订版,由Judith W.Zyskind和Sanford I.Bernstein著,1992年出版,224页。该书著者J.W.Z.精通细菌遗传学和分子生物学,而s.I.B.在真核基因操作上是专家。每个DNA分子生物学家都需要有能力操作大肠杆菌及其噬菌体。该书包括的技术有:基本微生物操作;染色体、质粒、M13和入噬菌体DNA提取;凝胶电泳;活体诱变;限制性绘图;限制性片段离析和克隆;DNA测序;探针标记;DNA凝胶印迹法、噬菌斑迹法和分子杂交。修订版还包括了新的实验室技术即聚合酶链反应,它对基因分析是场革命。读者对象为具有分子生物学背景,但在操作DNA分子上经验有限的科研人  相似文献   

7.
 用适当的限制性内切酶,将噬菌体T7基因6.5和6.7从整个噬菌体T7基因组中分离出来,插入到质粒pBR322中去,转化E.Coli HMS174,筛选出这两个基因的成功克隆。运用同样手段,从整个噬菌体T7基因组中分离出含有部分基因6编码序列,而不含基因6.5和6.7编码序列的T7DNA片段,插入到pBR322的衍生质粒中去,转化Ecoli C1757,再用含有基因6和基因7的双突变噬菌体T7去感染这一转化菌,通过同源交叉而得到缺失基因6.5和6.7的噬菌体T7缺失变种。这种噬菌体只能在载有噬菌体T7基因6.5和6.7,或者只载有基因6.7质粒的寄主中增殖。通过噬菌体结构蛋白电泳分析证明,这种噬菌体丢失了野生型菌体T7所具有的两条结构蛋白带。  相似文献   

8.
泛耐药肺炎克雷伯菌的流行,使得临床面临无药可用,越来越多的肺炎克雷伯菌噬菌体近年来被报道,并在动物模型中证明了它们用于防控细菌感染的有效性。然而,噬菌体作为病毒的一类,不同于传统的抗菌药物,在临床应用之前需要进行更为全面的评估,本研究将基于基因组学对已报道的肺炎克雷伯菌噬菌体安全性进行评估。通过生物信息学分析噬菌体基因组上是否含有肺炎克雷伯菌限制性内切酶识别位点来评估其基因组稳定性,并就其是否携带有害基因和是否属于溶原性噬菌体等方面进行分析研究。目前已报道22株肺炎克雷伯菌噬菌体的全基因组,7株属于肌尾科,12株属于短尾科,3株属于长尾科;而本研究基于噬菌体全基因组同源性分析结果将短尾科、长尾科和肌尾科中的JD001归为一类,定义为Kp_PhageⅠ;肌尾科分为Kp_phageⅡa和Kp_PhageⅡb两类。噬菌体基因组上含有数目不等的肺炎克雷伯菌限制性内切酶识别位点,不携带有毒力基因和耐药基因。5株属于温和噬菌体,17株属于烈性噬菌体。研究显示肺炎克雷伯菌噬菌体在基因组水平具有良好的安全性,但是基因组上较多的肺炎克雷伯菌限制性内切酶识别位点,使其抗菌谱可能较窄。在使用噬菌体用于防控细菌感染时部分温和噬菌体需要谨慎排除。  相似文献   

9.
问题小议     
1.用λ噬菌体的衍生物作基因载体时,受体细菌的培养基中为什么不加葡萄糖而加麦芽糖? 野生型λ噬菌体受限制性内切酶作用的切点太多,不适于作基因载体。  相似文献   

10.
傅文博  杜海  徐岩 《微生物学通报》2022,49(9):3567-3580
【背景】噬菌体是微生物群落的重要组成部分,但传统白酒发酵中噬菌体的分类和存在尚不清楚。【目的】通过检测公共数据库和酱香型白酒发酵中地衣芽孢杆菌(Bacillus licheniformis)基因组中的前噬菌体整合区域,探究传统酱香型白酒发酵中关键功能菌株的前噬菌体分类和侵染情况。【方法】使用未培养(细菌全基因组分析)和可培养(菌株筛选和特异性PCR反应)技术对不同环境来源和来自酱香型白酒发酵的地衣芽孢杆菌前噬菌体的分类和存在进行解析。【结果】细菌全基因组分析显示,30株来自不同环境的地衣芽孢杆菌基因组中共注释到165个前噬菌体,其中63.6%(105/165)为完整前噬菌体序列。97.1%感染地衣芽孢杆菌的噬菌体属于长尾噬菌体科(Siphoviridae),2.9%属于肌尾噬菌体科(Myoviridae),53.0%完整前噬菌体的基因功能未知。在来自酱香型白酒发酵的B. licheniformis MT-B06中检测到7个前噬菌体整合序列,其中57.1%(4/7)为完整前噬菌体序列,来自酱香型白酒发酵的地衣芽孢杆菌存在多种不同前噬菌体的共感染。来自酱香型白酒发酵的地衣芽孢杆菌前噬菌体存在来自细菌基因组上相邻CotD孢子外壳蛋白(CotD family spore coat protein)基因的水平基因转移。在26株来自酱香型白酒发酵的地衣芽孢杆菌中,69.2%(18/26)存在噬菌体编码主要衣壳蛋白的基因,100.0%(26/26)存在噬菌体编码CotD孢子外壳蛋白的基因。【结论】来自不同环境的地衣芽孢杆菌和酱香型白酒发酵的地衣芽孢杆菌中存在高水平的前噬菌体整合,来自酱香型白酒发酵的地衣芽孢杆菌前噬菌体中广泛存在来源于宿主的CotD孢子外壳蛋白基因的水平基因转移。本研究为首次对传统发酵白酒中噬菌体的分类和存在进行探究,有助于对发酵微生物群落中噬菌体-细菌相互作用加深理解。  相似文献   

11.
[目的]对8株源自大肠杆菌O157编码Stx2毒素的噬菌体生物学特性进行研究.[方法]丝裂霉素C诱导8株大肠杆菌O157菌株释放噬菌体,采用PCR作初步鉴定,分离、纯化噬菌体基因组,随机引物法地高辛(DIG)标记stx2基因片段作为探针,对纯化的噬菌体采用Southernblot进行Stx2噬菌体再次鉴定,透射电子显微镜观察纯化的8株Stx2噬菌体的形态特征,通过限制性内切酶图谱分析,确定噬菌体的核酸类型和基因组大小、以及限制性内切酶酶切片段多态性,并分析噬菌体的蛋白质组成特征.[结果]Southern blot证实分离的8株噬菌体为Stx2噬菌体,电镜下观察的各株Stx2噬菌体形态一致,头部均为正六边形,尾部很短,属于短尾噬菌体科,各株噬菌体之间存在相同的蛋白结构模式,基因组为双链DNA,限制性内切酶片段长度表现出一定的多态性,噬菌体的基因组大小从48.0-65.3 kb不等.[结论]来源不同菌株的8株编码Stx2噬菌体均为短尾噬菌体,其蛋白结构模式一致,但基因组具有不同组成.  相似文献   

12.
CRISPR/Cas9技术,主要用于基因编辑。最近发现,CRISPR/Cas9技术亦可用于特异性杀伤癌细胞。天然状态下,CRISPR/Cas9系统存在于细菌,其功能是识别并切割入侵病毒或噬菌体的DNA,由此导致病毒或噬菌体死亡。因此,对于细菌来说,CRISPR/Cas9是一种"基因剪刀"或"基因武器",是细菌重要的"免疫系统"。目前,CRISPR/Cas9系统一般用于对单基因或多基因的敲除或插入,以构建细胞或动物研究模型。  相似文献   

13.
噬菌体介导的毒力基因的转移   总被引:2,自引:0,他引:2  
随着分子细菌学研究的不断深入,越来越多的焦点集中在病原菌的毒力因子上,包括细菌的毒素、粘附素、侵袭素、毒力岛等,目的为预防细菌性疾病寻求可靠的诊断方法和防疫措施,并从基因水平提示致病的本质。从多研究表明细菌的毒力因子与噬菌体的转换有关。噬菌体作为一个附属的遗传因素,在基因传播、细菌种群的遗传多样性方面起了重要的作  相似文献   

14.
在全球化和气候变化的背景下,病原细菌跨区域乃至全球性的广泛传播和危害加剧成为当前农业、环境和健康领域的重大共性难题,威胁土壤-植物-动物-环境一体化健康(One Health).滥用农药和抗生素所带来的生态环境和卫生安全风险成为国际共识,靶向阻控病原细菌的噬菌体疗法重新引起人们的重视.本文梳理了农业种植和养殖领域中应用噬菌体阻控病原细菌的现状;从改变病原细菌的生态与进化,调控土著微生物群落结构与功能以及激发病原细菌真核宿主的免疫系统等三方面总结噬菌体疗法的微生态机制;从病原细菌基因、生理和生态型的变异性,噬菌体与病原菌互作博弈的局限性,噬菌体生产应用的复杂性等方面论述噬菌体疗法发展应用的挑战;从一体化健康的需求、噬菌体疗法技术突破和多技术协同等方面探讨噬菌体疗法在一体化健康中的发展机遇.  相似文献   

15.
细菌与噬菌体相互抵抗机制研究进展   总被引:1,自引:1,他引:0  
噬菌体作为一种侵染细菌的病毒,能够特异性识别宿主细菌。近年来,抗生素的过度使用导致耐药细菌的出现,噬菌体有望成为对抗耐药细菌的新武器。在细菌与噬菌体长期共进化过程中,二者都演化出一系列抵御策略。本文从抑制噬菌体吸附、阻止噬菌体DNA进入、切割噬菌体基因组、流产感染以及群体感应对噬菌体的调控等方面,对细菌抵抗噬菌体的机制以及噬菌体应对细菌的策略进行了综述,同时还列举了细菌和噬菌体相互抵抗机制的检测方法,以期为噬菌体在细菌控制中的应用以及探究细菌抵抗噬菌体的机制提供理论依据。  相似文献   

16.
<正>CRISPR/Cas9技术,主要用于基因编辑。最近发现,CRISPR/Cas9技术亦可用于特异性杀伤癌细胞。天然状态下,CRISPR/Cas9系统存在于细菌,其功能是识别并切割入侵病毒或噬菌体的DNA,由此导致病毒或噬菌体死亡。因此,对于细菌来说,CRISPR/Cas9是一种"基因剪刀"或"基因武器",是细菌重要的"免疫系统"。目前,CRISPR/Cas9系统一般用于对单基因或多基因的敲除或插入,以构建细胞或动物研究模型。  相似文献   

17.
以大肠杆菌8099为宿主自医院污水中分离出一株肠杆菌噬菌体IME08,其遗传物质经RNA酶、DNA酶处理证实其为DNA,用限制性内切酶处理该DNA证实其为双链DNA。利用随机引物PCR技术扩增并克隆该噬菌体基因组的随机片段,经测序后同源比对,判断该噬菌体是一株新的T4-like噬菌体。根据4株T4-like噬菌体 (T4,JS98,T2及K3) 宿主识别基因 (g37) 5'端的高度保守序列,采用随机PCR与巢式PCR结合的“基因组跳跃”策略快速克隆出了该噬菌体的宿主识别基因g37和g38。  相似文献   

18.
噬菌体是感染细菌的病毒,广泛存在于各类环境中。由于传统实验研究的局限性及噬菌体基因的特异性,导致对肠道噬菌体的研究很少。随着宏基因组测序技术的发展和各种生物信息分析软件的开发,可以通过噬菌体组学,加深对肠道噬菌体的认识。噬菌体组分析流程主要包括原始数据质量控制和预处理,病毒基因组序列的拼接组装,类病毒颗粒的筛选和系统分类注释以及进化分析和预测相应宿主细菌。本文对噬菌体组分析流程和其中所需要的常用生物信息分析工具和数据库进行详细的介绍,可以为肠道噬菌体研究以及相关的研究人员提供参考。  相似文献   

19.
自然环境中T4型噬菌体g23基因多样性研究进展   总被引:1,自引:0,他引:1  
摘要:过去的20多年,伴随着分子生物学技术在环境微生物研究中的应用,环境中细菌和真菌群落基因多样性及与其生存环境间的关系逐渐被揭示,但对于地球上广泛存在且数量巨大的生命体-噬菌体基因多样性研究还很少。本文以编码T4型噬菌体主要壳蛋白基因g23为目标,综述了近年来T4型噬菌体在海洋、湖泊和稻田中基因多样性的研究进展。研究结果表明T4型噬菌体g23基因分布与其生存环境关系很大,许多g23基因按获取环境不同划分为几个新类群。同时文中也指出了针对环境中T4型噬菌体g23基因研究应该注意的几点问题及未来的研究发展趋势。  相似文献   

20.
江宁  那淑敏  徐星 《遗传》1984,6(2):3-5
细菌对噬菌体超感染的免疫是普遍存在的 现象。大肠杆菌对噬菌体T4超感染的免疫作 用与T4 imm基因有关[u0,111。T4 imm 0 基因在遗 传图上位于基因42与基因43之间L63。细胞被 T4噬菌体感染后,对T4超感染的免疫以及T4 基因imm在其中所起的作用,国外已作了一些 研究[[4,121,但是对于克隆的T4 imm基因独自能 否起作用尚未见报道。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号