首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p34cdc2 protein kinase is a universal regulator of M-phase in eukaryotic cell cycle. To investigate the regulation of meiotic and mitotic cell cycle in mammals, we examined the changes in phosphorylation states of p34cdc2 and its histone H1 kinase activity in mouse oocytes and embryos. We showed that p34cdc2 has three different migrating bands (referred to as upper, middle and lower bands) on SDS-PAGE followed by immunoblotting with anti-PSTAIR antibody, and that the upper and middle bands are phosphorylated forms since these two bands shifted to the lower one by alkaline phosphatase treatment. In meiotic cell cycle, only germinal vesicle (GV) stage oocytes had the three forms. The phosphorylated forms decreased gradually in oocytes up to 2 h after isolation from follicles, and thereafter the phosphorylation states did not change significantly until metaphase II. However, the histone H1 kinase activity oscillated, being activated at the first and second metaphase in meiosis and inactivated at the time of the first polar body extrusion. These results suggest that changes in phosphorylation states of p34cdc2 triggered its activation at the first metaphase, but not inactivation and reactivation at the first and second metaphase, respectively. In mitotic cell cycle, phosphorylated forms appeared at 4 h after insemination, increased greatly just before metaphase, and were dephosphorylated in metaphase. Histone H1 kinase activity was high only at metaphase. This kinase activation is probably triggered by dephosphorylation of p34cdc2.  相似文献   

2.
3.
Activation of p34cdc2 kinase by cyclin A   总被引:17,自引:5,他引:17       下载免费PDF全文
Functional clam cyclin A and B proteins have been produced using a baculovirus expression system. Both cyclin A and B can induce meiosis I and meiosis II in Xenopus in the absence of protein synthesis. Half-maximal induction occurs at 50 nM for cyclin A and 250 nM for cyclin B. Addition of 25 nM cyclin A to activated Xenopus egg extracts arrested in the cell cycle by treatment with RNase or emetine activates cdc2 kinase to the normal metaphase level and stimulates one oscillatory cell cycle. High levels of cyclin A cause marked hyperactivation of cdc2 kinase and a stable arrest at the metaphase point in the cell cycle. Kinetic studies demonstrate the concentration of cyclin A added does not affect the 10 min lag period required for kinase activation or the timing of maximal activity, but does control the rate of deactivation of cdc2 kinase during exit from mitosis. In addition, exogenous clam cyclin A inhibits the degradation of both A- and B-type endogenous Xenopus cyclins. These results define a system for investigating the biochemistry and regulation of cdc2 kinase activation by cyclin A.  相似文献   

4.
The hexameric ATPase p97/yeast Cdc48p has been implicated in a number of cellular events that are regulated during mitosis, including homotypic membrane fusion, spindle pole body function, and ubiquitin-dependent protein degradation. p97/Cdc48p contains two conserved consensus p34cdc2 kinase phosphorylation sites within its second ATP binding domain. This domain is likely to play a role in stabilising the hexameric form of the protein. We therefore investigated whether p97 could be phosphorylated by p34cdc2 kinase in vitro, and whether phosphorylation might influence the oligomeric status of p97. Monomeric, but not hexameric, p97 was phosphorylated by p34cdc2 kinase, as was the p97-associated protein p47. However, phosphorylation by p34cdc2 kinase did not impair subsequent re-hexamerisation of p97, implying that the phosphorylated residue(s) are not critical for interaction between p97 monomers. Moreover, p97 within both interphase and mitotic cytosols was almost exclusively hexameric, suggesting that the activity of p97 is not regulated during mitosis by influencing the extent of oligomerisation.  相似文献   

5.
Microinjection of a bacterially expressed stable delta 90 sea urchin cyclin B into Xenopus prophase oocytes, in absence or presence of cycloheximide, provokes the activation of histone H1 kinase and the tyrosine dephosphorylation of p34cdc2. Unexpectedly, when prophase oocytes are submitted to a treatment known to elevate the intracellular cAMP level (3-isobutyl-1-methylxanthine and cholera toxin), delta 90 cyclin has no effect and the oocytes remain blocked in prophase. This inhibition is reverted by the microinjection of the inhibitor of cAMP-dependent protein kinase. When delta 90 cyclin is microinjected into oocytes depleted of endogenous cyclins (cycloheximide-treated metaphase I) and in the presence of a high intracellular concentration of cAMP, p34cdc2 kinase is tyrosine rephosphorylated. Altogether, our results indicate that in Xenopus oocyte, cAMP-dependent protein kinase (A-kinase) controls the formation of the cyclin B/p34cdc2 complex which remains inactive and tyrosine phosphorylated.  相似文献   

6.
Hypoxanthine (HX) inhibition of in vitro meiotic resumption in goat oocytes   总被引:7,自引:0,他引:7  
To improve in vitro maturation and to understand the mechanism for meiotic resumption of oocytes, meiotic progression, and its control by hypoxanthine (HX) were studied in goat oocytes. Ovaries were obtained from a local abattoir, and cumulus-oocyte complexes (COCs) and follicular fluid were collected from follicles of different surface diameters (SDs). The meiotic competence and progression of oocytes were observed, and the concentration of HX in the follicular fluid and culture media was measured by high-performance liquid chromatography (HPLC). Full meiotic competence of goat oocytes was acquired in follicles of >/=1.5 mm in SD with 90% of the oocytes developing to metaphase II (MII) stage after 24 hr in culture. The HX concentration in follicular fluid decreased with follicle development, from the highest level of 1.16 mM in /=5 mm follicles. HX inhibited meiotic resumption of goat oocytes in a concentration-related manner but this inhibitory effect declined gradually. When we renewed the medium at 4 hr of HX-199 (TCM-199 supplemented with 4 mM HX) culture, the percentage of oocytes with intact germinal vesicle (GV) did not increase but decreased significantly instead. HPLC measurement of HX in the HX-199 culture drops indicated that the HX concentration declined from 0 hr to 4 hr of culture and after medium renewal at 4 hr of culture. By adding dibutyryl cAMP (db-cAMP) at medium renewal, we found that db-cAMP held up the decline of GV percentages. Together, these results were consistent with the possibility that the decline of HX inhibitory effect was not due to HX depletion but rather due to the negative feedback of the metabolites on its further uptake by oocytes. Goat oocytes were capable of normal nuclear maturation and activation after temporal arrest by HX, but prolonged exposure to HX induced spontaneous activation.  相似文献   

7.
Controlling meiotic resumption in bovine oocytes: a review   总被引:7,自引:0,他引:7  
  相似文献   

8.
Cumulus oocyte complexes (COCs) were cocultured with parts of the follicular wall. Coculture conditions were such that the COCs were 1) in continuous contact with the follicular wall (FWC), 2) separated from the follicular wall at collection but in contact with it during culture (FWR), and 3) separated from the follicular wall, but cultured in its vicinity (FWNR). Oocytes cultured for 24 hr under FWC conditions maintained the germinal vesicle stage. Under FWR conditions the germinal vesicle stage was not maintained, but an arrest at metaphase I of meiosis occurred in mostof the oocytes. When COCs were cultured in the vicinity of the follicular wall (FWNR), meiosis was resumed and similar numbers of oocytes progressed to metaphase II of meiosis as compared to cultures of COCs without coculture with parts of the follicular wall. When COCs were isolated from the follicular wall after 24 hr of culture and additionally cultured for another 24 hr, the oocytes showed the same capability of resuming meiosis as fresh, isolated cumulus oocyte complexes. It is concluded that maintenance of contact with the follicular wall is necessary to maintain meiotic arrest. When COCs restore a physical contact with the follicular wall during culture, an arrest at metaphase I occurs. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Summary Immunofluorescence microscopy with a monoclonal antibody raised against the PSTAIR sequence, which corresponds to a peptide conserved in the p 34cdc2 protein kinase throughout the phylogenetic scale including higher plants, was used to study the intracellular localization of p 34cdc2 during the cell cycle in onion root tip cells. Although p 34cdc2 was evenly distributed in the cytoplasm throughout the cell cycle, a more intense staining was observed in the cortical region, where the preprophase band of microtubules (MTs) was located. Double staining with the PSTAIR and plant tubulin antibodies showed that the width of p 34cdc2 band was narrower than that of MT band. These data raise the interesting question regarding the possible role of p 34cdc2 protein kinase in determining the division site in plant cells.  相似文献   

10.
The meiotic division in oocytes is arrested in the G2 phase of the cell cycle. Resumption of meiosis, also known as oocyte maturation, entails a G2 to M transition. At the G2-M boundary, maturation promoting factor (MPF) activation is usually induced via several ways, including tyrosine dephosphorylation of p34(cdc2) and synthesis of cyclin B according to cell type and species. Previous studies in our laboratory demonstrated that glucocorticoids directly inhibit the meiotic maturation of pig oocytes in vitro. The aim of this study was therefore to investigate the influence of glucocorticoids on the expression of p34(cdc2) and cyclin B1 in resumption of meiosis of pig oocytes. We detected the relative levels and association of p34(cdc2) and cyclin B1. Isolated cumulus-enclosed oocytes were cultured in Waymouth MB752/1 medium supplemented with sodium pyruvate (50 microgram/ml), LH (0.5 microgram/ml), FSH (0.5 microgram/ml), and estradiol-17beta (1 microgram/ml) in the presence or absence of dexamethasone (DEX) for 24 hr; they then were cultured without hormonal supplements in the presence or absence of DEX for an additional 24 hr. We found that cyclin B1, as well as p34(cdc2), was already present in fully grown G2-arrested pig oocytes when removed from the follicle. In these oocytes, cyclin B1 and p34(cdc2) were already associated in complex. Treatment with DEX at concentrations of 1 microgram/ml or above decreased the level of cyclin B1, but had no effect on the level of p34(cdc2). The exposure of oocytes to DEX also decreased the amount of complexed p34(cdc2)-cyclin B1. These findings suggest that the inhibitory action of DEX on meiotic maturation could be due, at least in part, to the reduced amount of p34(cdc2)-cyclin B1 complex.  相似文献   

11.
12.
Culturing of matured porcine oocytes in vitro results in the enhancement of their cytoplasmic ability for oocyte activation (so-called ageing), although they are arrested at metaphase II. The enhanced ability for oocyte activation is related to decreased activity of the maturation promoting factor (MPF). In the present study we clarified the molecular mechanism of MPF inactivation during ageing, especially the changes in the phosphorylation status of p34cdc2, a catalytic subunit of MPF, compared with that in fertilised oocytes. The MPF activity decreased gradually when maturation culture was prolonged from 36 to 72 h, confirming the decreasing MPF activity in aged oocytes. The activity of 48 h matured oocytes also decreased after in vitro fertilisation. Immunoblotting of p34cdc2 with anti-PSTAIRE antibody revealed that the culturing of matured oocytes induces a gradual increase in pre-MPF, which is a p34cdc2 and cyclin B complex inactivated by phosphorylation at the inhibitory phosphorylation site of p34cdc2. In contrast, pre-MPF decreased after fertilisation, indicating the degradation of cyclin B. These results suggest that the molecular mechanisms of inactivation of MPF are different between oocyte activation and ageing, and that the mechanism during ageing might be based on the inhibitory phosphorylation of p34cdc2, whereas that of oocyte activation is based on the degradation of cyclin B.  相似文献   

13.
This study examined the effects of three different cellular stresses on oocyte maturation in meiotically arrested mouse oocytes. Cumulus-cell enclosed oocytes (CEO) or denuded oocytes (DO) from immature, eCG-primed mice were cultured for 17-18 h in dbcAMP-containing medium plus increasing concentrations of the metabolic poison, sodium arsenite, or the free radical-generating agent, menadione. Alternatively, oocytes were exposed to osmotic stress by pulsing with sorbitol and returned to control inhibitory conditions for the duration of culture. Arsenite and menadione each dose-dependently induced germinal vesicle breakdown (GVB) in both DO and CEO. DO, but not CEO, pulsed for 60 min with 500 mM sorbitol were stimulated to resume maturation. The lack of effect in CEO suggests that the cumulus cells may be playing a protective role in osmotic stress-induced GVB. The AMP-activated protein kinase (PRKA; formerly known as AMPK) inhibitors, compound C and araA, completely blocked the meiosis-stimulating effects of all the tested stresses. Western blots showed that acetyl-CoA carboxylase, an important substrate of PRKA, was phosphorylated before GVB, supporting a role for PRKA in stress-induced maturation. Together, these data show that a variety of stresses stimulate GVB in meiotically arrested mouse oocytes in vitro and suggest that this effect is mediated through activation of PRKA.  相似文献   

14.
Time-dependent changes in the level of adenosine cyclic AMP (cAMP) in porcine oocytes during meiotic progression from the germinal vesicle stage (GV stage) to the metaphase II stage (MII stage) were examined using reversed-phase HPLC with UV detection. The concentration of cAMP in oocytes reached a peak at 8 hr of cultivation of cumulus-oocyte complexes (COCs), but it was dramatically decreased after 12-hr cultivation. After a 28-hr cultivation period, the level of cAMP in the oocytes had significantly reduced further, and the basal level of cAMP was observed in oocytes cultured at 32 hr and for up to 48 hr. When phosphatidylinositol 3-kinase (PI 3-kinase) or protein kinase C (PKC) in cumulus cells [which were required for meiotic progression to the MII stage in porcine oocytes (Shimada and Terada, 2001: Biol Reprod 64:1106-1114)] was suppressed by each specific inhibitor following initial 24-hr cultivation of COCs, cAMP level in the oocytes was significantly increased. After 24-hr cultivation in the maturation medium, COCs, which were cultured for an additional 24 hr in the presence of either forskolin or 3-isobutyl-1-methylxanthine (IBMX), exhibited a significant increase in the oocyte cAMP level to the similar level of that in oocytes cultured with PI 3-kinase inhibitor or PKC inhibitor, and the addition of each agent significantly suppressed meiotic progression from the MI to the MII stage and the activity of mitogen-activated protein kinase (MAPK) and p34(cdc2) kinase. These results demonstrated that when transported into oocytes from the cumulus cells via gap junctions, cAMP plays an important role not only in meiotic resumption, but also in the regulation of meiotic progression beyond the MI stage in porcine oocytes.  相似文献   

15.
16.
A Palmer  A C Gavin    A R Nebreda 《The EMBO journal》1998,17(17):5037-5047
M-phase entry in eukaryotic cells is driven by activation of MPF, a regulatory factor composed of cyclin B and the protein kinase p34(cdc2). In G2-arrested Xenopus oocytes, there is a stock of p34(cdc2)/cyclin B complexes (pre-MPF) which is maintained in an inactive state by p34(cdc2) phosphorylation on Thr14 and Tyr15. This suggests an important role for the p34(cdc2) inhibitory kinase(s) such as Wee1 and Myt1 in regulating the G2-->M transition during oocyte maturation. MAP kinase (MAPK) activation is required for M-phase entry in Xenopus oocytes, but its precise contribution to the activation of pre-MPF is unknown. Here we show that the C-terminal regulatory domain of Myt1 specifically binds to p90(rsk), a protein kinase that can be phosphorylated and activated by MAPK. p90(rsk) in turn phosphorylates the C-terminus of Myt1 and down-regulates its inhibitory activity on p34(cdc2)/cyclin B in vitro. Consistent with these results, Myt1 becomes phosphorylated during oocyte maturation, and activation of the MAPK-p90(rsk) cascade can trigger some Myt1 phosphorylation prior to pre-MPF activation. We found that Myt1 preferentially associates with hyperphosphorylated p90(rsk), and complexes can be detected in immunoprecipitates from mature oocytes. Our results suggest that during oocyte maturation MAPK activates p90(rsk) and that p90(rsk) in turn down-regulates Myt1, leading to the activation of p34(cdc2)/cyclin B.  相似文献   

17.
The aim of this study was to analyze the relationship between oocyte diameter, meiotic and embryo developmental competence and the expression of the catalytic subunit of MPF, the p34(cdc2), at mRNA, RNA and protein level, as well as its kinase activity, in prepubertal (1-2 months old) goat oocytes. MPF is the main meiotic regulator and a possible regulator of cytoplasmic maturation; therefore, it could be a key factor in understanding the differences between competent and incompetent oocytes. Oocytes were classified according to oocyte diameter in four categories: <110, 110-125, 125-135 and >135 microm and matured, fertilized and cultured in vitro. The p34(cdc2) was analyzed in oocytes at the time of collection (0 h) and after 27 h of IVM (27 h) in each of the oocyte diameter categories. The oocyte diameter was positively related to the percentage of oocytes at MII after IVM (0, 20.7, 58 and 78%, respectively) and the percentage of blastocysts obtained at 8 days postinsemination (0, 0, 1.95 and 12.5%, respectively). The expression of RNA and mRNA p34(cdc2) did not vary between oocyte diameters at 0 and 27h. Protein expression of p34(cdc2) increased in each oocyte category after 27 h of maturation. MPF activity among diameter groups did not vary at 0h but after IVM there was a clear and statistically significant increase of MPF activity in the biggest oocytes.  相似文献   

18.
Regulation of p34cdc2 protein kinase during mitosis   总被引:91,自引:0,他引:91  
S Moreno  J Hayles  P Nurse 《Cell》1989,58(2):361-372
The cell-cycle timing of mitosis in fission yeast is determined by the cdc25+ gene product activating the p34cdc2 protein kinase leading to mitotic initiation. Protein kinase activity remains high in metaphase and then declines during anaphase. Activation of the protein kinase also requires the cyclin homolog p56cdc13, which also functions post activation at a later stage of mitosis. The continuing function of p56cdc13 during mitosis is consistent with its high level until the metaphase/anaphase transition. At anaphase the p56cdc13 level falls dramatically just before the decline in p34cdc2 protein kinase activity. The behavior of p56cdc13 is similar to that observed for cyclins in oocytes. p13suc1 interacts closely with p34cdc2; it is required during the process of mitosis and may play a role in the inactivation of the p34cdc2 protein kinase. Therefore, the cdc25+, cdc13+, and suc1+ gene products are important for regulating p34cdc2 protein kinase activity during entry into, progress through, and exit from mitosis.  相似文献   

19.
In this study, the effects of U0126 that inhibits the activity of mitogen-activated protein (MAP) kinase kinase (MEK), and LY294002, which is a phosphatidylinositol (PI) 3-kinase inhibitor, on meiotic progression beyond the metaphase I (MI) stage in porcine oocytes were examined. Cumulus-oocyte complexes (COCs) were cultured for 22 h with 50 microM LY294002 or 10 microM U0126 following cultivation for the initial 22 h. MAP kinase activity in oocytes cultured with LY294002 or U0126 was significantly lower than that in control oocytes cultured for up to 44 h. U0126 and LY294002 significantly decreased p34(cdc2) kinase activity and the proportion of oocytes reaching the MII stage compared to those in control oocytes. Oocytes denuded after COCs had been cultured for 22 h were cultured further for 22 h with U0126 or LY294002. In the denuded oocytes, U0126 suppressed MAP kinase activity, p34(cdc2) kinase activity, and meiotic progression to the MII stage; however, LY294002 did not significantly affect the activity of these kinases and meiotic progression. These results suggest that increasing MAP kinase activity in oocytes via the PI 3-kinase signaling pathway in cumulus cells is involved in the stimulation of maturation promoting factor, leading to meiotic progression beyond the MI to MII stage in porcine oocytes.  相似文献   

20.
M-Phase specific protein kinase or cdc2 protein kinase is a component of MPF (M-Phase promoting factor). During meiotic maturation of Xenopus oocytes, cdc2 protein kinase is activated in correlation with MPF activity. A protein phosphorylation cascade takes place involving several protein kinases, among which casein kinase II, and different changes associated with meiosis occur such as germinal vesicle breakdown, chromosome condensation, cytoskeletal reorganization and increase in protein synthesis. Our results provide a biochemical link between cdc2 protein kinase and protein synthesis since they show that the kinase phosphorylates in vitro a p47 protein identified as elongation factor EF1 (gamma subunit) and that the in vitro site of p47 corresponds to the site phosphorylated in vivo. Immunofluorescence showed that the elongation factor (EF1-beta gamma) is localized in the oocyte cortex. Furthermore, they show that cdc2 kinase phosphorylates and activates casein kinase II in vitro, strongly supporting the view that casein kinase II is involved in the phosphorylation cascade originated by cdc2 kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号