首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Most colorectal cancers have mutations of the adenomatous polyposis coli (APC) gene or the beta-catenin gene that stabilize beta-catenin and activate beta-catenin target genes, leading ultimately to cancer. The molecular mechanisms of APC function in beta-catenin degradation are not completely known. APC binds beta-catenin and is involved in the Axin complex, suggesting that APC regulates beta-catenin phosphorylation. Some evidence also suggests that APC regulates beta-catenin nuclear export. Here, we examine the effects of APC mutations on beta-catenin phosphorylation, ubiquitination, and degradation in the colon cancer cell lines SW480, DLD-1, and HT29, each of which contains a different APC truncation. Although the current models suggest that beta-catenin phosphorylation should be inhibited by APC mutations, we detected significant beta-catenin phosphorylation in these cells. However, beta-catenin ubiquitination and degradation were inhibited in SW480 but not in DLD-1 and HT29 cells. The ubiquitination ofbeta-catenin in SW480 cells can be rescued by exogenous expression of APC. The APC domains required for beta-catenin ubiquitination were analyzed. Our results suggest that APC regulates beta-catenin phosphorylation and ubiquitination by distinct domains and by separate molecular mechanisms.  相似文献   

8.
Adenomatous polyposis coli (APC) is a tumour suppressor involved in colon cancer progression. We and others previously described nuclear-cytoplasmic shuttling of APC. However, there are conflicting reports concerning the localization of endogenous wild-type and tumour-associated, truncated APC. To resolve this issue, we compared APC localization using immunofluorescence (IF) microscopy and cell fractionation with nine different APC antibodies. We found that three commonly used APC antibodies showed nonspecific nuclear staining by IF and validated this conclusion in cells where APC was inactivated using small interfering RNA or Cre/Flox. Fractionation showed that wild-type and truncated APC from colon cancer cells were primarily cytoplasmic, but increased in the nucleus after leptomycin B treatment, consistent with CRM1-dependent nuclear export. In contrast to recent reports, our biochemical data indicate that APC nuclear localization is not regulated by changes in cell density, and that APC nuclear export is not prevented by truncating mutations in cancer. These results verify that the bulk of APC resides in the cytoplasm and indicate the need for caution when evaluating the nuclear accumulation of APC.  相似文献   

9.
10.
11.
SUMOylation is a form of post-translational modification shown to control nuclear transport. Krüppel-like factor 5 (KLF5) is an important mediator of cell proliferation and is primarily localized to the nucleus. Here we show that mouse KLF5 is SUMOylated at lysine residues 151 and 202. Mutation of these two lysines or two conserved nearby glutamates results in the loss of SUMOylation and increased cytoplasmic distribution of KLF5, suggesting that SUMOylation enhances nuclear localization of KLF5. Lysine 151 is adjacent to a nuclear export signal (NES) that resembles a consensus NES. The NES in KLF5 directs a fused green fluorescence protein to the cytoplasm, binds the nuclear export receptor CRM1, and is inhibited by leptomycin and site-directed mutagenesis. SUMOylation facilitates nuclear localization of KLF5 by inhibiting this NES activity, and enhances the ability of KLF5 to stimulate anchorage-independent growth of HCT116 colon cancer cells. A survey of proteins whose nuclear localization is regulated by SUMOylation reveals that SUMOylation sites are frequently located in close proximity to NESs. A relatively common mechanism for SUMOylation to regulate nucleocytoplasmic transport may lie in the interplay between neighboring NES and SUMOylation motifs.  相似文献   

12.
13.
Sphingosine kinase (SPHK) is an enzyme that phosphorylates sphingosine to form sphingosine 1-phosphate (S1P). Human SPHK1 (hSPHK1) was localized predominantly in the cytoplasm when transiently expressed in Cos7 cells. In this study, we have found two functional nuclear export signal (NES) sequences in the middle region of hSPHK1. Deletion and mutagenesis studies revealed that the cytoplasmic localization of SPHK1 depends on its nuclear export, directed by the NES. Furthermore, upon treatment with leptomycin B, a specific inhibitor of the nuclear export receptor CRM1, a marked nuclear accumulation of hSPHK1 was observed, indicating that hSPHK1 shuttles between the cytoplasm and the nucleus. Our results provide the first evidence of the active nuclear export of SPHK1 and suggest it is mediated by a CRM1-dependent pathway.  相似文献   

14.
15.
Leptomycin B (LMB) is aStreptomycesmetabolite that inhibits nuclear export of the human immunodeficiency virus type 1 regulatory protein Rev at low nanomolar concentrations. Recently, LMB was shown to inhibit the function of CRM1, a receptor for the nuclear export signal (NES). Here we show evidence that LMB binds directly to CRM1 and that CRM1 is essential for NES-dependent nuclear export of proteins in both yeast and mammalian cells. Binding experiments with a biotinylated derivative of LMB and a HeLa cell extract led to identifying CRM1 as a major protein that bound to the LMB derivative. Microinjection of a purified anti-human CRM1 antibody into the mammalian nucleus specifically inhibited nuclear export of NES-containing proteins, as did LMB. Consistent with this, CRM1 was found to interact with NES, when assayed with immobilized NES and HeLa cell extracts. This association was disrupted by adding LMB or purified anti-human CRM1 antibody. The inhibition of CRM1 by LMB was also observed in fission yeast. The fission yeastcrm1mutant was defective in the nuclear export of NES-fused proteins, but not in the import of nuclear localization signal (NLS)-fused proteins. Interestingly, a protein containing both NES and NLS, which is expected to shuttle between nucleus and cytoplasm, was highly accumulated in the nucleus of thecrm1mutant cells or of cells treated with LMB. These results strongly suggest that CRM1 is the target of LMB and is an essential factor for nuclear export of proteins in eukaryotes.  相似文献   

16.
The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, regulates the hypertonicity-induced expression of a battery of genes crucial for the adaptation of mammalian cells to extracellular hypertonic stress. The activity of OREBP/TonEBP is regulated at multiple levels, including nucleocytoplasmic trafficking. OREBP/TonEBP protein can be detected in both the cytoplasm and nucleus under isotonic conditions, although it accumulates exclusively in the nucleus or cytoplasm when subjected to hypertonic or hypotonic challenges, respectively. Using immunocytochemistry and green fluorescent protein fusions, the protein domains that determine its subcellular localization were identified and characterized. We found that OREBP/TonEBP nuclear import is regulated by a nuclear localization signal. However, under isotonic conditions, nuclear export of OREBP/TonEBP is mediated by a CRM1-dependent, leucine-rich canonical nuclear export sequence (NES) located in the N terminus. Disruption of NES by site-directed mutagenesis yielded a mutant OREBP/TonEBP protein that accumulated in the nucleus under isotonic conditions but remained a target for hypotonicity-induced nuclear export. More importantly, a putative auxiliary export domain distal to the NES was identified. Disruption of the auxiliary export domain alone is sufficient to abolish the nuclear export of OREBP/TonEBP induced by hypotonicity. By using bimolecular fluorescence complementation assay, we showed that CRM1 interacts with OREBP/TonEBP, but not with a mutant protein deficient in NES. Our findings provide insight into how nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by changes in extracellular tonicity.  相似文献   

17.
18.
The NS2 (NEP) protein of influenza A virus contains a highly conserved nuclear export signal (NES) motif in its amino-terminal region (12ILMRMSKMQL21, A/WSN/33), which is thought to be required for nuclear export of viral ribonucleoprotein complexes (vRNPs) mediated by a cellular export factor, CRM1. However, simultaneous replacement of three hydrophobic residues in the NES with alanine does not affect NS2 (NEP) binding to CRM1, although the virus with these mutations is not viable. To determine the extent of sequence conservation required by the NS2 (NEP) NES for its export function during viral replication, we randomly introduced mutations by degenerative mutagenesis into the region of NS cDNA encoding the NS2 (NEP) NES and then attempted to generate mutant viruses containing these alterations by reverse genetics. Sequence analysis of the recovered viruses showed that although some of the mutants possessed amino acids other than those conserved in the NES, hydrophobicity within this motif was maintained. Nuclear export of vRNPs representing all of the mutant viruses was completely inhibited in the presence of a CRM1 inhibitor, leptomycin B, as was the transport of wild-type virus, indicating that the CRM1-mediated pathway is responsible for the nuclear export of both wild-type and mutant vRNPs. The vRNPs of some of the mutant viruses were exported in a delayed manner, resulting in limited viral growth in cell culture and in mice. These results suggest that the NES motif may be an attractive target for the introduction of attenuating mutations in the production of live vaccine viruses.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号