首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prothrombin denaturation was examined in the presence of Na2EDTA, 5mM CaCl2, and CaCl2 plus membranes containing 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC) in combination with either bovine brain phosphatidylserine (PS) or 1,2-dioleoyl-phosphatidylglycerol (DOPG). Heating denaturation of prothrombin produced thermograms showing two peaks, a minor one at approximately 59 degrees C previously reported to correspond to denaturation of the fragment 1 region (Ploplis, V. A., D. K. Strickland, and F. J. Castellino 1981. Biochemistry. 20:15-21), and a main one at approximately 57-58 degrees C, reportedly due to denaturation of the rest of the molecule (prethrombin 1). The main peak was insensitive to the presence of 5mM Ca2+ whereas the minor peak was shifted to higher temperature (Tm approximately 65 degrees C) by Ca2+. Sufficient concentrations of POPC/bovPS (75/25) large unilamellar vesicles to guarantee binding of 95% of prothrombin resulted in an enthalpy loss in the main endotherm and a comparable enthalpy gain in the minor endotherm accompanying an upward shift in peak temperature (Tm approximately 73 degrees C). Peak deconvolution analysis on the prothrombin denaturation profile and comparison with isolated prothrombin fragment 1 denaturation endotherms suggested that the change caused by POPC/PS vesicles reflected a shift of a portion of the enthalpy of the prethrombin 1 domain to higher temperature (Tm approximately 77 degrees C). The enthalpy associated with this high-temperature endotherm increased in proportion to the surface concentration of PS. By contrast, POPC/DOPG (50/50) membranes shifted the prethrombin 1 peak by 4 degrees C to a lower temperature and the fragment 1 peak by 5 degrees C to a higher temperature. The data lead to a hypothesis that the fragment 1 and prethrombin 1 domains of prothrombin do not denature quite independently and that binding of prothrombin to acidic-lipid membranes disrupts the interaction between these domains. It is further hypothesized that PS containing membranes exert the additional specific effect of decoupling the denaturation of two subdomains of the prethrombin 1 domain of prothrombin.  相似文献   

2.
Thermal denaturation of natural DNA in the absence and presence of antitumor anthracycline antibiotics has been studied by adiabatic differential scanning calorimetry. The helix-coil transition is operationally irreversible as measured by DSC. Both the melting temperature and the overall molar transition enthalpy of the DNA samples was dependent on the percentage of GC base pairs. Calorimetric traces of anthracycline-DNA complexes have qualitatively similar features and the significance of this characteristic is discussed. The unsaturated drug-DNA complex melts through complex thermal transitions with one broad endotherm in the same temperature region as free DNA and the other at a higher temperature which is rf (mol ligand per mol DNA in base pairs) value dependent. Antibiotic binding at concentrations close to saturating conditions (rf = 0.2) reverts the melting range to a value near to its original one and increases the thermal stability of the duplex structure by around 30 degrees C. In addition, the calorimetric enthalpy is increased by between 64% and 150%, depending on which ligand was used.  相似文献   

3.
Thermal stabilization resulting from protein . protein association between two protein inhibitors (coded as 0.19, a dimer, and 0.28, a monomer) from wheat flour and the alpha-amylase from Tenebrio molitor L. (yellow mealworm) larvae was investigated by differential scanning calorimetry (heating rate 10 degrees C/min). Thermograms (plots of heat flow vs. temperature) for the two inhibitors showed broad endothermic peaks with the same extrema (denaturation temperatures) at 93 degrees C, and equal, small enthalpies of denaturation (2 cal/g). The amylase produced a sharp endotherm at 70.5 degrees C, but a larger enthalpy change on denaturation (6 cal/g). The amylase . inhibitor complexes differed in thermal stability, but both showed significant stabilization relative to free enzyme. The complex formed with monomeric inhibitor 0.28 showed a higher denaturation temperature (85.0 degrees C) than that formed with dimeric inhibitor 0.19 (80.5 degrees C). This order of stabilization agrees with the relative affinities of the inhibitors for the amylase. These thermograms are consistent with previous results which indicated that 1 mol of amylase binds 1 mol of inhibitor 0.19.  相似文献   

4.
Differential scanning calorimetry (DSC) was used to assay thermal transitions that might be responsible for cell death and other responses to hyperthermia or heat shock, such as induction of heat shock proteins (HSP), in whole Chinese hamster lung V79 cells. Seven distinct peaks, six of which are irreversible, with transition temperatures from 49.5 degrees C to 98.9 degrees C are detectable. These primarily represent protein denaturation with minor contributions from DNA and RNA melting. The onset temperature of denaturation, 38.7 degrees C, is shifted to higher temperatures by prior heat shock at 43 degrees and 45 degrees C, indicative of irreversible denaturation occurring at these temperatures. Thus, using DSC it is possible to demonstrate significant denaturation in a mammalian cell line at temperatures and times of exposure sufficient to induce hyperthermic damage and HSP synthesis. A model was developed based on the assumption that the rate limiting step of hyperthermic cell killing is the denaturation of a critical target. A transition temperature of 46.3 degrees C is predicted for the critical target in V79 cells. No distinct transition is detectable by DSC at this temperature, implying that the critical target comprises a small fraction of total denaturable material. The short chain alcohols methanol, ethanol, isopropanol, and t-butanol are known hyperthermic sensitizers and ethanol is an inducer of HSP synthesis. These compounds non-specifically lower the denaturation temperature of cellular protein. Glycerol, a hyperthermic protector, non-specifically raises the denaturation temperature for proteins denaturing below 60 degrees C. Thus, there is a correlation between the effect of these compounds on protein denaturation in vivo and their effect on cellular sensitivity to hyperthermia.  相似文献   

5.
The DNA of aseptically grown protocorms of a Cymbidium hybrid and in vitro developed leaves, as well as DNA of leaves and flower buds of Cymbidium ceres from the greenhouse, was analysed by analytical ultracentrifugation and thermal denaturation. Upon ultracentrifugation a satellite DNA with a buoyant density of 1.682 g/cm-3 appears as a shoulder on the main band (density 1.694 g/cm-3). Thermal denaturation reveals an inhomogeneous main peak with the major component melting at 84 degrees C and a separate peak melting at 75 degrees C. This is the first demonstration of a satellite DNA in a monocot, and one of the rare examples of a major A + T-rich DNA fraction in a plant.  相似文献   

6.
Inter- and intra-subunit bonding within the surface lattice of the capsid of bacteriophage T4 has been investigated by differential scanning calorimetry of polyheads, in conjunction with electron microscopy, limited proteolysis and sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The bonding changes corresponding to successive stages of assembly of the major capsid protein gp23, including its maturation cleavage, were similarly characterized. The uncleaved/unexpanded surface lattice exhibits two endothermic transitions. The minor event, at 46 degrees C, does not visibly affect the surface lattice morphology and probably represents denaturation of the N-terminal domain of gp23. The major endotherm, at 65 degrees C, represents denaturation of the gp23 polymers. Soluble gp23 from dissociated polyheads is extremely unstable and exhibits no endotherm. Cleavage of gp23 to gp23* and the ensuing expansion transformation effects a major stabilization of the surface lattice of polyheads, with single endotherms whose melting temperatures (t*m) range from 73 to 81 degrees C, depending upon the mutant used and the fraction of gp23 that is cleaved to gp23* prior to expansion. Binding of the accessory proteins soc and hoc further modulates the thermograms of cleaved/expanded polyheads, and their effects are additive. hoc binding confers a new minor endotherm at 68 degrees C corresponding to at least partial denaturation of hoc. Denatured hoc nevertheless remains associated with the surface lattice, although in an altered, protease-sensitive state which correlates with delocalization of hoc subunits visualized in filtered images. While hoc binding has little effect on the thermal stability of the gp23* matrix, soc binding further stabilizes the surface lattice (delta Hd approximately +50%; delta t*m = +5.5 degrees C). It is remarkable that in all states of the surface lattice, the inter- and intra-subunit bonding configurations of gp23 appear to be co-ordinated to be of similar thermal stability. Thermodynamically, the expansion transformation is characterized by delta H much less than 0; delta Cp approximately 0, suggesting enhancement of van der Waals' and/or H-bonding interactions, together with an increased exposure to solvent of hydrophobic residues of gp23* in the expanded state. These findings illuminate hypotheses of capsid assembly based on conformational properties of gp23: inter alia, they indicate a role for the N-terminal portion of gp23 in regulating polymerization, and force a reappraisal of models of capsid swelling based on the swivelling of conserved domains.  相似文献   

7.
It was shown that eight stages of transition are observed in the heating process of Spirulina platensis cells in temperature range 5-140 degrees C. The first stage covers the temperature range 5-53 degrees C with maximum approximately 45 degrees C. The heat evolved in this temperature range is equal to 380 +/- 20 J/g of dry biomass, it does not change at scanning rate lower than 0.083 degrees C/min and belongs, mainly, to cell respiration in a stationary regime, in the dark. It was shown that endotherm approximately 66 degrees C belongs to denaturation of C-phycocyanin which denaturates in solutions with Td = 64.2 degrees C, deltaHd = 34.7 +/- 2.1 J/g and for it deltaHd(cal)/deltaH(V.H) is equal to 10.8 +/- 1.2. The endotherms with Td equal to 58 and 88 degrees C are connected with denaturation of phycobilisome proteins and endotherm with Td = 48 degrees C and deltaHd = 4.2J/g of dry biomass-with denaturation of protein which, apparently, is connected with cell respiration.  相似文献   

8.
Ivanov IT  Tsokeva Z 《Chirality》2009,21(8):719-727
We report on the thermal behavior of freshly prepared binary drug/polymer physical mixtures that contained ibuprofen, ketoprofen, or naproxen as a drug, and polyvinylpyrrolidone (PVP), hydroxyethylcellulose (HEC), or methylcellulose (MC) as excipient. At 6-10 degrees C/min heating rates the DSC detected a sharp, single endotherm that corresponds to the melting of drug. On heating physical mixtures of PVP and racemic ibuprofen or ketoprofen at lower heating rates, another endotherm was registered in front of the original one. To observe the additional endotherm, specific minimal values of the heating rate and of PVP weight fraction were needed; for ibuprofen and ketoprofen they were 1.5 and 2.0 degrees C/min, and 5 and 15% (w/w), respectively. At greater PVP weight fractions the top temperatures, T(mp), of both peaks were reduced almost linearly indicating strong solid-state interfacial reaction between the drug particles and PVP matrix. The additional endotherm was abolished at greater heating rates (2 degrees C/min for ibuprofen, 3 degrees C/min for ketoprofen), by replacing the racemate with respective S+-enantiomer and by replacing PVP with HEC and MC. Hence, the possible inclusion of enantioselective component within the PVP/drug interaction, responsible for the amorphization of physical mixture over storage, is assumed.  相似文献   

9.
Hyperchromicity measurements are well established to analyse the thermal denaturation behaviour of pure DNA sequences in solution. Here, we show that under appropriate experimental conditions this technique can also be applied to study thermally controlled conformation changes of higher order DNA-protein complexes as for instance metaphase chromosome preparations in suspension. A computer controlled sensitive, upright double beam photometer with a heatable cuvette was constructed. Measurements of the temperature dependent extinction of both, solutions and particle suspensions are possible, since sedimentation effects of particles can be neglected due to the vertical optical axis in the probe cuvette. Thermal denaturation of metaphase chromosome preparations of human and Chinese hamster cells was investigated and compared to melting profiles of DNA solutions for two excitation wavelengths, 256 and 313 nm. The influence of neutral and low pH was considered. The results indicate that metaphase chromosome preparations show a thermal denaturation behaviour different from pure DNA. Whereas DNA solutions showed one pH dependent melting peak at 256 nm only, the peak pattern of metaphase chromosome preparations showed a large variability both at 256 and 313 nm. At neutral pH, in two temperature regions (40-55 degrees C and 75-82 degrees C) peaks were found indicating chromosome typical conformation changes independently from the mammalian cell species (Chinese hamster, human). In contrast to pure DNA, no typical reduction in the temperatures of peak maxima with decreasing pH was found for metaphase chromosome preparations of both cell types. These results may be relevant for further systematic studies of efficient thermal probe/target denaturation procedures in non enzymatic DNA-chromosome in situ hybridisation.  相似文献   

10.
A DNA fraction comprising 6% of total DNA and containing readily-melting regions is isolated from phage T2 DNA using preparative chromatography on MAK columns at T congruent to T m--3 degrees C. Two denaturation regions, differing in the stability for 7 degrees, were observed on this DNA melting curve. A sharp increase of the reassociation rate at initial moments under reassociation temperatures T r approximately less than m --25 degrees C was observed. Thermodynamic characteristics obtained under the repeated melting of DNA fragments after reassociation confirm the fact, that under these reassociation temperatures the incorporation of readily-melting regions into spiral duplexes takes place.  相似文献   

11.
Heat denaturation of native phages SD suspensions, phage "shadows", and isolated phage DNA solutions were studied by scanning microcalorimetry and viscosimetry. Energetic parameters of cooperative transitions of protein fraction and DNA were measured. DNA melting was shown to be preceded by the destruction of capsid and protein denaturation. The melting curve of isolated DNA and DNA in the presence of protein component is characterized by a fine structure which is completely restored at repeated denaturation only in the presence of the protein component. "Creeping" of DNA out of the capsid in heated suspensions at 50-52 degrees C was shown to proceed with "zero" enthalpy without significant endo- and exo-thermal effects. No change of specific heat capacity of the suspension was also observed. It is emphasized that the mechanism of DNA going out of the capsid can be understood by studying DNA hydration inside the phage and its change in the course of liberation of the phage genome from the protein capsid.  相似文献   

12.
The thermal denaturation of aspartate transcarbamoylas of Escherichia coli was investigated by differential scanning calorimetry. Isolated regulatory and catalytic subunits were heat denatured at 55 and 80 degrees C, respectively. In contrast, the intact enzyme was denatured in two steps. A small endotherm near 73 degrees C was assoicated with denaturation of the regulatory subunits and the major endotherm at 82 degrees C with denaturation of the catalytic subunits. Thus regulatory subunits are stabilized against heat denaturation by more than 17 degrees C when incorporated in the enzyme. Similar conclusions were obtained from measurements of the enthalpy of heat denaturation. Regulatory subunits yielded a much lower value of the enthalpy of denaturation, 1.91 cal/g, than that found for the catalytic subunit, 3.94 cal/g, or typical globular proteins (4 to 6 cal/g). When the regulatory subunits were incorporated into aspartate transcarbamoylase their enthalpy of denaturation was increased 125% (to 4.3 cal/g). The enthalpy of the catalytic subunits in the intact enzyme was increased 38% (enthalpy of denaturation of 5.43 cal/g). Stabilization of the isolated catalytic subunit as well as the intact enzyme was achieved by the addition of the bisubstrate analog N-(phosphonacetyl)-L-aspartate. Similarly the allosteric effectors, CTP and ATP, stabilized the isolated regulatory subunits or those subunits within the intact enzyme. However, the addition of the bisubstrate analog caused a decrease in the enthalpy of denaturation of the regulatory subunits within the enzyme. These results are consistent with other studies of the ligand-promoted conformational changes in the native enzyme.  相似文献   

13.
The melting transition for closed, underwound DNAs and for nicked or linear DNAs was monitored by velocity sedimentation and by absorbance spectroscopy in aqueous NaCCl3CO2 (NaTCA) and RbTCA. The addition of neutral trichloroacetate lowers the midpoint of the helix-coil transition by 26% C/M for RbTCA and by 32% C/M for NaTCA, depressing the denaturation region to near room temperature at neutral pH. The melting of nicked DNA is cooperative, occurring over a temperature range of about 5.6 degrees C. The melting profile for closed DNA is broad and noncooperative with a transition breadth greater than 45 degrees. Closed DNAs undergo a structural alteration, as revealed by velocity sedimentation, resulting in a reduction in the number of superhelical turns at temperatures and salt concentrations substantially below the melting temperatures and salt concentrations substantially below the melting temperature of the nicked DNA. The reduction in the extent of supercoiling continues upon isothermal addition of salt up to the salt concentration at which all superhelical turns are removed. The salt concentration at the principal minimum in the sedimentation velocity profile (3.16 M NaTCA for PM-2 DNA) is approximately the same as that at the midpoint of the helix-coil transition for the nicked DNA.  相似文献   

14.
Thermal denaturation of nucleosomal core particles.   总被引:32,自引:18,他引:14       下载免费PDF全文
Thermal denaturation of very homogeneous preparations of core particles from chicken erythrocyte chromatin is studied by several techniques. The change in absorbance, which is very closely paralleled by changes in heat capacity, which is very closely paralleled by changes in heat capacity, is a biphasic process with inflexions at 60 degrees C and 74 degrees C. In contrast, isolated DNA of the same length denatures in a single transition around 44 degrees C. Monitoring the circular dichroism of the cores during thermal denaturation reveals biphasic changes in the secondary structure of the DNA, preceding the base unstacking by 10 degrees C in the first and 3 degrees C in the second phase. However, measurable alterations in the secondary structure of the histones are confined to the second phase with a melting temperature at 71 degrees C. Increase in the ionic strength of the buffer from 1 mM to 10 mM leads to almost monophasic melting curves as measured by absorbance and CD, while not causing any measurable conformational changes at room temperature. The melting of core particles is interpreted as a denaturation of about 40 base pairs in the first phase, followed by a massive breakdown of the native structure of a tight histone-DNA complex, which frees the remaining 100 base pairs for unstacking.  相似文献   

15.
Fibronectin domain structure, as influenced by interaction with heparin, calcium, or chondroitin sulfate C, was analyzed by differential scanning calorimetry. A complex thermal denaturation transition was observed with a large sharp endotherm at 63 degrees C, a broad endotherm between 70 and 80 degrees C, and an exotherm at 80-90 degrees C. Analysis of the denaturation profiles revealed the existence of four thermal transitions, 59.1, 62.2, 67.3, and 74.3 degrees C, and an exotherm at 83.9 degrees C. The calorimetric enthalpies of the four endotherms are 1146 +/- 259, 866 +/- 175, 1010 +/- 361, and 676 +/- 200 kcal/mol, respectively. In all cases, the calorimetric to van't Hoff enthalpy ratio was greater than 1.0. Computer analysis of the primary structure of fibronectin revealed 29 +/- 8% homology among the type I homology units and 28 +/- 7% homology among type III homology units, suggesting that different structural domains could arise from the same homology type. This may explain why more thermal transitions are observed for fibronectin than there are homology types. Addition of heparin to fibronectin in varying molar ratios, i.e., 10:1 to 30:1, resulted in a larger calorimetric enthalpy for the first type of structural domain (Tm = 59.1 degrees C) of fibronectin. At higher heparin to fibronectin ratios (40:1 or 75:1), the enthalpy of this domain decreased, while the others remained unchanged. In the presence of 5 mM calcium chloride, fibronectin thermal denaturation occurred at lower temperatures and was associated with precipitation of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Thermal transitions were measured by differential scanning calorimetry for rabbit cardiac sarcolemma in 3-(N-morpholino)propanesulfonic acid buffer at pH 7.5, in glycerol-buffer and dimethyl sulfoxide - buffer mixtures, after heat denaturation, and after enzymatic degradation of the proteins. Specific solvent effects on the protein transitions were observed. Glycerol stabilized some of the four protein transitions, while dimethyl sulfoxide destabilized all protein transitions. The thermal transitions in the lower temperature range were studied for both the membranes and the lipid extracted from the membranes. A very small endotherm was observed for both the lipid extracted from the sarcolemma and the intact membrane (0.1-0.2 cal/g; 1 cal = 4.1868 J). A larger endotherm was observed in both the glycerol-buffer and dimethyl sulfoxide - buffer mixtures. Major perturbation of the protein by enzymatic degradation (papain or trypsin digestion), by heat denaturation, or by reaction with excess N-ethylmaleimide all produced larger endotherms near 20 degrees C. The very small magnitude of the endotherm near 20 degrees C suggests that it is not a typical gel - liquid crystalline transition of the bilayer. However, the occurrence of an endotherm in the extracted lipid suggests that some reorientation of lipid is involved.  相似文献   

17.
An ATP-dependent DNase has been purified from Thermus thermophilus HB8 by a procedure involving streptomycin precipitation, DEAE-cellulose chromatography, Sephadex G-200 gel filtration and heparin-agarose affinity chromatography. ATP-dependent DNase activity was separated into two distinct peaks, Peak A and Peak B, by heparin-agarose affinity chromatography. Each peak fraction was further purified by ATP-agarose affinity chromatography. Peak A and Peak B were eluted from an ATP-agarose column at 0.14 M and 0.28 M KCl, respectively, each as a single peak. Both enzyme activities require ATP and Mg2+ for the degradation of double- and single-stranded DNAs, and degrade denatured DNA about 1.5 times faster than native DNA. The two peaks are optimally active at 69 degrees C and have similar optimal pH ranges from 8.2 to 9.2. The two purified peaks were unstable on storage at -20 degrees C, but were remarkably stabilized by addition of 0.4 mg/ml bovine serum albumin. Ammonium sulfate strongly inhibits the activities of both peaks. The molecular weights of Peak A and Peak B are about 170,000 as estimated by glycerol gradient sedimentation. The average chain lengths of denatured DNA produced by Peak A and Peak B were 4.2 and 3.6, respectively, and the products were terminated by 5'-phosphoryl and 3'-hydroxyl groups. The limit-digested products of denatured DNA produced by Peak B consist of mono-, di-, tri-, tetra-, and pentanucleotides along with some larger fragments. The mode of action of both activities is processive and Peak A does not attack double-stranded circular DNA.  相似文献   

18.
The thermal denaturation of the hemocyanin from gastropod Rapana thomasiana (RtH) at neutral pH was studied by means of differential scanning calorimetry (DSC). The denaturation was completely irreversible as judged by the absence of any endotherm on rescanning of previously scanned samples. Two transitions, with apparent transition temperatures (T(m)) at 83 and 90 degrees C, were detected by DSC using buffer 20 mM MOPS, containing 0.1 M NaCl, 5 mM CaCl(2) and 5 mM MgCl(2), pH 7.2. Both T(m) were dependent on the scanning rate, suggesting that the thermal denaturation of RtH is a kinetically controlled process. The activation energy (E(A)) of 597+/-20 kJ mol(-1) was determined for the main transition (at 83 degrees C). E(A) for the second transition was 615+/-25 kJ mol(-1). The T(m) and Delta H(cal) values for the thermal denaturation of RtH were found to be independent of the protein concentration, signifying that the dissociation of the protein into monomers does not take place before the rate-determining state of the process of thermal unfolding.  相似文献   

19.
gp32 I is a protein with a molecular weight of 27 000. It is obtained by limited hydrolysis of T4 gene 32 coded protein, which is one of the DNA melting proteins. gp32 I itself appears to be also a melting protein. It denatures poly[d(A-T)].poly[d(A-T)] and T4 DNA at temperatures far (50-60 degrees C) below their regular melting temperatures. Under similar conditions gp32 I will denature poly[d(A-T).poly[d(A-T)] at temperatures approximately 12 degrees C lower than those measured for the intact gp32 denaturation. For T4 DNA gp32 shows no melting behavior while gp32 I shows considerable denaturation (i.e., hyperchromicity) even at 1 degree C. In this paper the denaturation of poly[d(A-T)].poly[d(A-T)] and T4 DNA by gp32 I is studied by means of circular dichroism. It appears that gp32 I forms a complex with poly[d(A-T)]. The conformation of the polynucleotide in the complex is equal to that of one strand of the double-stranded polymer in 6 M LiCl. In the gp32 I DNA complex formed upon denaturation of T4 DNA, the single-stranded DNA molecule has the same conformation as one strand of the double-strand T4 DNA molecule in the C-DNA conformation.  相似文献   

20.
We present a detailed thermodynamic investigation of the conformational transitions of chromatin in calf thymus nuclei. Differential scanning calorimetry was used as the leading method, in combination with infrared spectroscopy, electron microscopy, and techniques for the molecular characterization of chromatin components. The conformational transitions were induced by changes in the counterion concentration. In this way, it was possible to discriminate between the interactions responsible for the folding of the higher order structure and for the coiling of nucleosomal DNA. Our experiments confirm that the denaturation of nuclear chromatin at physiological ionic strength occurs at the level of discrete structural domains, the linker and the core particle, and we were able to rule out that the actual denaturation pattern might be determined by dissociation of the nucleohistone complex and successive migration of free histones toward native regions, as recently suggested. The sequence of the denaturation events is (1) the conformational change of the histone complement at 66 degrees C, (2) the unstacking of the linker DNA at 74 degrees C, and (3) the unstacking of the core particle DNA, that can be observed either at 90 or at 107 degrees C, depending on the degree of condensation of chromatin. Nuclear chromatin unfolds in low-salt buffers, and can be refolded by increasing the ionic strength, in accordance with the well-known behavior of short fragments. The process is athermal, therefore showing that the stability of the higher order structure depends on electrostatic interactions. The transition between the folded conformation and the unfolded one proceeds through an intermediate condensation state, revealed by an endotherm at 101 degrees C. The analysis of the thermodynamic parameters of denaturation of the polynucleosomal chain demonstrates that the wrapping of the DNA around the histone octamer involves a large energy change. The most striking observation concerns the linker segment, which melts a few degrees below the peak temperature of naked DNA. This finding is in line with previous thermal denaturation investigations on isolated chromatin at low ionic strength, and suggests that a progressive destabilization of the linker occurs in the course of the salt-induced coiling of DNA in the nucleosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号