首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
TBX20 gain-of-function mutations in humans are associated with congenital heart malformations and myocardial defects. However the effects of increased Tbx20 function during cardiac chamber development and maturation have not been reported previously. CAG-CAT-Tbx20 transgenic mice were generated for Cre-dependent induction of Tbx20 in myocardial lineages in the developing heart. βMHCCre-mediated overexpression of Tbx20 in fetal ventricular cardiomyocytes results in increased thickness of compact myocardium, induction of cardiomyocyte proliferation, and increased expression of Bmp10 and pSmad1/5/8 at embryonic day (E) 14.5. βMHCCre-mediated Tbx20 overexpression also leads to increased expression of cardiac conduction system (CCS) genes Tbx5, Cx40, and Cx43 throughout the ventricular myocardium. In contrast, Nkx2.5Cre mediated overexpression of Tbx20 in the embryonic heart results in reduced cardiomyocyte proliferation, increased expression of a cell cycle inhibitor, p21(CIP1), and decreased expression of Tbx2, Tbx5, and N-myc1 at E9.5, concomitant with decreased phospho-ERK1/2 expression. Together, these analyses demonstrate that Tbx20 differentially regulates cell proliferation and cardiac lineage specification in embryonic versus fetal cardiomyocytes. Induction of pSmad1/5/8 at E14.5 and inhibition of dpERK expression at E9.5 are consistent with selective Tbx20 regulation of these pathways in association with stage-specific effects on cardiomyocyte proliferation. Together, these in vivo data support distinct functions for Tbx20 in regulation of cardiomyocyte lineage maturation and cell proliferation at embryonic and fetal stages of heart development.  相似文献   

17.
18.
19.
20.
BMP2 is required for early heart development during a distinct time period   总被引:16,自引:0,他引:16  
BMP2, like its Drosophila homologue dpp, is an important signaling molecule for specification of cardiogenic mesoderm in vertebrates. Here, we analyzed the time-course of BMP2-requirement for early heart formation in whole chick embryos and in explants of antero-lateral plate mesoderm. Addition of Noggin to explants isolated at stage 4 and cultured for 24 h resulted in loss of NKX2.5, GATA4, eHAND, Mef2A and vMHC expression. At stages 5-8 the individual genes showed differential sensitivity to Noggin addition. While expression of eHAND, NKX2.5 and Mef2A was clearly reduced by Noggin vMHC was only marginally affected. In contrast, GATA4 expression was enhanced after Noggin treatment. The developmental period during which cardiac mesoderm required the presence of BMP signaling in vivo was assessed by implantation of Noggin expressing cells into stage 4-8 embryos which were then cultured until stage 10-11. Complete loss of NKX2.5 and eHAND expression was observed in embryos implanted at stages 4-6, and expression was still suppressed in stages 7 and 8 implanted embryos. GATA4 expression was also blocked by Noggin at stage 4, however increased at stages 5, 6 and 7. Explants of central mesendoderm, that normally do not form heart tissue were employed to study the time-course of BMP2-induced cardiac gene expression. The induction of cardiac lineage markers in central mesendoderm of stage 5 embryos was distinct for different genes. While GATA4, -5, -6 and MEF2A were induced to maximal levels within 6 h after BMP2 addition, eHAND and dHAND required 12 h to reach maximum levels of expression. NKX2.5 was induced by 6 h and accumulated over 48 h. vMHC and titin were induced at significant levels only after 48 h of BMP2 addition. These results indicate that cardiac marker genes display distinct expression kinetics after BMP2 addition and differential response to Noggin treatment suggesting complex regulation of myocardial gene expression in the early tubular heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号