首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
UVA exposure plays an important role in the etiology of skin cancer. The family of p90-kDa ribosomal S6 kinases (p90(RSK)/MAPKAP-K1) are activated via phosphorylation. In this study, results show that UVA-induced phosphorylation of p90(RSK) at Ser(381) through ERKs and JNKs, but not p38 kinase pathways. We provide evidence that UVA-induced p90(RSK) phosphorylation and kinase activity were time- and dose-dependent. Both PD98059 and a dominant negative mutant of ERK2 blocked ERKs and p90(RSK) Ser(381) phosphorylation, as well as p90(RSK) activity. A dominant negative mutant of p38 kinase blocked UVA-induced phosphorylation of p38 kinase, but had no effect on UVA-induced Ser(381) phosphorylation of p90(RSK) or kinase activity. UVA-induced p90(RSK) phosphorylation and kinase activity were markedly attenuated in JnK1(-/-) and JnK2(-/-) cells. A dominant negative mutant of JNK1 inhibited UVA-induced JNKs and p90(RSK) phosphorylation and kinase activity, but had no effect on ERKs phosphorylation. PD169316, a novel inhibitor of JNKs and p38 kinase, inhibited phosphorylation of p90(RSK), JNKs, and p38 kinase, but not ERKs. However, SB202190, a selective inhibitor of p38 kinase, had no effect on p90(RSK) or JNKs phosphorylation. Significantly, ERKs and JNKs, but not p38 kinase, immunoprecipitated with p90(RSK) when stimulated by UVA and p90(RSK) was a substrate for ERK2 and JNK2, but not p38 kinase. These data indicate clearly that p90(RSK) Ser(381) may be phosphorylated by activation of JNKs or ERKs, but not p38 kinase.  相似文献   

2.
In addition to their role in many vital cellular functions, arachidonic acid (AA) and its eicosanoid metabolites are involved in the pathogenesis of several diseases, including atherosclerosis and cancer. To understand the potential mechanisms by which these lipid molecules could influence the disease processes, particularly cardiovascular diseases, we studied AA's effects on vascular smooth muscle cell (VSMC) motility and the role of cAMP-response element binding protein-1 (CREB-1) in this process. AA exerted differential effects on VSMC motility; at lower doses, it stimulated motility, whereas at higher doses, it was inhibitory. AA-induced VSMC motility requires its conversion via the lipoxygenase (LOX) and cyclooxygenase (COX) pathways. AA stimulated the phosphorylation of extracellular signal-regulated kinases (ERKs), Jun N-terminal kinases (JNKs), and p38 mitogen-activated protein kinase (p38MAPK) in a time-dependent manner, and blockade of these serine/threonine kinases significantly attenuated AA-induced VSMC motility. In addition, AA stimulated CREB-1 phosphorylation and activity in a manner that was also dependent on its metabolic conversion via the LOX and COX pathways and the activation of ERKs and p38MAPK but not JNKs. Furthermore, suppression of CREB-1 activation inhibited AA-induced VSMC motility. 15(S)-Hydroxyeicosatetraenoic acid and prostaglandin F2alpha, the 15-LOX and COX metabolites of AA, respectively, that are produced by VSMC at lower doses, were also found to stimulate motility in these cells. Together, these results suggest that AA induces VSMC motility by complex mechanisms involving its metabolism via the LOX and COX pathways as well as the ERK- and p38MAPK-dependent and JNK-independent activation of CREB-1.  相似文献   

3.
Exposure of vascular smooth muscle cells to arginine vasopressin (AVP) increases smooth muscle alpha-actin (SM-alpha-actin) expression through activation of the SM- alpha-actin promoter. The goal of this study was to determine the role of the mitogen-activated protein kinase (MAP kinase) family in regulation of SM-alpha-actin expression. AVP activated all three MAP kinase family members: ERKs, JNKs, and p38 MAP kinase. Inhibition of JNKs or p38 decreased AVP-stimulated SM-alpha-actin promoter activity, whereas inhibition of ERKs had no effect. A 150-base pair region of the promoter containing two CArG boxes was sufficient to mediate regulation by vasoconstrictors. Mutations in either CArG box decreased AVP-stimulated promoter activity. Electrophoretic mobility shift assays using oligonucleotides corresponding to either CArG box resulted in a complex of similar mobility whose intensity was increased by AVP. Antibodies against serum response factor (SRF) completely super-shifted this complex, indicating that SRF binds to both CArG boxes. Overexpression of SRF increased basal promoter activity, but activity was still stimulated by AVP. AVP stimulation rapidly increased SRF phosphorylation. These data indicate that both JNKs and p38 participate in regulation of SM- alpha-actin expression. SRF, which binds to two critical CArG boxes in the promoter, represents a potential target of these kinases.  相似文献   

4.
The Bcl-2 family member Bad is a pro-apoptotic protein, and phosphorylation of Bad by cytokines and growth factors promotes cell survival in many cell types. Induction of apoptosis by UV radiation is well documented. However, little is known about UV activation of cell survival pathways. Here, we demonstrate that UVB induces Bad phosphorylation at serine 112 in JNK1, RSK2, and MSK1-dependent pathways. Inhibition of mitogen-activated protein (MAP) kinases including ERKs, JNKs, and p38 kinase by the use of their respective dominant negative mutant or a specific inhibitor for MEK1 or p38 kinase, PD98059 or SB202190, resulted in abrogation of UVB-induced phosphorylation of Bad at serine 112. Incubation of active MAP kinase members with Bad protein showed serine 112 phosphorylation of Bad by JNK1 only. However, activated RSK2 and MSK1, downstream kinases of ERKs and p38 kinase, respectively, also phosphorylated Bad at serine 112 in vitro. Cells from a Coffin-Lowry syndrome patient (deficient in RSK2) or expressing an N-terminal or C-terminal kinase-dead mutant of MSK1 were defective for UVB-induced serine 112 phosphorylation of Bad. Furthermore, MAP kinase pathway-dependent serine 112 phosphorylation was shown to be required for dissociation of Bad from Bcl-X(L). These data illustrated that UVB-induced phosphorylation of Bad at serine 112 was mediated through MAP kinase signaling pathways in which JNK1, RSK2, and MSK1 served as direct mediators.  相似文献   

5.
The mitogen-activated protein (MAP) kinases are essential signaling molecules that mediate many cellular effects of growth factors, cytokines, and stress stimuli. Full activation of the MAP kinases requires dual phosphorylation of the Thr and Tyr residues in the TXY motif of the activation loop by MAP kinase kinases. Down-regulation of MAP kinase activity can be initiated by multiple serine/threonine phosphatases, tyrosine-specific phosphatases, and dual specificity phosphatases (MAP kinase phosphatases). This would inevitably lead to the formation of monophosphorylated MAP kinases. However, the biological functions of these monophosphorylated MAP kinases are currently not clear. In this study, we have prepared MAP kinase p38alpha, a member of the MAP kinase family, in all phosphorylated forms and characterized their biochemical properties. Our results indicated the following: (i) p38alpha phosphorylated at both Thr-180 and Tyr-182 was 10-20-fold more active than p38alpha phosphorylated at Thr-180 only, whereas p38alpha phosphorylated at Tyr-182 alone was inactive; (ii) the dual-specific MKP5, the tyrosine-specific hematopoietic protein-tyrosine phosphatase, and the serine/threonine-specific PP2Calpha are all highly specific for the dephosphorylation of p38alpha, and the dephosphorylation rates were significantly affected by different phosphorylated states of p38alpha; (iii) the N-terminal domain of MPK5 has no effect on enzyme catalysis, whereas deletion of the MAP kinase-binding domain in MKP5 leads to a 370-fold decrease in k(cat)/K(m) for the dephosphorylation of p38alpha. This study has thus revealed the quantitative contributions of phosphorylation of Thr, Tyr, or both to the activation of p38alpha and to the substrate specificity for various phosphatases.  相似文献   

6.
We reported previously that freshly fractured silica (FFSi) induces activator protein-1 (AP-1) activation through extracellular signal-regulated protein kinases (ERKs) and p38 kinase pathways. In the present study, the biologic activities of FFSi and aged silica (ASi) were compared by measuring their effects on the AP-1 activation and phosphorylation of ERKs and p38 kinase. The roles of reactive oxygen species (ROS) in this silica-induced AP-1 activation were also investigated. We found that FFSi-induced AP-1 activation was four times higher than that of ASi in JB6 cells. FFSi also caused greater phosphorylation of ERKs and p38 kinase than ASi. FFSi generated more ROS than ASi when incubated with the cells as measured by electron spin resonance (ESR). Studies using ROS-sensitive dyes and oxygen consumption support the conclusion that ROS are generated by silica-treated cells. N-Acetylcysteine (an antioxidant) and polyvinyl pyridine-N-oxide (an agent that binds to Si-OH groups on silica surfaces) decreased AP-1 activation and phosphorylation of ERKs and p38 kinase. Catalase inhibited phosphorylation of ERKs and p38 kinase, as well as AP-1 activation induced by FFSi, suggesting the involvement of H(2)O(2) in the mechanism of silica-induced AP-1 activation. Sodium formate (an ( small middle dot)OH scavenger) had no influence on silica-induced MAPKs or AP-1 activation. Superoxide dismutase enhanced both AP-1 and MAPKs activation, indicating that H(2)O(2), but not O(2), may play a critical role in silica-induced AP-1 activation. These studies indicate that freshly ground silica is more biologically active than aged silica and that ROS, in particular H(2)O(2), play a significant role in silica-induced AP-1 activation.  相似文献   

7.
Mitogen-activated protein kinase (MAPK) signaling is a crucial component of eukaryotic cells; it plays an important role in responses to extracellular stimuli and in the regulation of various cellular activities. The signaling cascade is evolutionarily conserved in the eukaryotic kingdom from yeast to human. In response to a variety of extracellular signals, MAPK activity is known to be regulated via phosphorylation of a conserved TxY motif at the activation loop in which both threonine and tyrosine residues are phosphorylated by the upstream kinase. However, the mechanism by which both residues are phosphorylated continues to remain elusive. In the budding yeast, Saccharomyces cerevisiae, Fus3 MAPK is involved in the mating signaling pathway. In order to elucidate the functional mechanism of MAPK activation, we quantitatively profiled phosphorylation of the TxY motif in Fus3 using mass spectrometry (MS). We used synthetic heavy stable isotope-labeled phosphopeptides and nonphosphopeptides corresponding to the proteolytic TxY motif of Fus3 and accompanying data-dependent tandem MS to quantitatively monitor dynamic changes in the phosphorylation events of MAPK. Phosphospecific immunoblotting and the MS data suggested that the tyrosine residue is dynamically phosphorylated upon stimulation and that this leads to dual phosphorylation. In contrast, the magnitude of threonine phosphorylation did not change significantly. However, the absence of a threonine residue leads to hyperphosphorylation of the tyrosine residue in the unstimulated condition, suggesting that the threonine residue contributes to the control of signaling noise.  相似文献   

8.
Zhang Y  Dong Z  Bode AM  Ma WY  Chen N  Dong Z 《DNA and cell biology》2001,20(12):769-779
Most of the signal pathways involved in ultraviolet (UV)-induced skin carcinogenesis are thought to originate at plasma membrane receptors. However, UVA-induced signal transduction to downstream ribosomal protein S6 kinases, p70(S6K) and p90(RSK), is not well understood. In this report, we show that UVA stimulation of the epidermal growth factor receptor (EGFR) may lead to activation of p70(S6K)/p90(RSK) through phosphatidyl isositol (PI)-3 kinase and extracellular receptor-activated kinases (ERKs). Evidence is provided that phosphorylation and activation of p70(S6K)/p90(RSK) induced by UVA were prevented in Egfr(-/-) cells and were also markedly inhibited by the EGFR-specific tyrosine kinase inhibitors AG1478 and PD153035. Furthermore, EGFR tyrosine kinase inhibitors and EGFR deficiency significantly suppressed activation of PI-3 kinase and ERKs in regulating activation of p90(RSK)/p70(S6K) but had no effect on activation of c-Jun NH(2)-terminal kinases (JNKs) and p38 kinase in response to UVA. Thus, our results suggest that UVA-induced EGFR signaling may be required for activation of p90(RSK)/p70(S6K), PI-3 kinase, and ERKs but not JNKs or p38 kinase.  相似文献   

9.
Mitogen-activated protein (MAP) kinases comprise a family of protein-serine/threonine kinases, which are highly conserved in protein structures from unicellular eukaryotic organisms to multicellular organisms, including mammals. These kinases, including ERKs, JNKs and p38s, are regulated by a phosphorelay cascade, with a prototype of three protein kinases that sequentially phosphorylate one another. MAPKs transduce extracellular signals into a variety of cellular processes, such as cell proliferation, survival, death, and differentiation. Consistent with their essential cellular functions, MAPKs have been shown to play critical roles in embryonic development, adult tissue homeostasis and various pathologies. In this review, we discuss recent findings that reveal the profound impact of these pathways on chronic inflammation and, particularly, inflammation-associated cancer development.  相似文献   

10.
The ASK1-MAP kinase cascades in mammalian stress response   总被引:7,自引:0,他引:7  
  相似文献   

11.
The present study aimed to investigate the seasonal cellular stress response in the heart and the gastrocnemius muscle of the amphibian Pelophylax ridibundus (former name Rana ridibunda) during an 8 month acclimatization period in the field. Processes studied included heat shock protein expression and protein kinase activation. The cellular stress response was addressed through the expression of Hsp70 and Hsp90 and the phosphorylation of stress-activated protein kinases and particularly p38 mitogen-activated protein kinase (p38 MAPK), the extracellular signal-regulated kinases (ERK-1/2) and c-Jun N-terminal kinases (JNK1/2/3). Due to a general metabolic depression during winter hibernation, the induction of Hsp70 and Hsp90 and the phosphorylation of p38 MAPK, JNKs and ERKs are retained at low levels of expression in the examined tissues of P. ridibundus. Recovery from hibernation induces increased levels of the specific proteins, probably providing stamina to the animals during their arousal.  相似文献   

12.
Stress-activated mitogen-activated protein (MAP) kinase p38 mediates stress signaling in mammalian cells via threonine and tyrosine phosphorylation in its conserved TGY motif by upstream MAP kinase kinases (MKKs). In addition, p38 MAP kinase can also be activated by an MKK-independent mechanism involving TAB-1 (TAK-1-binding protein)-mediated autophosphorylation. Although TAB-1-mediated p38 activation has been implicated in ischemic heart, the biological consequences and downstream signaling of TAB-1-mediated p38 activation in cardiomyocytes is largely unknown. We show here that TAB-1 expression leads to a significant induction of p38 autophosphorylation and consequent kinase activation in cultured neonatal cardiomyocytes. In contrast to MKK3-induced p38 kinase downstream effects, TAB-1-induced p38 kinase activation does not induce expression of pro-inflammatory genes, cardiac marker gene expression, or changes in cellular morphology. Rather, TAB-1 binds to p38 and prevents p38 nuclear localization. Furthermore, TAB-1 disrupts p38 interaction with MKK3 and redirects p38 localization in the cytosol. Consequently, TAB-1 expression antagonizes the downstream activity of p38 kinase induced by MKK3 and attenuates interleukin-1beta-induced inflammatory gene induction in cardiomyocytes. These data suggest that TAB-1 can mediate MKK-independent p38 kinase activation while negatively modulating MKK-dependent p38 function. Our study not only redefines the functional role of TAB-1 in p38 kinase-mediated signaling pathways but also provides the first evidence that intracellular localization of p38 kinase and complex interaction dictates its downstream effects. These results suggest a previously unknown mechanism for stress-MAP kinase regulation in mammalian cells.  相似文献   

13.
Chen HY  Zhu L  Zhan SM  Han ZW  Du W  Wang YJ  Cui RY  Wang CB 《Life sciences》2005,77(7):768-779
Polypeptide from Chlamys farreri (PCF) has been identified as a potent antioxidant and photoprotective agent. In this study, we investigated whether PCF could inhibit apoptosis of murine thymocytes induced by ultraviolet B (UVB) and modulate UVB induced the mitogen-activated protein kinases (MAPKs) cascade in vitro. Our results show that PCF inhibit UVB-induced apoptotic cell death in murine thymocytes. We also found that PCF potently stimulated the phosphorylation of ERKs, which is involved in the cell survival-signaling cascade. Furthermore, the specific inhibition of the ERKs pathways by PD98059 reduced the cytoprotective effect of PCF. On the other hand, the JNKs and p38 inhibitor SP600125 and SB203580 additively enhanced the cytoprotective effect of PCF. We concluded that the activation of JNKs and p38 kinase played an important role in UVB-induced apoptosis, and PCF likely exerted its cytoprotective effect in thymocytes through ERKs activation. These suggested that part of the antiapoptotic effect of PCF might be mediated by its ability to modulate the MAPKs cascade.  相似文献   

14.
MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6.   总被引:19,自引:2,他引:17       下载免费PDF全文
Mixed lineage kinase-3 (MLK-3) is a 97 kDa serine/threonine kinase with multiple interaction domains, including a Cdc42 binding motif, but unknown function. Cdc42 and the related small GTP binding protein Rac1 can activate the SAPK/JNK and p38/RK stress-responsive kinase cascades, suggesting that MLK-3 may have a role in upstream regulation of these pathways. In support of this role, we demonstrate that MLK-3 can specifically activate the SAPK/JNK and p38/RK pathways, but has no effect on the activation of ERKs. Immunoprecipitated MLK-3 catalyzed the phosphorylation of SEK1 in vitro, and co-transfected MLK-3 induced phosphorylation of SEK1 and MKK3 at sites required for activation, suggesting direct regulation of these protein kinases. Furthermore, interactions between MLK-3 and SEK and MLK-3 and MKK6 were observed in co-precipitation experiments. Finally, kinase-dead mutants of MLK-3 blocked activation of the SAPK pathway by a newly identified mammalian analog of Ste20, germinal center kinase, but not by MEKK, suggesting that MLK-3 functions to activate the SAPK/JNK and p38/RK cascades in response to stimuli transduced by Ste20-like kinases.  相似文献   

15.
16.
17.
Adhesion of metastatic human mammary carcinoma MDA-MB-435 cells to the basement membrane protein collagen type IV can be activated by treatment with arachidonic acid. We initially observed that this arachidonic acid-mediated adhesion was inhibited by the tyrosine kinase inhibitor genistein. Therefore, we examined the role of the mitogen-activated protein (MAP) kinase family tyrosine phosphorylation-regulated pathways in arachidonic acid-stimulated cell adhesion. Arachidonic acid stimulated the phosphorylation of p38, the activation of MAP kinase-activated protein kinase 2 (MAPKAPK2, a downstream substrate of p38), and the phosphorylation of heat shock protein 27 (a downstream substrate of MAP kinase-activated protein kinase 2). Treatment with the p38 inhibitor PD169316 completely and specifically inhibited arachidonic acid-mediated cell adhesion to collagen type IV. p38 activity was specifically associated with arachidonic acid-stimulated adhesion; this was demonstrated by the observation that 12-O-tetradecanoylphorbol 13-acetate-activated cell adhesion was not blocked by inhibiting p38 activity. Extracellular signal-regulated protein kinases (ERKs) 1 and 2 were also activated by arachidonic acid; however, cell adhesion to collagen type IV was not highly sensitive to PD98059, an inhibitor of MAP kinase kinase/ERK kinase 1 (MEK1) that blocks activation of the ERKs. c-Jun NH(2)-terminal kinase was not activated by arachidonic acid treatment of these cells. Together, these data suggest a novel role for p38 MAP kinase in regulating adhesion of breast cancer cells to collagen type IV.  相似文献   

18.
Cadmium, a major metal constituent of tobacco smoke, elicits synergistic enhancement of cell transformation when combined with benzo[a]pyrene (BP) or other PAHs. The mechanism underlying this synergism is not clearly understood. We observed that (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), an ultimate carcinogen of BP, induces apoptosis in promotion sensitive mouse epidermal JB6 Cl41 cells at non-cytotoxic concentrations. BPDE also activates AP-1 several folds in AP-1 reporter JB6 cells. Cadmium at non-cytotoxic concentrations inhibits both AP-1 activation and apoptosis in response to BPDE. Since AP-1 is known to be involved in stress-induced apoptosis we investigated whether inhibition of AP-1 by cadmium has any role in the inhibition of BPDE-induced apoptosis. MAP kinases (particularly ERKs, p38 and JNKs) are known to have important role in DNA damage-induced AP-1 activation. We observed that ERK and JNK, but not p38 MAP kinase, are involved in BPDE-induced AP-1 activation. Effect of cadmium on MAP kinases and the effect of inhibition of above three MAP kinases on BPDE-induced AP-1 activation and apoptosis indicate that AP-1 is probably not involved in BPDE-induced apoptosis. Cadmium up-regulates BPDE-activated ERKs and ERK inhibition by U0126 relieves cadmium-mediated inhibition of BPDE-induced apoptosis. We suggest that cadmium inhibits BPDE-induced apoptosis not involving AP-1 but probably through a different mechanism by up-regulating ERK which is known to promote cell survival.  相似文献   

19.
Activation of members of the protein kinase AGC (cAMP dependent, cGMP dependent, and protein kinase C) family is regulated primarily by phosphorylation at two sites: a conserved threonine residue in the activation loop and a serine/threonine residue in a hydrophobic motif (HM) near the COOH terminus. Although phosphorylation of these kinases in the activation loop has been found to be mediated by phosphoinositide-dependent protein kinase-1 (PDK1), the kinase(s) that catalyzes AGC kinase phosphorylation in the HM remains uncharacterized. So far, at least 10 kinases have been suggested to function as an HM kinase or the so-called "PDK2," including mitogen-activated protein (MAP) kinase-activated protein kinase-2 (MK2), integrin-linked kinase (ILK), p38 MAP kinase, protein kinase Calpha (PKCalpha), PKCbeta, the NIMA-related kinase-6 (NEK6), the mammalian target of rapamycin (mTOR), the double-stranded DNA-dependent protein kinase (DNK-PK), and the ataxia telangiectasia mutated (ATM) gene product. However, whether any or all of these kinases act as a physiological HM kinase remains to be established. Nonetheless, available data suggest that multiple systems may be used in cells to regulate the activation of the AGC family kinases. It is possible that, unlike activation loop phosphorylation, phosphorylation of the HM site in the different AGC family kinases is mediated by distinct kinases. In addition, phosphorylation of the AGC family kinase at the HM site could be cell type, signaling pathway, and substrate specific. Identification and characterization of the bonafide HM kinase(s) will be essential to verify these hypotheses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号