首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Basigin (Bsg) is a highly glycosylated transmembrane protein with two immunoglobulin (Ig)-like domains. A number of studies, including gene targeting, have demonstrated that Bsg plays pivotal roles in spermatogenesis, implantation, neural network formation and tumor progression. In the present study, to understand the mechanism of action of Bsg, we determined its expression status on the plasma membrane. Cotransfection of Bsg expression vectors with two different tags clarified that Bsg forms homo-oligomers in a cis-dependent manner on the plasma membrane. If the disulfide bond of the more N-terminally located Ig-like domain was destroyed by mutations, Bsg could not form oligomers. In contrast, the mutations of the C-terminal Ig-like domain or N-glycosylation sites did not affect the association. The association of mouse and human Bsgs, which exhibit high homology in the transmembrane and intracellular domains but low homology in the extracellular domain, was very weak as compared with that within the same species, suggesting the importance of the extracellular domain in the association. If the extracellular domain of the human Ret protein was replaced with the N-terminal Ig-like domain of Bsg, the resulting chimera protein was associated with intact wild-type Bsg, but not if the C-terminal Ig-like domain, instead of the N-terminal one, of Bsg was used. No oligomer formation took place between the intact wild-type Ret and Bsg proteins. In conclusion, these data indicate that the N-terminal Ig-like domain is necessary and sufficient for oligomer formation by Bsg on the plasma membrane.  相似文献   

2.
Nerve growth factor (NGF) is involved in the development and maintenance of the nervous system and has been implicated as a possible therapeutic target molecule in a number of neurodegenerative diseases, especially Alzheimer's disease. NGF binds with high affinity to the extracellular region of a tyrosine kinase receptor, TrkA, which comprises three leucine-rich motifs (LRMs), flanked by two cysteine-rich clusters, followed by two immunoglobulin-like (Ig-like) domains. We have expressed the second Ig-like domain as a recombinant protein in E. coli and demonstrate that NGF binds to this domain with similar affinity to the native receptor. This domain (TrkAIg(2)) has the ability to sequester NGF in vitro, preventing NGF-induced neurite outgrowth, and in vivo, inhibiting NGF-induced plasma extravasation. We also present the three-dimensional structure of the TrkAIg(2) domain in a new crystal form, refined to 2.0 A resolution.  相似文献   

3.
Sequence homology predicts that the extracellular domain of the sodium channel beta1 subunit forms an immunoglobulin (Ig) fold and functions as a cell adhesion molecule. We show here that beta1 subunits associate with neurofascin, a neuronal cell adhesion molecule that plays a key role in the assembly of nodes of Ranvier. The first Ig-like domain and second fibronectin type III-like domain of neurofascin mediate the interaction with the extracellular Ig-like domain of beta1, confirming the proposed function of this domain as a cell adhesion molecule. beta1 subunits localize to nodes of Ranvier with neurofascin in sciatic nerve axons, and beta1 and neurofascin are associated as early as postnatal day 5, during the period that nodes of Ranvier are forming. This association of beta1 subunit extracellular domains with neurofascin in developing axons may facilitate recruitment and concentration of sodium channel complexes at nodes of Ranvier.  相似文献   

4.
Intercellular adhesion molecule 1 (ICAM-1) is a 90 kd inducible surface glycoprotein that promotes adhesion in immunological and inflammatory reactions. ICAM-1 is a ligand of lymphocyte function-associated antigen-1 (LFA-1), an alpha beta complex that is a member of the integrin family of cell-cell and cell-matrix receptors. ICAM-1 is encoded by an inducible 3.3 kb mRNA. The amino acid sequence specifies an integral membrane protein with an extracellular domain of 453 residues containing five immunoglobulin-like domains. Highest homology is found with neural cell adhesion molecule (NCAM) and myelin-associated glycoprotein (MAG), which also contain five Ig-like domains. NCAM and MAG are nervous system adhesion molecules, but unlike ICAM-1, NCAM is homophilic. The ICAM-1 and LFA-1 interaction is heterophilic and unusual in that it is between members of the immunoglobulin and intergrin families. Unlike other integrin ligands, ICAM-1 does not contain an RGD sequence.  相似文献   

5.
Intercellular adhesion molecule-1 (CD54), a cell adhesion molecule and the receptor for the major group of rhinoviruses, is a class 1 membrane protein with five Ig-like domains in its extracellular region, a transmembrane domain, and a short cytoplasmic domain. The amino-terminal domains (D1 and D2) are sufficient for virus binding and the first is most important (1). We have investigated whether other extracellular domains, transmembrane or cytoplasmic domains are required for virus entry as determined by postinfection virion protein biosynthesis. We demonstrate that cytoplasmic, transmembrane, and Ig-like domains 3, 4, and 5 are not essential for rhinovirus entry into transfected COS cells. The efficiency of rhinovirus infection directly correlates with the efficiency of rhinovirus binding and a form of intercellular adhesion molecule-1 that is glycophosphatidyl-inositol anchored, and thus does not extend into the inner leaflet of the membrane bilayer or the cytoplasm efficiently supports virus entry.  相似文献   

6.
The myelin-associated glycoprotein (MAG) has an extracellular domain containing five sequences which are homologous to the immunoglobulin-fold motif. Adhesive interactions mediated by the MAG extracellular domain are involved in the development of the myelin sheath. The MAG cDNA has been modified to introduce a stop codon immediately before the transmembrane domain. Expression of the modified cDNA in insect cells and murine NIH-3T3 cells resulted in secretion of the soluble MAG extracellular domain. Treatment of soluble MAG with glycopeptidase F and endoglycosidase H showed significant differences in glycosylation for the insect and mammalian cell-expression systems. The soluble form of MAG has been purified from insect-cell supernatants by adsorption to a lentil-lectin support. The soluble MAG will provide a powerful new approach for studies of MAG-adhesive interactions during brain development.  相似文献   

7.
PECAM-1, a cell adhesion molecule of the immunoglobulin gene (Ig) superfamily, has been implicated in white cell transmigration, integrin activation on lymphocytes, and cell-cell adhesion. The purpose of this investigation was to identify specific regions of the PECAM-1 extracellular domain mediating these functions by identifying the location of epitopes of bioactive anti-PECAM-1 monoclonal antibodies. The binding regions of mAbs important in PECAM-1-mediated leukocyte transmigration (Hec 7.2 and 3D2) were mapped to N-terminal Ig-like domains. The epitopes of monoclonal antibodies that activated integrin function on lymphocytes were dispersed over the entire extracellular region, but those that had the strongest activating effect were preferentially localized to the N-terminus of the molecule. The binding regions of mAbs that blocked PECAM-1-mediated heterophilic L-cell aggregation were located either in Ig-like domain 2 (NIH31.4) or Ig-like domain 6 (4G6 and 1.2). Site-directed mutagenesis further pinpointed the epitope of the 4G6 mAb to a hexapeptide, CAVNEG, within Ig-like domain 6.

These results demonstrate that PECAM-1 contains multiple functional domains. Regions within N-terminal Ig-like domains appear to be required for transmigration. In contrast, two distinct regions were implicated in L-cell mediated heterophilic aggregation.  相似文献   

8.
Cel9A from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius belongs to the subfamily E1 of family 9 glycoside hydrolases, many members of which have an N-terminal Ig-like domain followed by the catalytic domain. The Ig-like domain is not directly involved in either carbohydrate binding or biocatalysis; however, deletion of the Ig-domain promotes loss of enzymatic activity. We have investigated the functional role of the Ig-like domain using molecular dynamics simulations. Our simulations indicate that residues within the Ig-like domain are dynamically correlated with residues in the carbohydrate-binding pocket and with key catalytic residues of Cel9A. Free energy perturbation simulations indicate that the Ig-like domain stabilizes the catalytic domain and may be responsible for the enhanced thermostability of Cel9A.  相似文献   

9.
The neural cell adhesion molecule (N-CAM) engages in diverse functional roles in neural cell interactions. Its extracellular part consists of five Ig-like domains and two fibronectin type III homologous (type III) repeats. To investigate the functional properties of the different structural domains of the molecule in cell interactions and signal transduction to the cell interior, we have synthesized, in a bacterial expression system, the individual domains and tandem sets of individual domains as protein fragments. These protein fragments were tested for their capacity to influence adhesion and spreading of neuronal cell bodies, promote neurite outgrowth, and influence cellular migration patterns from cerebellar microexplants in vitro. Ig-like domains I and II and the combined type III repeats I-II were most efficient for adhesion of neuronal cell bodies, when coated as substrates. Neurite outgrowth was best on the substrate-coated combined type III repeats I- II, followed by the combined Ig-like domains I-V and Ig-like domain I. Spreading of neuronal cell bodies was best on substrate-coated combined type III repeats I-II, followed by Ig-like domain I and the combined Ig- like domains I-V. The cellular migration pattern from cerebellar microexplant cultures plated on a mixture of laminin and poly-L-lysine was modified by Ig-like domains I, III, and IV, while Ig-like domains II and V and the combined type III repeats I-II did not show significant modifications, when added as soluble fragments. Outgrowth of astrocytic processes from the explant core was influenced only by Ig- like domain I. Metabolism of inositol phosphates was strongly increased by Ig-like domain I and less by the Ig-like domains II, III, IV, and V, and not influenced by the combined type III repeats I-II. Intracellular concentrations of Ca2+ and pH values were increased only by the Ig-like domains I and II. Intracellular levels of cAMP and GMP were not influenced by any protein fragment. These experiments indicate that different domains of N-CAM subserve different functional roles in cell recognition and signal transduction, and are functionally competent without nervous system-derived carbohydrate structures.  相似文献   

10.
The myelin associated glycoproteins (MAG) are integral plasma membrane proteins which are found in oligodendrocytes and Schwann cells and are believed to mediate the axonal-glial interactions of myelination. In this paper we demonstrate the existence in central nervous system myelin of two MAG polypeptides with Mrs of 67,000 and 72,000 that we have designated small MAG (S-MAG) and large MAG (L-MAG), respectively. The complete amino acid sequence of L-MAG and a partial amino acid sequence of S-MAG have been deduced from the nucleotide sequences of corresponding cDNA clones isolated from a lambda gt11 rat brain expression library. Based on their amino acid sequences, we predict that both proteins have an identical membrane spanning segment and a large extracellular domain. The putative extracellular region contains an Arg-Gly-Asp sequence that may be involved in the interaction of these proteins with the axon. The extracellular portion of L-MAG also contains five segments of internal homology that resemble immunoglobulin domains, and are strikingly homologous to similar domains of the neural cell adhesion molecule and other members of the immunoglobulin gene superfamily. In addition, the two MAG proteins differ in the extent of their cytoplasmically disposed segments and appear to be the products of alternatively spliced mRNAs. Of considerable interest is the finding that the cytoplasmic domain of L-MAG, but not of S-MAG, contains an amino acid sequence that resembles the autophosphorylation site of the epidermal growth factor receptor.  相似文献   

11.
Punctin/MADD-4, a member of the ADAMTSL extracellular matrix protein family, was identified as an anterograde synaptic organizer in the nematode Caenorhabditis elegans. At GABAergic neuromuscular junctions, the short isoform MADD-4B binds the ectodomain of neuroligin NLG-1, itself a postsynaptic organizer of inhibitory synapses. To identify the molecular bases of their partnership, we generated recombinant forms of the two proteins and carried out a comprehensive biochemical and biophysical study of their interaction, complemented by an in vivo localization study. We show that spontaneous proteolysis of MADD-4B first generates a shorter N-MADD-4B form, which comprises four thrombospondin (TSP) domains and one Ig-like domain and binds NLG-1. A second processing event eliminates the C-terminal Ig-like domain along with the ability of N-MADD-4B to bind NLG-1. These data identify the Ig-like domain as the primary determinant for N-MADD-4B interaction with NLG-1 in vitro. We further demonstrate in vivo that this Ig-like domain is essential, albeit not sufficient per se, for efficient recruitment of GABAA receptors at GABAergic synapses in C. elegans. The interaction of N-MADD-4B with NLG-1 is also disrupted by heparin, used as a surrogate for the extracellular matrix component, heparan sulfate. High-affinity binding of heparin/heparan sulfate to the Ig-like domain may proceed from surface charge complementarity, as suggested by homology three-dimensional modeling. These data point to N-MADD-4B processing and cell-surface proteoglycan binding as two possible mechanisms to regulate the interaction between MADD-4B and NLG-1 at GABAergic synapses.  相似文献   

12.
The extracellular region of the nerve growth factor (NGF) receptor, TrkA, contains two immunoglobulin (Ig)-like domains that are required for specific ligand binding. We have investigated the possible role of these two Ig-like domains in receptor dimerization and activation by using different mutants of the TrkA extracellular region. Deletions of each Ig-like domain, of both, and of the entire extracellular region were made. To probe the structural constraints on ligand-independent receptor dimerization, chimeric receptors were generated by swapping the Ig-like domains of the TrkA receptor for the third or fourth Ig-like domain of c-Kit. We also introduced single-amino-acid changes in conserved residues within the Ig-like domains of TrkA. Most of these TrkA variants did not bind NGF, and their expression in PC12nnr5 cells, which lack endogenous TrkA, promoted ligand-independent neurite outgrowth. Some TrkA mutant receptors induced malignant transformation of Rat-1 cells, as assessed by measuring proliferation in the absence of serum, anchorage-independent growth, and tumorigenesis in nude mice. These mutants exhibited constitutive phosphorylation and spontaneous dimerization consistent with their biological activities. Our data suggest that spontaneous dimerization of TrkA occurs when the structure of the Ig-like domains is altered, implying that the intact domains inhibit receptor dimerization in the absence of NGF.  相似文献   

13.
In multicellular organisms, cells are interconnected by cell adhesion molecules. Nectins are immunoglobulin (Ig)-like cell adhesion molecules that mediate homotypic and heterotypic cell-cell adhesion, playing key roles in tissue organization. To mediate cell-cell adhesion, nectin molecules dimerize in cis on the surface of the same cell, followed by trans-dimerization of the cis-dimers between the neighboring cells. Previous cell biological studies deduced that the first Ig-like domain of nectin and the second Ig-like domain are involved in trans-dimerization and cis-dimerization, respectively. However, to understand better the steps involved in nectin adhesion, the structural basis for the dimerization of nectin must be determined. In this study, we determined the first crystal structure of the entire extracellular region of nectin-1. In the crystal, nectin-1 formed a V-shaped homophilic dimer through the first Ig-like domain. Structure-based site-directed mutagenesis of the first Ig-like domain identified four essential residues that are involved in the homophilic dimerization. Upon mutating the four residues, nectin-1 significantly decreased cis-dimerization on the surface of cultured cells and abolished the homophilic and heterophilic adhesion activities. These results indicate that, in contrast with the previous notion, our structure represents a cis-dimer. Thus, our findings clearly reveal the structural basis for the cis-dimerization of nectins through the first Ig-like domains.  相似文献   

14.
Recent evidence suggests that polycystin-1 (PC1) acts as a mechanosensor, receiving signals from the primary cilia, neighboring cells, and extracellular matrix and transduces them into cellular responses that regulate proliferation, adhesion, and differentiation that are essential for the control of renal tubules and kidney morphogenesis. PC1 has an unusually long extracellular region ( approximately 3000 amino acids) with a multimodular structure. Proteins with a similar architecture have structural and mechanical roles. Based on the structural similarities between PC1 and other modular proteins that have elastic properties we hypothesized that PC1 functions mechanically by providing a flexible and elastic linkage between cells. Here we directly tested this hypothesis by analyzing the mechanical properties of the entire PC1 extracellular region by using single molecule force spectroscopy. We show that the PC1 extracellular region is highly extensible and that this extensibility is mainly caused by the unfolding of its Ig-like domains. Stretching the native PC1 extracellular region results in a sawtooth pattern with equally spaced force peaks that have a wide range of unfolding forces (50-200 pN). By combining single-molecule force spectroscopy and protein engineering techniques, we demonstrate that the sawtooth pattern in native PC1 extracellular region corresponds to the sequential unfolding of individual Ig-like domains. We found that Ig-like domains refold after mechanical unfolding. Hence, the PC1 extracellular region displays a dynamic extensibility whereby the resting length might be regulated through unfolding/refolding of its Ig-like domains. These force-driven reactions may be important for cell elasticity and the regulation of cell signaling events mediated by PC1.  相似文献   

15.
《FEBS letters》1999,442(2-3):133-137
MuSK is a receptor tyrosine kinase that initiates the formation of neuromuscular junctions in response to agrin. Little is known about the ligand-induced activation and kinase-dependent signalling that leads to the clustering of acetylcholine receptors. The ectodomain of these molecule is composed of four Ig-like domains. We describe here the isolation of a novel MuSK splice variant that lacks the third Ig-like domain in its ectodomain. The corresponding RNA is the result of alternative splicing which eliminates two exons. There is 10 times less mRNA for this shorter form than for the long form of MuSK and both forms are regulated coordinately. They decrease strongly after birth and are elevated in denervated muscle. Gene transfer by muscle injection of MuSK DNA into individual muscle fibers demonstrates that kinase-induced acetylcholine receptor clustering caused by overexpression of the two kinases does not depend on the presence of the third Ig-like domain.  相似文献   

16.
Nectins are Ca(2+)-independent immunoglobulin (Ig)-like cell-cell adhesion molecules that form cell-cell junctions, cooperatively with or independently of cadherins, in a variety of cells. Nectins comprise a family of four members, nectin-1, -2, -3, and -4. All nectins have one extracellular region with three Ig-like loops, one transmembrane segment, and one cytoplasmic tail. It has been shown mainly by use of cadherin-deficient L fibroblasts stably expressing each nectin that nectins first form homo-cis-dimers and then homo- or hetero-trans-dimers, causing cell-cell adhesion, and that the formation of the cis-dimers is necessary for the formation of the trans-dimers. However, kinetics of the formation of these dimers have not been examined biochemically by use of pure nectin proteins. We prepared here pure recombinant proteins of extracellular fragments of nectin-3 containing various combinations of Ig-like loops, all of which were fused to the Fc portion of IgG and formed homo-cis-dimers through the Fc portion, and of an extracellular fragment of nectin-1 containing three Ig-like loops which was fused to secreted alkaline phosphatase and formed homo-cis-dimers. We showed here by use of these proteins that the first Ig-like loop of nectin-3 was essential and sufficient for the formation of trans-dimers with nectin-1, but that the second Ig-like loop of nectin-3 was furthermore necessary for its cell-cell adhesion activity.  相似文献   

17.
Ig-like inhibitory receptors have been the focus of intensive research particularly in mouse and human. We report the cloning and characterization of three novel inhibitory chicken Ig-like receptors (CHIR) that display a two Ig-domain extracellular structure, a transmembrane region lacking charged residues and a cytoplasmic domain containing two ITIM. The localization of all receptors to a small genomic region and the hybridization pattern indicated that they belong to a multigene family. The genomic structure of the extracellular domain with two exons encoding the signal peptide and single exons for each Ig domain resembled that of all human leukocyte Ig-like receptors and killer cell Ig-like receptors, whereas the exons encoding the C terminus displayed a structure closely resembling killer cell Ig-like receptor genes. A mAb generated against one receptor designated CHIR-B2 reacted with all B cells and a small T cell subset, but not with monocytes, thrombocytes, or various leukocyte-derived cell lines. The mAb immunoprecipitated a 46-kDa protein from bursal cells and transfected cells. The Src homology 2 domain containing protein tyrosine phosphatase (SHP)-2 bound to CHIR-B2 even in unstimulated cells, whereas pervanadate treatment induced the tyrosine phosphorylation and recruitment of several CHIR-B2-associated proteins including SHP-1 and increased levels of SHP-2. Moreover, mAb cross-linking of CHIR-B2 reduced the proliferation of a stable transfected cell line. Together, we have identified a multigene family containing multiple CHIR including one receptor designated CHIR-B2 that is mainly expressed on B lymphocytes and inhibits cellular proliferation by recruitment of SHP-1 and SHP-2.  相似文献   

18.
Siglec-7: a sialic acid-binding lectin of the immunoglobulin superfamily   总被引:5,自引:0,他引:5  
Angata T  Varki A 《Glycobiology》2000,10(4):431-438
The Siglecs are a recently discovered family of sialic acid-binding lectins of the immunoglobulin (Ig) superfamily. We report a molecule showing homology to the six first reported Siglecs, with the closest relationship to Siglec-3(CD33), Siglec-5, and Siglec-6(OBBP-1). The extracellular portion has two Ig-like domains, with the amino-terminal V-set Ig domain including amino acid residues known to be involved in sialic acid recognition by other Siglecs. The cytoplasmic domain has putative sites of tyrosine phosphorylation shared with some Siglecs, including an Immuno-receptor Tyrosine-based Inhibitory Motif (ITIM). Expression of the full-length cDNA induces sialic acid-dependent binding to human erythrocytes. A recombinant chimeric form containing the extracellular Ig domains selectively recognizes the sequence Neu5Acalpha2-6Galbeta1-4Glc, and binding requires the side chain of sialic acid. Mutation of an arginine residue predicted to be critical for sialic acid binding abolishes both interactions. Taken together, our findings justify designation of the molecule as Siglec-7. Analysis of bacterial artificial chromosome (BAC) clones spanning the known human genomic location of Siglec-3 indicates that the Siglec-7 gene is also located on chromosome 19q13.3-13.4. Human tissues show strong expression of Siglec-7 mRNA in spleen, peripheral blood leukocytes, and liver. The combination of an extracellular sialic acid binding site and an intracellular ITIM motif suggests that this molecule is involved in trans-membrane regulatory signaling reactions.  相似文献   

19.
20.
Nectins are Ca(2+)-independent immunoglobulin (Ig) superfamily proteins that participate in the organization of epithelial and endothelial junctions. Nectins have three Ig-like domains in the extracellular region, and the first one is essential in cell-cell adhesion and plays a central role in the interaction with the envelope glycoprotein D of several viruses. Five Nectin-like molecules (Necl-1 through -5) with similar domain structures to those of Nectins have been identified. Necl-1 is specifically expressed in neural tissue, has Ca(2+)-independent homophilic and heterophilic cell-cell adhesion activity, and plays an important role in the formation of synapses, axon bundles, and myelinated axons. Here we report the first crystal structure of its N-terminal Ig-like V domain at 2.4 A, providing insight into trans-cellular recognition mediated by Necl-1. The protein crystallized as a dimer, and the dimeric form was confirmed by size-exclusion chromatography and chemical cross-linking experiments, indicating this V domain is sufficient for homophilic interaction. Mutagenesis work demonstrated that Phe(82) is a key residue for the adhesion activity of Necl-1. A model for homophilic adhesion of Necl-1 at synapses is proposed based on its structure and previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号