首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
EBER 1, a small noncoding viral RNA abundantly expressed in all cells transformed by Epstein-Barr virus (EBV), has been shown to associate with the human ribosomal protein L22. Here we present in vitro binding studies using purified RNAs and recombinant proteins. Electrophoretic mobility-shift assays (EMSAs) show that recombinant L22 (rL22) and maltose-binding protein (MBP)-tagged L22 protein bind EBER 1 in vitro, both forming three specific protein-dependent mobility shifts. Use of a mixture of rL22 and MBP-L22 indicates that these three shifts contain one, two, or three L22 proteins per EBER 1 molecule. EMSAs performed with EBER 1 deletion constructs and EBER 1 stem-loops inserted into a nonbinding RNA, HSUR 3, identify stem-loops I, III, and IV as L22 binding sites. The existence of multiple L22 binding sites on EBER 1 inside cells is demonstrated by in vivo UV cross-linking. Our results are discussed with respect to the function of EBER 1 in EBV-infected human B cells.  相似文献   

3.
Prediction of protein-RNA interactions at the atomic level of detail is crucial for our ability to understand and interfere with processes such as gene expression and regulation. Here, we investigate protein binding pockets that accommodate extruded nucleotides not involved in RNA base pairing. We observed that most of the protein-interacting nucleotides are part of a consecutive fragment of at least two nucleotides whose rings have significant interactions with the protein. Many of these share the same protein binding cavity and more than 30% of such pairs are π-stacked. Since these local geometries cannot be inferred from the nucleotide identities, we present a novel framework for their prediction from the properties of protein binding sites.First, we present a classification of known RNA nucleotide and dinucleotide protein binding sites and identify the common types of shared 3-D physicochemical binding patterns. These are recognized by a new classification methodology that is based on spatial multiple alignment. The shared patterns reveal novel similarities between dinucleotide binding sites of proteins with different overall sequences, folds and functions. Given a protein structure, we use these patterns for the prediction of its RNA dinucleotide binding sites. Based on the binding modes of these nucleotides, we further predict an RNA fragment that interacts with those protein binding sites. With these knowledge-based predictions, we construct an RNA fragment that can have a previously unknown sequence and structure. In addition, we provide a drug design application in which the database of all known small-molecule binding sites is searched for regions similar to nucleotide and dinucleotide binding patterns, suggesting new fragments and scaffolds that can target them.  相似文献   

4.
5.
The C protein tetramer of hnRNP complexes binds approximately 150-230 nt of RNA with high cooperativity (McAfee J et al., 1996, Biochemistry 35:1212-1222). Three contiguously bound tetramers fold 700-nt lengths of RNA into a 19S triangular intermediate that nucleates 40S hnRNP assembly in vitro (Huang M et al., 1994, Mol Cell Biol 14:518-533). Although it has been assumed that the consensus RNA recognition motif (RRM) of C protein (residues 8-87) is the primary determinant of RNA binding, we report here that a recombinant construct containing residues 1-115 has very low affinity for RNA at physiological ionic strength (100 mM NaCl). Moreover, we demonstrate that an N-terminal deletion construct lacking the consensus RRM but containing residues 140-290 binds RNA with an affinity sufficient to account for the total free energy change observed for the binding of intact protein. Like native C protein, the 140-290 construct is a tetramer in solution and binds RNA stoichiometrically in a salt-resistant manner in 100-300 mM NaCl. Residues 140-179 of the N-terminal truncated variant contain 11 basic and 2 acidic residues, whereas residues 180-207 specify a leucine zipper motif that directs dimer assembly. Elements within the 50-residue carboxy terminus of C protein are required for tetramer assembly. A basic region followed by a leucine zipper is identical to the domain organization of the basic-leucine zipper (bZIP) class of DNA binding proteins. Sequence homologies with other proteins containing RRMs and the bZIP motif suggest that residues 140-207 represent a conserved bZIP-like RNA binding motif (designated bZLM). The steric orientation of four high-affinity RNA binding sites about rigid leucine zipper domains may explain in part C protein''s asymmetry, its large occluded site size, and its RNA folding activity.  相似文献   

6.
C G Burd  G Dreyfuss 《The EMBO journal》1994,13(5):1197-1204
Pre-mRNA is processed as a large complex of pre-mRNA, snRNPs and pre-mRNA binding proteins (hnRNP proteins). The significance of hnRNP proteins in mRNA biogenesis is likely to be reflected in their RNA binding properties. We have determined the RNA binding specificity of hnRNP A1 and of each of its two RNA binding domains (RBDs), by selection/amplification from pools of random sequence RNA. Unique RNA molecules were selected by hnRNP A1 and each individual RBD, suggesting that the RNA binding specificity of hnRNP A1 is the result of both RBDs acting as a single RNA binding composite. Interestingly, the consensus high-affinity hnRNP A1 binding site, UAGGGA/U, resembles the consensus sequences of vertebrate 5' and 3' splice sites. The highest affinity 'winner' sequence for hnRNP A1 contained a duplication of this sequence separated by two nucleotides, and was bound by hnRNP A1 with an apparent dissociation constant of 1 x 10(-9) M. hnRNP A1 also bound other RNA sequences, including pre-mRNA splice sites and an intron-derived sequence, but with reduced affinities, demonstrating that hnRNP A1 binds different RNA sequences with a > 100-fold range of affinities. These experiments demonstrate that hnRNP A1 is a sequence-specific RNA binding protein. UV light-induced protein-RNA crosslinking in nuclear extracts demonstrated that an oligoribonucleotide containing the A1 winner sequence can be used as a specific affinity reagent for hnRNP A1 and an unidentified 50 kDa protein. We also show that this oligoribonucleotide, as well as two others containing 5' and 3' pre-mRNA splice sites, are potent inhibitors of in vitro pre-mRNA splicing.  相似文献   

7.
RNA editing in protozoan parasites is a mitochondrial RNA processing reaction in which exclusively uridylate residues are inserted into, and less frequently deleted from, pre-mRNAs. Molecules central to the process are so-called guide RNAs (gRNAs) which function as templates in the reaction. For a detailed molecular understanding of the mechanism of the editing process knowledge of structural features of gRNAs will be essential. Here we report on a computer-assisted molecular modelling approach to construct the first three-dimensional gRNA model for gND7-506, a ND7-specific gRNA from Trypanosoma brucei. The modelling process relied on chemical modification and enzymatic probing data and was validated by in vitro mutagenesis experiments. The model predicts a reasonably compact structure, where two stem/loop secondary structure elements are brought into close proximity by a triple A tertiary interaction, forming a core element within the centre of the molecule. The model further suggests that the surface of the gRNA is primarily made up of the sugar-phoshate backbone. On the basis of the model, footprinting experiments of gND7-506 in a complex with the gRNA binding protein gBP21 could successfully be interpreted and provide a first picture for the assembly of gRNAs within a ribonucleoprotein complex.  相似文献   

8.
Iron-responsive elements (IREs) are regulatory RNA elements which serve as specific binding sites for the IRE-binding protein (IRE-BP). Interaction between IREs and IRE-BP induces repression of ferritin mRNA translation and transferrin receptor mRNA stabilization. We describe the identification of extensive amino acid sequence homology between IRE-BP and two known isomerases, aconitase and isopropylmalate (IPM) isomerase. We discuss the implications of this observation with regard to structure/function relationships of IRE-BP. The structural conservation between a regulatory RNA-binding protein and two enzymes involved in intermediary metabolism provides a surprising example of the functional flexibility in biological structures.  相似文献   

9.
Potential applications for functional RNAs are rapidly expanding, not only to address functions based on primary nucleotide sequences, but also by RNA aptamer, which can suppress the activity of any target molecule. Aptamers are short DNA or RNA folded molecules that can be selected in vitro on the basis of their high affinity for a target molecule. Here, we demonstrate the ability of RNA aptamers to recognize--and bind to--human IgG with high specificity and affinity. An optimized 23-nucleotide aptamer, Apt8-2, was prepared, and was shown to bind to the Fc domain of human IgG, but not to other IgG's, with high affinity. Apt8-2 was observed to compete with protein A, but not with the Fcgamma receptor, for IgG binding. NMR chemical-shift analyses localized the aptamer-binding sites on the Fc subdomain, which partially overlaps the protein A binding site but not the Fcgamma receptor binding site. The tertiary structures of the predicted recognition sites on the Fc domain differ significantly between human IgG and other species of IgGs; this, in part, accounts for the high specificity of the selected aptamer. Apt8-2 can therefore be used as a protein A alternative for affinity purification of human IgG and therapeutic antibodies. Using Apt8-2 would have several potential advantages, raising the possibility of developing new applications based on aptamer design.  相似文献   

10.
R A Ogert  L H Lee    K L Beemon 《Journal of virology》1996,70(6):3834-3843
All retroviruses need mechanisms for nucleocytoplasmic export of their unspliced RNA and for maintenance of this RNA in the cytoplasm, where it is either translated to produce Gag and Pol proteins or packaged into viral particles. The complex retroviruses encode Rev or Rex regulatory proteins, which interact with cis-acting viral sequences to promote cytoplasmic expression of incompletely spliced viral RNAs. Since the simple retroviruses do not encode regulatory proteins, we proposed that they might contain cis-acting sequences that could interact with cellular Rev-like proteins. To test this possibility, we initially looked for a cis-acting sequence in avian retroviruses that could substitute for Rev and the Rev response element in human immunodeficiency virus type 1 expression constructs. A cis-acting element in the 3' untranslated region of Rous sarcoma virus (RSV) RNA was found to promote Rev-independent expression of human immunodeficiency virus type 1 Gag proteins. This element was mapped between RSV nucleotides 8770 and 8925 and includes one copy of the direct repeat (DR) sequences flanking the RSV src gene; similar activity was observed for the upstream DR. To address the function of this element in RSV, both copies of the DR sequence were deleted. Subsequently, each DR sequence was inserted separately back into this deleted construct. While the viral construct lacking both DR sequences failed to replicate, constructs containing either the upstream or downstream DR replicated well. In the absence of both DRs, Gag protein levels were severely diminished and cytoplasmic levels of unspliced viral RNA were significantly reduced; replacement of either DR sequence led to normal levels of Gag protein and cytoplasmic unspliced RNA.  相似文献   

11.
In vitro evolution of nucleic acid aptamers is a powerful tool to investigate the structure–function relationship of natural occurring RNA–protein interaction motifs. Otherwise, it also allows the identification of novel RNA-based ligands that can be used to investigate a target’s function in its native environment. However, artifacts have been described during in vitro selection procedures hampering the successful enrichment of aptamers. Here we describe a novel observation, namely the enrichment of pan-protein binding RNA sequences. We demonstrate that evolution of specific target binding sequences originating from a pan-protein binding RNA precursor is possible in general. Our data demonstrate that the mutual co-variation of an ancestor molecule can be applied for the evolution of specific target binding RNA sequences. These results might have implications in the context of the RNA world theory, exemplifying a possible evolutionary route towards protein-specific RNA molecules from a common ancestor.  相似文献   

12.
13.
RNA molecules can adopt stable secondary and tertiary structures, which are essential in mediating physical interactions with other partners such as RNA binding proteins (RBPs) and in carrying out their cellular functions. In vivo and in vitro experiments such as RNAcompete and eCLIP have revealed in vitro binding preferences of RBPs to RNA oligomers and in vivo binding sites in cells. Analysis of these binding data showed that the structure properties of the RNAs in these binding sites are important determinants of the binding events; however, it has been a challenge to incorporate the structure information into an interpretable model. Here we describe a new approach, RNANetMotif, which takes predicted secondary structure of thousands of RNA sequences bound by an RBP as input and uses a graph theory approach to recognize enriched subgraphs. These enriched subgraphs are in essence shared sequence-structure elements that are important in RBP-RNA binding. To validate our approach, we performed RNA structure modeling via coarse-grained molecular dynamics folding simulations for selected 4 RBPs, and RNA-protein docking for LIN28B. The simulation results, e.g., solvent accessibility and energetics, further support the biological relevance of the discovered network subgraphs.  相似文献   

14.
Conclusions The RNA binding sites for several small proteins have been characterised. These sites include double helical regions with hairpins, bulged bases and internal loops. As seen in Flock House virus structure, some proteins may recognise phosphate backbone of the canonical A-form helix not in a sequence-specific manner. If sequence-specific base contacts are to be made, then the A-helic major groove must be widened. This can be accomplished by introducing bulges, internal loops and hairpin loops into double helical regions. In these cases proteins may recognise both distorted backbone conformations and read out base sequences in a widened major groove. Crystallographic studies on complexes of aminoacyl-tRNA synthetase and tRNA showed that even RNAs with stable tertiary fold undergo substantial structural changes upon binding to the synthetases. The structural variability of RNA as well as the ability of RNA to distort upon protein binding may be crucial in RNA-protein interactions.  相似文献   

15.
The Saccharomyces cerevisiae TIF3 gene encodes a 436-amino acid (aa) protein that is the yeast homologue of mammalian translation Initiation factor eIF4B. Tif3p can be divided into three parts, the N-terminal region with an RNA recognition motif (RRM) (aa 1-182), followed in the middle part by a sevenfold repeat of 26 amino acids rich in basic and acidic residues (as 183-350), and a C-terminal region without homology to any known sequence (aa 351-436). We have analyzed several Tif3 proteins with deletions at their N and C termini for their ability (1) to complement a tif3delta strain in vivo, (2) to stimulate Tif3-dependent translation extracts, (3) to bind to single-stranded RNA, and (4) to catalyze RNA strand-exchange in vitro. Here we report that yeast Tif3/eIF4B contains at least two RNA binding domains able to bind to single-stranded RNA. One is located in the N-terminal region of the protein carrying the RRM, the other in the C-terminal two-thirds region of Tif3p. The RRM-containing domain and three of the seven repeat motifs are essential for RNA strand-exchange activity of Tif3p and translation in vitro and for complementation of a tif3delta strain, suggesting an important role for RNA strand-exchange activity in translation.  相似文献   

16.
As a step toward selecting folded proteins from libraries of randomized sequences, we have designed a 'loop entropy reduction'-based phage-display method. The basic premise is that insertion of a long disordered sequence into a loop of a host protein will substantially destabilize the host because of the entropic cost of closing a loop in a disordered chain. If the inserted sequence spontaneously folds into a stable structure with the N and C termini close in space, however, this entropic cost is diminished. The host protein function can, therefore, be used to select folded inserted sequences without relying on specific properties of the inserted sequence. This principle is tested using the IgG binding domain of protein L and the lck SH2 domain as host proteins. The results indicate that the loop entropy reduction screen is capable of discriminating folded from unfolded sequences when the proper host protein and insertion point are chosen.  相似文献   

17.
The iron responsive element binding protein (IRE-BP) regulates iron storage and uptake in response to iron. This control results from the interaction of the IRE-BP with the iron responsive element (IRE), a conserved sequence/structure element located near the 5' end of all ferritin mRNAs and in the 3' UTR of transferrin receptor mRNAs. Proteolysis was used to probe for functional elements of the IRE-BP. Partial chymotrypsin digestion generates a simple digestion pattern yielding fragments of 68, 56, 41, and 30 kDa. The 68 and 30 kDa fragments are derived from a single cleavage at Trp623. Further cleavages of the 68 kDa polypeptide yield the 56 and 41 kDa peptides. A combination of UV-crosslinking and chymotrypsin digestion was used to localize an RNA binding element within the C-terminus of the 68 kDa fragment, between amino acid residues 480 and 623. This region includes cysteine residues 503 and 506 which have been shown to be required for iron-sulfur cluster assembly and for iron regulation of the IRE-BP. Proteolytic fragments of the IRE-BP that contain this RNA binding region can be crosslinked to the IRE but do not bind with high affinity, suggesting that elements within the IRE-BP, in addition to those located between residues 480 and 623, are required for high affinity binding to the IRE.  相似文献   

18.
To assess the influence of RNA sequence/structure on the interaction RNAs with the iron-responsive element binding protein (IRE-BP), twenty eight altered RNAs were tested as competitors for an RNA corresponding to the ferritin H chain IRE. All changes in the loop of the predicted IRE hairpin and in the unpaired cytosine residue characteristically found in IRE stems significantly decreased the apparent affinity of the RNA for the IRE-BP. Similarly, alteration in the spacing and/or orientation of the loop and the unpaired cytosine of the stem by either increasing or decreasing the number of base pairs separating them significantly reduced efficacy as a competitor. It is inferred that the IRE-BP forms multiple contacts with its cognate RNA, and that these contacts, acting in concert, provide the basis for the high affinity of this interaction.  相似文献   

19.
20.
Secondary structure model for 23S ribosomal RNA.   总被引:31,自引:32,他引:31       下载免费PDF全文
A secondary structure model for 23S ribosomal RNA has been constructed on the basis of comparative sequence data, including the complete sequences from E. coli. Bacillus stearothermophilis, human and mouse mitochondria and several partial sequences. The model has been tested extensively with single strand-specific chemical and enzymatic probes. Long range base-paired interactions organize the molecule into six major structural domains containing over 100 individual helices in all. Regions containing the sites of interaction with several ribosomal proteins and 5S RNA have been located. Segments of the 23S RNA structure corresponding to eucaryotic 5.8S and 25 RNA have been identified, and base paired interactions in the model suggest how they are attached to 28S RNA. Functionally important regions, including possible sites of contact with 30S ribosomal subunits, the peptidyl transferase center and locations of intervening sequences in various organisms are discussed. Models for molecular 'switching' of RNA molecules based on coaxial stacking of helices are presented, including a scheme for tRNA-23S RNA interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号