首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Using the radioimmunoassay (RIA) of endothelin (ET), we measured immunoreactive ET (IR-ET) in culture medium of porcine aortic endothelial cells. The immunoreactivity in the medium was compared with the biological activity. The amount of IR-ET released into the medium was calculated at 250-350 pg/10(6) cells/hr. The amount of IR-ET released into the culture medium increased progressively with 3-24 hr of incubation and corresponded to the increase in medium-induced vasoconstriction of rat isolated aorta. When the vasoconstrictor activities in the culture medium were plotted against the IR-ET concentration determined by RIA, the concentration-response curve showed similarity to that obtained with synthetic porcine ET. This RIA system will be a useful for investigating mechanisms of ET secretion from endothelial cells.  相似文献   

2.
We have developed a sensitive and selective radioimmunoassay for porcine/human endothelin (ET1). The assay has a detection limit of 0.62 pg/tube and exhibits no cross-reactivity to atrial natriuretic peptide, arginine vasopressin, or angiotensin II. Procedures were developed for extraction of endothelin from human plasma samples and samples of buffer from endothelial cell incubations using C18 Sep-Pak extraction cartridges. The mean recovery following extraction was approximately 80%. Both bovine and porcine aortic endothelial cells were found to produce immunoreactive endothelin (IR-ET) with porcine cells producing 4.7 +/- 1.1 ng of IR-ET/mg cell protein after 6 hours. Human plasma samples were extracted, assayed and found to contain a mean concentration of 2.0 +/- 0.4 pg/ml of IR-ET.  相似文献   

3.
Porcine big endothelin (big ET-39) at 1 nM, a concentration with no influence on contractile activity in isolated rat aorta, induced a slow-onset and sustained contraction by the pre-incubation with pepsin. When the incubation mixture of big ET-39 with pepsin was analyzed by high-performance liquid chromatography on an octadecyl silica column, two major products of pepsin hydrolysis were obtained; their amino acid sequences were identical with those of 21-residue endothelin (ET-21) and a C-terminal peptide of big ET-39, big ET (22-39), respectively. On the other hand, no degradation of ET-21 was observed by pepsin treatment. These results indicate that pepsin specifically cleaves a Trp21-Val22 bond in the big ET-39 molecule, producing ET-21 and big ET (22-39). Thus, the possibility that pepsin-like aspartic protease may participate in the conversion of big ET-39 to ET-21 in vivo warrants further attention.  相似文献   

4.
Using a specific and sensitive radioimmunoassay (RIA) for the carboxyl terminal tail of endothelin (ET) (His16-Trp21), we have confirmed the presence of the converting activity from synthetic human big ET-1 to ET-1 in the homogenate of cultured bovine aortic endothelial cells. The optimal pHs for the converting activities were found at pH 3.0 and pH 7.0. The activity at pH 3.0 was completely inhibited by pepstatin A, whereas the activity at pH 7.0 was not affected by known various protease inhibitors except EDTA and EGTA. When the products from big ET-1 were analyzed on an ODS and a CN columns, only ET-1 was detected at pH 7.0, but various ET-like immunoreactivities other than ET-1 were detected at pH 3.0. These findings strongly suggest that mature ET-1 is formed from big ET-1 in the endothelial cells by a metal-dependent neutral protease.  相似文献   

5.
Incubation of big endothelin-1 (big ET-1(1-39] with either the cytosolic or membrane fraction obtained from cultured endothelial cells, resulted in an increase in immunoreactive-endothelin (IR-ET), which was markedly inhibited by metal chelators. Phosphoramidon, a metalloproteinase inhibitor, specifically suppressed the membrane fraction-induced increase in IR-ET, whereas the increase in IR-ET observed with the cytosolic fraction was not influenced by phosphoramidon. Reverse-phase (RP)-HPLC of the incubation mixture of big ET-1 with the cytosolic or membrane fraction revealed one major IR-ET component corresponding to the elution position of synthetic ET-1(1-21). Simultaneously, immunoreactivities like the C-terminal fragment (CTF22-39) of big ET-1 were present, as deduced from the RP-HPLC coupled with the radioimmunoassay for CTF. Our results indicate the presence of two types of metalloproteinases, which convert big ET-1 to ET-1 via a single cleavage between Trp21 and Val22, in vascular endothelial cells.  相似文献   

6.
Incubation of big endothelin-1 (big ET-1, 1-39) with the membrane fraction obtained from cultured vascular smooth muscle cells (VSMCs) resulted in an increase in immunoreactive-ET (IR-ET), which was inhibited by EDTA but not by phosphoramidon, a metalloproteinase inhibitor. When the incubation was performed in the presence of N-ethylmaleimide (NEM), the generation of IR-ET was markedly augmented and this augmentation was abolished by phosphoramidon. The pH profile for IR-ET generation in the presence of NEM was apparently distinct from that observed in the absence of NEM. Reverse-phase HPLC of the incubation mixture with or without NEM revealed one major IR-ET component corresponding to the elution position of synthetic ET-1 (1-21). When the cultured VSMCs were incubated with big ET-1, a conversion to the mature ET-1 was observed. This ET-1 generation from exogenously applied big ET-1 was markedly inhibited by the addition of phosphoramidon, although the inhibitor did not influence the basal secretion of ET-1-like materials. These results suggest the presence of two types of metalloproteinases, which can generate ET-1, in VSMCs. The possibility that ET-1 functions in an autocrine manner to control the cardiovascular system warrants further attention.  相似文献   

7.
The presence of immunoreactive endothelin (IR-ET) in human saliva and rat parotid gland was investigated by radioimmunoassay. The IR-ET concentration (mean +/- SEM) in saliva taken from normal volunteers was 2.0 +/- 0.2 pmol/l (n = 15). The IR-ET concentration in rat parotid gland was 19.2 +/- 2.2 fmol/g wet weight (n = 10). Fast protein liquid chromatography (FPLC) of human saliva extract revealed 6 peaks; one peak eluting in the void volume, one in a position between ET-1 and -3, and the other four in the positions of synthetic ET-1, -2, -3 and big ET(1-38), respectively. A similar pattern of rat parotid gland extract was noted with FPLC, except that there was no peak after the void volume. Presence of endothelin, a potent growth factor, in saliva and salivary gland points to a role in maintaining the integrity of the oral and gastrointestinal tract mucosa.  相似文献   

8.
Using specific radioimmunoassays (RIAs) for endothelin (ET) and big ET, we have studied whether ET and related peptides are secreted from renal epithelial cell lines (LLCPK1 and MDCK) of non-endothelial origin. Dilution curves of extracts of conditioned media from both LLCPK1 and MDCK cell lines were parallel to those of standard porcine (p) ET and big pET in each RIA. Both cell lines incubated in serum-free medium secreted ET- and C-terminal fragment (CTF)-like immunoreactivity (LI) of big ET as a function of time. Reverse-phase HPLC coupled with both RIAs of the extracted media from both cell lines revealed a single component with ET-LI coeluting with pET(1-21) and several components with CTF-LI, one corresponding to the elution position of big pET(1-39), one to its CTF(22-39), and the others eluting earlier than CTF. These data indicate that endothelin and related peptides are synthesized by and secreted from cells other than endothelial cells.  相似文献   

9.
When cultured porcine aortic endothelial cells (ECs) were incubated with porcine big endothelin-1 (bit ET-1(1-39)), there was a time-dependent increase in immunoreactive (IR)-ET in the culture supernatant, in addition to an endogenous IR-ET release fron the cells. Reverse-phase HPLC of the culture supernatant revealed one major IR-ET component corresponding to the elution position of synthetic ET-1, thereby indicating that the additional increase in IR-ET was due to the conversion of big ET-1 to mature ET-1(1-21). Phosphoramidon, a metalloproteinase inhibitor, strongly suppressed this increase in IR-ET as well as the endogenous IR-ET release. Cultured vascular smooth muscle cells (VSMCs) also released IR-ET. The apparent conversion of exogenously applied big ET-1 to ET-1 and its inhibition by phosphoramidon were observed using cultured VSMCs, although the enzyme inhibitor did not influence the basal secretion of IR-ET from VSMCs. These results suggest that both cultured ECs and VSMCs can generate ET-1 from exogenously applied big ET-1 via action of the same type of phosphoramidon-sensitive metalloproteinase, which is also involved in the endogenous ET-1 generation in ECs.  相似文献   

10.
We have developed a rapid and convenient assay for measurement of the action of endothelin (ET) converting enzyme (ECE) using the scintillation proximity assay (SPA) principle. On incubation of [125I]big ET-1 at 37 degrees C for 0.5-6 hr with an enzyme preparation, the reaction was terminated by the addition of an ET-1-specific antibody formulated in a buffer designed to shift the pH to alkaline. The antibody was allowed to come to equilibrium for 1 hr at room temperature and the amount of ET-1 produced, detected in a single step by the addition of protein A SPA beads. Using this assay, ECE activities of enzyme preparations obtained from porcine cultured endothelial cells and rat lung were clearly detected. These activities were inhibited by phosphoramidon in a concentration-dependent manner. The SPA based assay is homogeneous requiring no separation steps and takes a half day to complete. This method is therefore suitable for the high throughput screening of potential ECE inhibitors.  相似文献   

11.
We investigated the molecular forms of endothelin (ET) related peptides in culture supernatant of porcine aortic endothelial cells by high performance liquid chromatography coupled with radioimmunoassays for ET related peptides. We isolated and sequenced a C-terminal peptide (big ET-1(22-39] of big ET-1(1-39) and its N-terminal truncated form (big ET-1(23-39] in addition to ET-1(1-21) and its oxidized form, [Met7 (0)]ET-1(1-21). The total contents of the two C-terminal peptides of big ET-1(1-39) are approximately equal to those of ET-1(1-21) and its oxidized form on a molar basis in the culture supernatant. Furthermore, we isolated big ET-1(1-39) although its content is approximately 2% of that of ET-1(1-21). These results strongly suggest that ET-1(1-21) and big ET-1(22-39) are generated from big ET-1(1-39) by specific processing between Trp21-Val22.  相似文献   

12.
A specific radioimmunoassay (RIA) for the carboxyl-terminal fragment (CTF) of big porcine endothelin (pET), an intermediate form of pET, was established to characterize big ET-like and its CTF-like immunoreactivity (LI) secreted from cultured bovine and human endothelial cells (EC). The antibody used crossreacted equally with big pET(1-39) and its CTF(22-39), but not with pET(1-21). Serial dilution curves of the culture media from bovine and human EC were parallel to that of standard CTF. Reverse-phase HPLC coupled with RIAs for big ET and ET of the culture media from bovine and human EC revealed essentially the same elution profiles: two major CTF-LI components, one corresponding to big pET(1-39) and the other to its CTF(22-39), in addition to one major ET-LI component corresponding to pET(1-21). The amounts of CTF-LI were almost equal to that of ET-LI on a molar basis. These data suggest that big ET is processed by a putative ET converting enzyme to yield its CTF and the mature ET(1-21) in EC.  相似文献   

13.
Time-dependent secretion of immunoreactive-endothelin (IR-ET) from cultured porcine aortic endothelial cells was markedly suppressed by phosphoramidon is due to proteinase inhibitor. Analysis of the culture supernatant with or without phosphoramidon by reverse-phase high performance liquid chromatography confirmed that the suppression of IR-ET secretion by phosphoramidon is due to a decreae in secretion of endothelin-1-like materials. The secretion of the C-terminal fragment (CTF, 22-39)-like materials of big ET-1 was also decreased by phosphoramidon, whereas there was an increased secretion of big ET-1-like materials. These data strongly suggest that phosphoramidon suppresses the secretion of ET-1 from cultured endothelial cells by inhibiting the conversion of big ET-1 to ET-1. It is most likely that phosphoramidon-sensitive metalloproteinase is responsible for the processing of big ET-1 in vascular endothelial cells.  相似文献   

14.
Detection of immunoreactive endothelin in plasma of hemodialysis patients   总被引:2,自引:0,他引:2  
Two types of radioimmunoassay (RIA) methods for measuring endothelin (ET) in human plasma were developed. One was an extraction procedure using a Sep-Pak C18 cartridge, the other being a direct method. By the extraction method, plasma ET levels were lower than the detectable limit (7 pg/ml) in normal subjects and elevated in hemodialysis patients. The absolute values obtained via the direct method were 20-times higher than those from extraction. Gel-filtration experiments revealed that this discrepancy was mainly due to immunoreactive (IR-) endothelin-like substances of high molecular mass near 11.6 kDa (large IR-ET). Extraction of the peptide by the C18 cartridge could eliminate interference by large IR-ET and is important in the accurate measurement of ET concentrations in plasma.  相似文献   

15.
Effects of various protease inhibitors on the conversion of big endothelin (ET)-1 to ET-1 in cultured endothelial cells were analyzed. A metal protease inhibitor, phosphoramidon, decreases the amount of ET-1 and increase that of big ET-1 released. This effect is dose-dependent and not nonspecific. When the contents of ET-1 and big ET-1 in the cells after culturing in the medium with or without phosphoramidon were measured, the ratio of ET-1: big ET-1 in the cells was 3.3 : 1 and phosphoramidon inverted the ratio in the cells to 1 : 3.5. These data strongly suggest that a phosphoramidon-sensitive protease converts big ET-1 to mature ET-1 intracellularly.  相似文献   

16.
Endothelin-1 (ET-1), a 21 amino-acid potent vasoconstrictor peptide, is produced from the biologically inactive intermediate big ET-1 via an endoproteolytic cleavage between Trp-21 and Val-22 by endothelin converting enzyme (ECE). cDNA sequence analysis predicts that the two other members of the endothelin family, ET-2 and ET-3, are also generated from the corresponding intermediates called big ET-2 and big ET-3, respectively. The metalloproteinase inhibitor phosphoramidon inhibited the conversion of big ET-1 into mature ET-1 both in vivo and in cultured endothelial cells, suggesting that ECE may be a neutral metalloproteinase. In this study, we solubilized and partially purified ECE from the membrane fraction of porcine lung. Using gel filtration chromatography, we separated two distinct ECE activities, designated M1 (apparent molecular mass approx. 300 kDa) and M2 (approx. 65 kDa). Optimum pH for the cleavage of big ET-1 by M1 and M2 was 7.0 and 7.5, respectively. M1 efficiently converted human big ET-1(1–38) to ET-1, but not human big ET-2(1–37) or human big ET-3(1–41)-amide. In contrast, M2 converted both big ET-1 and big ET-2, but not big ET-3. M1 was inhibited by phosphoramidon (IC50 approx. 1 μM) but not by thiorphan or bacitracin. In contrast, M2 was inhibited by much lower concentrations of phosphoramidon (IC50 approx. 0.3 nM), as well as by thiorphan and bacitracin. ECE activity in M1 was able to bind to a concanavalin A-agarose column and was eluted by α-methyl-d-glucoside, indicating that the ECE is glycosylated. From these results, M1 and M2 from the porcine lung membrane are similar to the candidate of ECE in endothelial cells and neutral endopeptidase in kidney (EC 3.4.24.11), respectively. Taken in conjunction with the previous finding that neither thiorphan nor bacitracin affected the conversion of endogenously synthesized big ET-1 in cultured endothelial cells, we conclude that physiologically relevant ECE found in the endothelial cells is more similar to M1 than to M2.  相似文献   

17.
This is the first report clearly demonstrating the presence of endothelin (ET) converting enzyme (ECE) in non-vascular cells (renal epithelial cell lines, MDCK and LLC-PK1). ECEs derived from these epithelial cells were very similar to the endothelial ECE in the following biochemical properties: 1) The optimum pH was 7.0; 2) the Km value for big ET-1 was approximately 30 microM; 3) the enzyme was potently inhibited by EDTA, o-phenanthroline and phosphoramidon; and 4) the enzyme did not convert big ET-2 or big ET-3. These data suggest that phosphoramidon-sensitive ECE is involved in the processing of big ET-1 to ET-1 in the renal tubule.  相似文献   

18.
Incubation of big endothelin-3 (big ET-3(1-41)) with the membrane fraction obtained from cultured endothelial cells (ECs) resulted in an increase in immunoreactive-ET (IR-ET). This increasing activity was markedly suppressed by phosphoramidon, which is known to inhibit the conversion of big ET-1(1-39) to ET-1(1-21). Reverse-phase HPLC of the incubation mixture of the membrane fraction with big ET-3 revealed one major IR-ET component corresponding to the elution position of synthetic ET-3(1-21). When the cultured ECs were incubated with big ET-3, a conversion to the mature ET-3, as well as an endogenous ET-1 generation, was observed. Both responses were markedly suppressed by phosphoramidon. By the gel filtration of 0.5% CHAPS-solubilized fraction of membrane pellets of ECs, the molecular mass of the proteinase which converts big ET-1 and big ET-3 to their mature form was estimated to be 300-350 kDa. Phosphoramidon almost completely abolished both converting activities of the proteinase. We conclude that the above type of phosphoramidon-sensitive metalloproteinase functions as an ET-converting enzyme to generate the mature form from big ET-1 and big ET-3 in ECs.  相似文献   

19.
20.
Analysis of big endothelin-1 digestion by cathepsin D   总被引:2,自引:0,他引:2  
Digestion of big endothelin (ET)-1 by cathepsin D, which is the only substantially identified protease showing ET converting enzyme activity, was characterized. Increased doses of cathepsin D showed decrease of immunoreactive (ir-) ET produced from big ET-1. Time course of big ET-1 conversion showed marked increase of ir-ET in a relatively short period, but further incubation resulted in the decrease of ir-ET. Incubation at various pHs with different doses of cathepsin D revealed that low doses of cathepsin D yielded the maximum production of ir-ET at pH 3.5-4.0, but higher doses of cathepsin D showed a bimodal curve of ir-ET production, which may be due to degradation of ir-ET. HPLC analysis revealed that cathepsin D cleaves Asn18-Ile19 bond in addition to Trp21-Val22 bond of big ET-1. These data suggests cathepsin D is not a physiological endothelin converting enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号