首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bonal R  Espelta JM  Vogler AP 《Oecologia》2011,167(4):1053-1061
Trophic interactions can trigger the development of exaggerated specialized characters and promote morphological diversification. For example, acorn weevils (genus Curculio) present strikingly long rostrums, which are used by females to perforate oviposition holes through the seed coat. Species exhibiting longer rostrums are known to exploit larger acorns, and therefore rostrum length is thought to be subject to selection to match the preferred acorn type. However, rostrum length is strongly correlated with body size, and morphological divergence could result from either selection on rostrum length for optimal food exploitation or from other pressures acting on body size. We collected infested acorns at oak forests where the large Curculio elephas and the small-bodied Curculio glandium co-occur. There were no interspecific differences in adult female body size to rostrum length allometric relationships, and rostrum length is equally correlated with body size in either species. MtDNA-based species identification showed that C. glandium larvae were present within acorns of all sizes, whereas C. elephas larvae were restricted to acorns above a minimum size, irrespective of oak species. Hence, exploitation of large acorns can hardly have triggered rostrum enlargement, as the small sized C. glandium adults (with short rostrums) could perforate and oviposit in both small and large acorns. Rather, increased rostrum length is probably a by-product of the larger body sizes of individuals emerging from bigger acorns, which allow increased larval size and enhance larval survival likelihood. Summarizing, when exaggerated feeding traits co-vary with other body features, interspecific morphological variability may result from contrasting selective pressures acting on these correlated characters.  相似文献   

2.
Toju H  Sota T 《Molecular ecology》2006,15(13):4161-4173
Japanese camellia (Camellia japonica) and its seed predator, the camellia weevil (Curculio camelliae), provide a notable example of a geographic mosaic of coevolution. In the species interaction, the offensive trait of the weevil (rostrum length) and the defensive trait of the plant (pericarp thickness) are involved in a geographically-structured arms race, and these traits and selective pressures acting on the plant defence vary greatly across a geographical landscape. To further explore the geographical structure of this interspecific interaction, we tested whether the geographical variation in the weevil rostrum over an 800-km range along latitude is attributed to local natural selection or constrained by historical (phylogeographical) events of local populations. Phylogeographical analyses of the mitochondrial DNA sequences of the camellia weevil revealed that this species has experienced differentiation into two regions, with a population bottleneck and subsequent range and/or population expansion within each region. Although these phylogeographical factors have affected the variation in rostrum length, analyses of competing factors for the geographical variation revealed that this pattern is primarily determined by the defensive trait of the host plant rather than by the effects of historical events of populations and a climatic factor (annual mean temperature). Thus, our study suggests the overwhelming strength of coevolutionary selection against the effect of historical events, which may have limited local adaptation.  相似文献   

3.
Resource competition is frequently strong among parasites that feed within small discrete resource patches, such as seeds or fruits. The properties of a host can influence the behavioural, morphological and life‐history traits of associated parasites, including traits that mediate competition within the host. For seed parasites, host size may be an especially important determinant of competitive ability. Using the seed beetle, Callosobruchus maculatus, we performed replicated, reciprocal host shifts to examine the role of seed size in determining larval competitiveness and associated traits. Populations ancestrally associated with either a small host (mung bean) or a large one (cowpea) were switched to each other's host for 36 generations. Compared to control lines (those remaining on the ancestral host), lines switched from the small host to the large host evolved greater tolerance of co‐occurring larvae within seeds (indicated by an increase in the frequency of small seeds yielding two adults), smaller egg size and higher fecundity. Each change occurred in the direction predicted by the traits of populations already adapted to cowpea. However, we did not observe the expected decline in adult mass following the shift to the larger host. Moreover, lines switched from the large host (cowpea) to the small host (mung bean) did not evolve the predicted increase in larval competitiveness or egg size, but did exhibit the predicted increase in body mass. Our results thus provide mixed support for the hypothesis that host size determines the evolution of competition‐related traits of seed beetles. Evolutionary responses to the two host shifts were consistent among replicate lines, but the evolution of larval competition was asymmetric, with larval competitiveness evolving as predicted in one direction of host shift, but not the reverse. Nevertheless, our results indicate that switching hosts is sufficient to produce repeatable and rapid changes in the competition strategy and fitness‐related traits of insect populations.  相似文献   

4.
Aim We tested the hypothesis that the evolutionary fates of two sister groups (Alligatoroidea and Crocodyloidea) are differently constrained by phylogenetic and ecological (functional) factors in the face of climatic change. Location Global. Methods We quantified disparity in skull rostrum shape by means of geometric morphometrics. Mechanical performance of the rostrum was analyzed by applying beam theory calculations to morphological data and experimentally measured bite force. The phylogeny was expressed in the form of principal coordinates, the first ones of which were used as a set of explanatory variables. Extents of species occurrence were computed using species distribution maps. Finally, species maximum skull size were measured and considered as a proxy of maximum body size. We performed variation partitioning analyses in order to compare differential contributions of phylogenetic and ecological factors in Alligatoroidea and Crocodyloidea. Results Alligatoroidea show higher ‘pure’ historical components than Crocodyloidea in explaining both rostrum shape and extent of occurrence (after controlling for body size). On the contrary, geometric variation of skull rostra of Crocodyloidea unequivocally shows a higher ‘pure’ functional component (linked to performance on prey capture) and a higher phylogenetically structured environmental variation than those found in Alligatoroidea. Results obtained for body size variation are consistent with these patterns. In Alligatoroidea, body size variation contains a higher phylogenetic signal than in Crocodyloidea. Main Conclusions Our results suggest that Crocodyloidea and Alligatoroidea may react differently when faced with significant environmental changes. We predict that global climatic changes will have a more important effect on Crocodyloidea than in Alligatoroidea by (1) promoting trait shift, adaptation to the new diet and speciation and (2) modifying the geographical range distribution of species (which may track favourable ecological conditions).  相似文献   

5.
Several prominent evolutionary theories propose mechanisms whereby the evolution of a defensive trait or suite of traits causes significant shifts in species diversification rate and niche evolution. We investigate the role of cuticular spines, a highly variable morphological defensive trait in the hyperdiverse ant genus Polyrhachis, on species diversification and geographic range size. Informed by key innovation theory and the escape-and-radiate hypothesis, we predicted that clades with longer spines would exhibit elevated rates of diversification and larger range sizes compared to clades with shorter spines. To address these predictions, we estimated phylogenetic relationships with a phylogenomic approach utilizing ultraconserved elements and compiled morphological and biogeographic trait databases. In contrast to the first prediction, we found no association between diversification rate and any trait (spine length, body size and range size), with the sole exception of a positive association between range size and diversification in one of three trait-based diversification analyses. However, we recovered a positive phylogenetic correlation between spine length and geographic range size, suggesting that spines promote expanded geographic range. Notably, these results were consistent across analyses using different phylogenetic inference approaches and spine trait measurement schemes. This study provides a rare investigation of the role of a defensive trait on geographic range size, and ultimately supports the hypothesis that defensive spines are a factor in increased range size in Polyrhachis ants. Furthermore, the lack of support for an association between spines and diversification, which contrasts with previous work demonstrating a positive association between spines and diversification rate, is intriguing and warrants further study.  相似文献   

6.
One of the major controversies in evolutionary biology concerns the processes underlying macroevolutionary patterns in which prolonged stasis is disrupted by rapid, short-term evolution that leads species to new adaptive zones. Recent advances in the understanding of contemporary evolution have suggested that such rapid evolution can occur in the wild as a result of environmental changes. Here, we examined a novel hypothesis that evolutionary stasis is punctuated by co-evolutionary arms races, which continuously alter adaptive peaks and landscapes. Based on the phylogeny of long-mouthed weevils in the genus Curculio , likelihood ratio tests showed that the macroevolutionary pattern of the weevils coincides with the punctuational evolution model. A coalescent analysis of a species, Curculio camelliae , the mouthpart of which has diverged considerably among populations because of an arms race with its host plant, further suggested that major evolutionary shifts had occurred within 7000 generations. Through a microevolutionary analysis of the species, we also found that natural selection acting through co-evolutionary interactions is potentially strong enough to drive rapid evolutionary shifts between adaptive zones. Overall, we posit that co-evolution is an important factor driving the history of organismal evolution.  相似文献   

7.
To explore the relationship between morphological change and species diversification, we reconstructed the evolutionary changes in skull size, skull shape, and body elongation in a monophyletic group of eight species that make up salamander genus Triturus. Their well‐studied phylogenetic relationships and the marked difference in ecological preferences among five species groups makes this genus an excellent model system for the study of morphological evolution. The study involved three‐dimensional imagery of the skull and the number of trunk vertebrae, in material that represents the morphological, spatial, and molecular diversity of the genus. Morphological change largely followed the pattern of descent. The reconstruction of ancestral skull shape indicated that morphological change was mostly confined to two episodes, corresponding to the ancestral lineage that all crested newts have in common and the Triturus dobrogicus lineage. When corrected for common descent, evolution of skull shape was correlated to change in skull size. Also, skull size and shape, as well as body shape, as inferred from the number of trunk vertebrae, were correlated, indicating a marked impact of species' ecological preferences on morphological evolution, accompanied by a series of niche shifts, with the most pronounced one in the T. dobrogicus lineage. The presence of phylogenetic signal and correlated evolutionary changes in skull and body shape suggested complex interplay of niche shifts, natural selection, and constraints by a common developmental system. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 243–255.  相似文献   

8.
The consequences of sex‐specific selection for patterns of diversification remain poorly known. Because male secondary sexual traits are typically costly to express, and both costs and benefits are likely to depend on ambient environment and individual condition, such traits may be expected to diversify via changes in reaction norms as well as the scaling of trait size with body size (static allometry). We investigated morphological diversification within two species of Australian neriid flies (Telostylinus angusticollis, Telostylinus lineolatus) by rearing larvae from several populations on larval diets varying sixfold in nutrient concentration. Mean body size varied among populations of T. angusticollis, but body size reaction norms did not vary within either species. However, we detected diversification of reaction norms for body shape in males and females within both species. Moreover, unlike females, males also diversified in static allometry slope and reaction norms for static allometry slope of sexual and nonsexual traits. Our findings reveal qualitative sex differences in patterns of morphological diversification, whereby shape–size relationships diversify extensively in males, but remain conserved in females despite extensive evolution of trait means. Our results highlight the importance of incorporating plasticity and allometry in studies of adaptation and diversification.  相似文献   

9.
10.
Evolutionary biologists are largely polarized in their approaches to integrating microevolutionary and macroevolutionary processes. Neo-Darwinians typically seek to identify population-level selective and genetic processes that culminate in macroevolutionary events. Epigeneticists and structuralists, on the other hand, emphasize developmental constraints on the action of natural selection, and highlight the role of epigenetic shifts in producing evolutionary change in morphology. Accordingly, the ways in which these paradigms view and address morphological contrasts between classes of related organisms differ. These paradigms, although seldomly explicitly stated, emerge in paleoanthropology as well. Considerations of postcranial morphological contrasts between archaic and modern humans typically fall into one of two broad interpretive models. The first derives from the neo-Darwinian perspective and holds that evolution in the postcranial skeleton was largely mosaic (operating in a particulate manner), and that temporal change in specific traits informs us about behavioral shifts or genetic evolution affecting isolated anatomical regions (i.e., adaptive behavioral inferences can be made from comparative studies of individual trait complexes). The alternative model follows from the epigeneticist paradigm and sees change in specific postcranial traits as correlated responses to change in overall body form (involving shifts in regulation of skeletal growth, or selective and developmental responses to broad adaptive shifts). By this view, integration of functional systems both constrains and directs evolution of various traits, and morphological contrasts inform us about overall change in body form related to change in such things as overall growth patterns, climatic adaptation, and technological dependency. These models were tested by confirmatory factor analysis using measures of upper body form and upper limb morphological traits in Eurasian Neandertal and early modern fossils and recent human samples. Results indicate (1) a model of morphological integration fits the data better than a model of no integration, but (2) this integration accounts for less than half of the variance in upper limb traits, suggesting a high degree of tolerance for particulate evolution in the context of an integrated upper body plan. Significant relationships were detected between joint shapes and body size, between humeral shaft shape and body size and chest shape, and between measures of biomechanical efficiency and robusticity. The observed morphological differences between late archaic and early modern humans reflect particulate evolution in the context of constraints imposed by genetic and morphological integration. While particulate approaches to interpreting the fossil record appear to be justified, attention must also be paid to delineating the nature and extent of morphological integration and its role in both constraining and producing observed patterns of variation between groups. Confirmatory factor analysis provides a means of examining trait covariance matrices, and serves as a useful method of identifying patterns of integration in morphology. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Toju H  Sota T 《Biology letters》2006,2(4):539-542
Coevolution of exaggerated morphologies between insects and plants is a well-known but poorly understood phenomenon in evolutionary biology. In the antagonistic interaction between a seed-predatory insect, the camellia weevil (Curculio camelliae), and its host plant, Japanese camellia (Camellia japonica), we examined the evolutionary trajectory of an exaggerated offensive trait of the weevil (rostrum length) in terms of scaling relationship. Sampling throughout Japan revealed that the ratio of the rostrum length to overall body size was correlated with the ratio of the pericarp thickness to overall fruit size across the localities. We found a geographical interpopulation divergence in a parameter pertaining to the allometric equation of rostrum length (the coefficient a in y=axb, where y and x denote rostrum and body lengths, respectively), and the pattern of geographical differentiation in the allometric coefficient was closely correlated with the variation in the pericarp thickness of Japanese camellia. Our results provide a novel example of a geographically diverged scaling relationship in an insect morphology resulting from a coevolutionary arms race with its host plant.  相似文献   

12.
Lizards in the genus Anolis have radiated extensively within and among islands in the Caribbean. Here, I provide a prospectus for identifying genes underlying adaptive phenotypic traits in anoles. First I review patterns of diversification in Anolis and the important morphological axes along which divergence occurs. Then I discuss two features of anole diversification, the repeated, convergent evolution of ecomorphs, and phenotypic divergence among populations within species, that provide opportunities to identify genes underlying adaptive phenotypic variation. While small clutch size and difficulty with captive rearing currently limit the utility of quantitative trait locus analyses, comparative analyses of gene expression, and population genomic approaches are promising.  相似文献   

13.
Seed size and cotyledon morphology are two key juvenile traits that have evolved in response to changes in plant species life-history strategies and habitat associations. Correlations of these traits with each other and with other juvenile traits were examined for 70 species of trees and shrubs in Kibale National Park, Uganda. Although species with photosynthetic cotyledons were more abundant than in other tropical floras, both univariate and multivariate analyses supported trait associations expected from the literature. Trait values varied continuously across species, yet mean trait values differed significantly among habitat association types. Species with large seeds, large seedlings, thick storage cotyledons, slow germination, large-stature adults, and dispersal by large animals were common in forest and gap habitats. An opposite suite of traits was common in open habitats (grassland and edge). Analyses incorporating phylogeny (independent contrasts and omnibus tests) confirmed that these suites of traits showed correlated evolution. Cotyledon functional morphology yielded a strong phylogenetic signal, while seed mass was labile. Nevertheless, contingent change tests found that evolutionary change from photosynthetic to reserve cotyledons was more likely when disperser and perhaps seed size of ancestral species were already large, suggesting a strong interdependency among these traits.  相似文献   

14.
Plant/seed-eater pollinators mutualisms involve a plant pollinated by an insect whose larvae develop by eating a fraction of host-plant seeds. The outcome of the interaction therefore depends on the number of ovules fertilized by adult visits and the number of seeds destroyed by larvae. Among the very few cases of such mutualisms reported so far is the globeflower-globeflower flies mutualism, which is unique in that it involves several congeneric fly species (Chiastocheta genus) coexisting within a single host-plant species, Trollius europaeus. These species exhibit contrasted oviposition behaviors resulting in a more or less beneficial outcome for the plant. We designed an adaptive dynamics model to investigate how morphological traits of globeflower could affect the evolution of oviposition in its pollinating flies. Three fly traits (flower age at oviposition, clutch size and the level of avoidance of already parasitized flowers) and one plant trait (closed or open corolla) were examined. Whatever the shape of the flower, evolutionary branching occurs between early and late ovipositing flies, driven by strong competition among larvae within a fruit. Once this branching occurred, the closed shape of the corolla is likely to offer a better protection to eggs of early but not of late ovipositing flies. The difference in egg survival results in higher competition among early larvae and thus selects for decreased clutch size in early flies. This can be seen as a first step in the evolution of a mutualistic behavior. The prediction of our model fits field observations of fly behavior, giving theoretical support to the hypothesis of fly sympatric speciation within its host plant. Moreover, flower closed globe shape can be positively selected in globeflowers as it results in a reduction of parasitism strength. This last evolution therefore leads to a stable mutualism between globeflowers and globeflower flies.  相似文献   

15.
Explaining large‐scale patterns of variation in body size has been considered a central question in ecology and evolutionary biology because several life‐history traits are directly linked to body size. For ectothermic organisms, little is known about what processes influence geographic variation in body size. Changes in body size and sexual size dimorphism (SSD) have been associated with environmental variables, particularly for Bruchinae insects, which feed exclusively on seeds during the larval stage. However, the effect of important seed traits on body size variation has rarely been investigated, and whether SSD varies substantially among populations within bruchine species is poorly known. Using the seed‐feeding beetle Acanthoscelides macrophthalmus infesting its host plant Leucaena leucocephala, we investigated whether specific seed traits (hardness, size, water content, carbon/nitrogen ratio, and phenolic content) were determinant in generating geographic variation in body size and SSD of A. macrophthalmus. We also examined the relationships between body size and SSD with latitude and altitude. The body size of both sexes combined was not related to latitude, altitude, and any of the physical and chemical seed traits. However, the female body size tended to vary more in size than the males, generating significant variation in SSD in relation to latitude and altitude. The females were the larger sex at higher latitudes and at lower altitudes, precisely where seed water content was greater. Therefore, our results suggest that water content was the most important seed trait, most severely affecting the females, promoting geographic variation in SSD of A. macrophthalmus.  相似文献   

16.
Seed size is a key functional trait that affects plant fitness at the seedling stage and may vary greatly with species fruit size, growth form and fecundity. Using structural equation modelling (SEM) and correlated trait evolution analysis, we investigated the interaction network between seed size and fecundity, postfire regeneration strategy, fruit size, plant height and serotiny (on-plant seed storage) among 82 species of the woody shrub genus, Hakea, with a wide spectrum of seed sizes (2–500 mg). Seed size is negatively correlated with fecundity, while fire-killed species (nonsprouters) produce more seeds than resprouters though they are of similar size. Seed size is unrelated to plant height and level of serotiny while it scales allometrically with fruit size. A strong phylogenetic signal in seed size revealed phylogenetic constraints on seed size variation in Hakea. Our analyses suggest a causal relationship between seed size, fecundity and postfire regeneration strategy in Hakea. These results demonstrate that fruit size, fecundity and evolutionary history have had most control over seed size variation among Hakea species.  相似文献   

17.
Understanding how ecological interactions have shaped the evolutionary dynamics of species traits remains a challenge in evolutionary ecology. Combining trait evolution models and phylogenies, we analysed the evolution of characters associated with seed dispersal (fruit size and colour) and herbivory (spines) in Neotropical palms to infer the role of these opposing animal–plant interactions in driving evolutionary patterns. We found that the evolution of fruit colour and fruit size was associated in Neotropical palms, supporting the adaptive interpretation of seed‐dispersal syndromes and highlighting the role of frugivores in shaping plant evolution. Furthermore, we revealed a positive association between fruit size and the presence of spines on palm leaves, bracteas and stems. We hypothesize that interactions between palms and large‐bodied frugivores/herbivores may explain the evolutionary relationship between fruit size and spines. Large‐bodied frugivores, such as extinct megafauna, besides consuming the fruits and dispersing large seeds, may also have consumed the leaves or damaged the plants, thus simultaneously favouring the evolution of large fruits and defensive structures. Our findings show how current trait patterns can be understood as the result of the interplay between antagonistic and mutualistic interactions that have happened throughout the evolutionary history of a clade.  相似文献   

18.
Abstract.— The interaction between Ficus (Moraceae) and their pollinating wasps (Chalcidoidea: Agaonidae; more than 700 species-specific couples) is one of the most specialized mutualisms found in nature. Both partners of this interaction show extensive variation in their respective biology. Here we investigate Ficus life-history trait evolution and fig/fig wasp coadaptation in the context of a well-resolved molecular phylogeny. Mapping out variations in Ficus life-history traits on an independently derived phylogeny constructed from ribosomal DNA sequences (external and internal transcribed spacer) reveals several parallel transitions in Ficus growth habit and breeding system. Convergent trait evolution might explain the discrepancies between morphological analyses and our molecular reconstruction of the genus. Morphological characters probably correlate with growth habit and breeding system and could therefore be subject to convergent evolution. Furthermore, we reconstruct the evolution of Ficus inflorescence characters that are considered adaptations to the pollinators. Our phylogeny reveals convergences in ostiole shape, stigma morphology, and stamen:ovule ratio. Statistical tests taking into account the phylogenetic relationship of the species show that transitions in ostiole shape are correlated with variation in wasp pollinator head shape, and evolutionary changes in stigma morphology and stamen:ovule ratio correlate with changes in the pollination behavior of the associated wasp. These correlations provide evidence for reciprocal adaptations of morphological characters between these mutualistic partners that have interacted over a long evolutionary time. In light of previous ecological studies on mutualism, we discuss the adaptive significance of these correlations and what they can tell us about the coevolutionary process occurring between figs and their pollinators.  相似文献   

19.
Functional traits have been fundamental to the evolution and diversification of entire fish lineages on coral reefs. Yet their relationship with the processes promoting speciation, extinction and the filtering of local species pools remains unclear. We review the current literature exploring the evolution of diet, body size, water column use and geographic range size in reef‐associated fishes. Using published and new data, we mapped functional traits on to published phylogenetic trees to uncover evolutionary patterns that have led to the current functional diversity of fishes on coral reefs. When examining reconstructed patterns for diet and feeding mode, we found examples of independent transitions to planktivory across different reef fish families. Such transitions and associated morphological alterations may represent cases in which ecological opportunity for the exploitation of different resources drives speciation and adaptation. In terms of body size, reconstructions showed that both large and small sizes appear multiple times within clades of mid‐sized fishes and that extreme body sizes have arisen mostly in the last 10 million years (Myr). The reconstruction of range size revealed many cases of disparate range sizes among sister species. Such range size disparity highlights potential vicariant processes through isolation in peripheral locations. When accounting for peripheral speciation processes in sister pairs, we found a significant relationship between labrid range size and lineage age. The diversity and evolution of traits within lineages is influenced by trait–environment interactions as well as by species and trait–trait interactions, where the presence of a given trait may trigger the development of related traits or behaviours. Our effort to assess the evolution of functional diversity across reef fish clades adds to the burgeoning research focusing on the evolutionary and ecological roles of functional traits. We argue that the combination of a phylogenetic and a functional approach will improve the understanding of the mechanisms of species assembly in extraordinarily rich coral reef communities.  相似文献   

20.
Seed size is a crucial life‐history trait determining the amount of reserves that are available to establishing seedlings. The most frequently observed patterns in seed size distribution are a higher frequency of large‐seeded species in shaded habitats and a positive correlation of seed size with plant size. We analysed to what extent realised niche dimensions, as expressed by Ellenberg indicator values and plant functional traits such as plant height and life form, explained seed mass variation in the central European flora. By including information on phylogenetic relatedness of the species, not only contemporary ecology but also the evolutionary history of plant species could be taken into account. Seed mass evolution was slow and was best explained by selection‐inertia models with multiple adaptive peaks as a function of either habitat or life form. The highest seed mass optima were observed in the deciduous forest and saltwater and seashore habitats, and in phanerophytes in case of models with optima as a function of life form. The analyses showed that Ellenberg values were more important than habitat and life form in explaining seed mass distribution in the central European flora. The often observed relation between shade and large seeds was also evident in our study, but we found an equally important relation between large seeds and drought and a positive relation between seed mass and salinity. Our results indicate that not only plant size and competition for light but a complex set of factors influence the ecology of seed size, and that a more precise delineation of species’ niches improves the understanding of seed size evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号