首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 901 毫秒
1.
Summary Patch-clamp studies of whole-cell ionic currents were carried out in parietal cells obtained by collagenase digestion of the gastric fundus of the guinea pig stomach. Applications of positive command pulses induced outward currents. The conductance became progressively augmented with increasing command voltages, exhibiting an outwardly rectifying current-voltage relation. The current displayed a slow time course for activation. In contrast, inward currents were activated upon hyperpolarizing voltage applications at more negative potentials than the equilibrium potential to K+ (E K). The inward currents showed time-dependent inactivation and an inwardly rectifying current-voltage relation. Tail currents elicited by voltage steps which had activated either outward or inward currents reversed at nearE K, indicating that both time-dependent and voltagegated currents were due to K+ conductances. Both outward and inward K+ currents were suppressed by extracellular application of Ba2+, but little affected by quinine. Tetraethylammonium inhibited the outward current without impairing the inward current, whereas Cs+ blocked the inward current but not the outward current. The conductance of inward K+ currents, but not outward K+ currents, became larger with increasing extracellular K+ concentration. A Ca2+-mobilizing acid secretagogue, carbachol, and a Ca2+ ionophore, ionomycin, brought about activation of another type of outward K+ currents and voltage-independent cation currents. Both currents were abolished by cytosolic Ca2+ chelation. Quinine preferentially inhibited this K+ current. It is concluded that resting parietal cells of the guinea pig have two distinct types of voltage-dependent K+ channels, inward rectifier and outward rectifier, and that the cells have Ca2+-activated K+ channels which might be involved in acid secretion under stimulation by Ca2+-mobilizing secretagogues.  相似文献   

2.
A voltage-dependent but Ca2+-independent regulation of N-methyl-D-aspartate (NMDA) receptor outward activity was studied at the single channel level using outside-out patches of cultured mouse cortical neurons. Unlike the inward activity associated with Ca2+ and Na+ influx, the NMDA receptor outward K+ conductance was unaffected by changes in Ca2+ concentration. Following a depolarizing pre-pulse, the single channel open probability (NP o), amplitude, and open duration of the NMDA inward current decreased, whereas the same pre-depolarization increased those parameters of the NMDA outward current (pre-pulse facilitation). The outward NP o was increased by the pre-pulse facilitation, disregarding Ca2+ changes. The voltage–current relationships of the inward and outward currents were shifted by the pre-depolarization toward opposite directions. The Src family kinase inhibitor, PP1, and the Src kinase antibody, but not the anti-Fyn antibody, blocked the pre-pulse facilitation of the NMDA outward activity. On the other hand, a hyperpolarizing pre-pulse showed no effect on NMDA inward currents but inhibited outward currents (pre-pulse depression). Application of Src kinase, but not Fyn kinase, prevented the pre-pulse depression. We additionally showed that a depolarization pre-pulse potentiated miniature excitatory synaptic currents (mEPSCs). The effect was blocked by application of the NMDA receptor antagonist AP-5 during depolarization. These data suggest a voltage-sensitive regulation of NMDA receptor channels mediated by Src kinase. The selective changes in the NMDA receptor-mediated K+ efflux may represent a physiological and pathophysiological plasticity at the receptor level in response to dynamic changes in the membrane potential of central neurons.  相似文献   

3.
Pantoja O  Gelli A  Blumwald E 《Plant physiology》1992,100(3):1137-1141
Patch-clamp techniques were employed to study the electrical properties of vacuoles from sugar beet (Beta vulgaris) cell suspensions at physiological concentrations of cytoplasmic Ca2+. Vacuoles exposed to K+ malate revealed the activation of instantaneous and time-dependent outward currents by positive membrane potentials. Negative potentials induced only instantaneous inward currents. The time-dependent outward currents were 10 times more selective for malate than for K+ and were completely blocked by zinc. Vacuoles exposed to KCl developed instantaneous currents when polarized to positive or negative membrane potentials. The time-dependent outward channels could serve as the route for the movement of malate into the vacuole, whereas K+ could move through the time-independent inward and outward channels.  相似文献   

4.
The role of the inward K+ rectifier in the repetitive activity at depolarized levels was studied in guinea pig single ventricular myocytes by voltage- and current-clamp methods. In action potentials arrested at the plateau by a depolarizing current, small superimposed hyperpolarizing currents caused much larger voltage displacements than at the resting potential and sometimes induced a regenerative repolarization. Around –20 mV, sub- and suprathreshold repetitive inward currents were found. In the same voltage range, small hyperpolarizing currents reversed their polarity. During depolarizing voltage-clamp ramps, around –20 mV there was a sudden decrease in the outward current (Ins: current underlying the negative slope in the inward K+ rectifier steady state I–V relation). During repolarizing ramps, the reincrease in outward current was smaller and slower. During depolarizing and repolarizing current ramps, sudden voltage displacements showed a similar asymmetry. Repetitive Ins could continue as long as the potential was kept at the level at which they appeared. Depolarizing voltage-clamp steps also caused repetitive Ins and depolarizing current steps induced repetitive slow responses. Cadmium and verapamil reduced Ins amplitude during the depolarizing ramp. BRL 34915 (cromakalim), an opener of the ATP-sensitive K+ channel, eliminated the negative slope and Ins, whereas barium increased Ins frequency (an effect abolished by adding BRL). Depolarization-induced slow responses persisted in an NaCl-Ca-free solution. Thus, the mechanism of repetitive activity at the depolarized level appears to be related to the presence of the negative slope in the inward K+ rectifier I–V relation.  相似文献   

5.
There is increasing evidence that a functional interaction exists between interleukin-1β (IL-1β) and N-methyl-d-aspartate (NMDA) receptors. The present study attempted to elucidate the effect of IL-1β on the NMDA-induced outward currents in mechanically dissociated hippocampal neurons using a perforated patch recording technique. IL-1β (30-100 ng/ml) inhibited the mean amplitude of the NMDA-induced outward currents that were mediated by charybdotoxin (ChTX)-sensitive Ca2+-activated K+ (KCa) channels. IL-1β (100 ng/ml) also significantly increased the mean ratio of the NMDA-induced inward current amplitudes measured at the end to the beginning of a 20-s application of NMDA. In hippocampal neurons from acute slice preparations, IL-1β significantly inhibited ChTX-sensitive KCa currents induced by a depolarizing voltage-step. IL-1 receptor antagonist antagonized effects of IL-1β. These results strongly suggest that IL-1β increases the neuronal excitability by inhibition of ChTX-sensitive KCa channels activated by Ca2+ influx through both NMDA receptors and voltage-gated Ca2+ channels.  相似文献   

6.
Membrane potential responses of a ciliate protozoan Paramecium caudatum to the external application of quinine were investigated in relation to its motile activities. Wild-type specimens swimming in the reference solution did not enter into a quinine-containing (0.5 mM) test solution due to avoiding responses exhibited at the border between the two solutions, and therefore stayed in the reference solution (chemodispersal). Squirting of a quinine-containing test solution over a wild-type specimen evoked a train of action potentials superimposed on a depolarizing chemoreceptor potential. Squirting of a quinine-containing test solution over a CNR-mutant specimen defective in voltage-gated Ca2+ channel evoked only chemoreceptor potentials, which consisted of an initial transient depolarization, a following transient hyperpolarization and a sustained depolarization. A current-evoked action potential became larger in its amplitude and longer in its duration with the external application of quinine. Under the voltage-clamp condition, the fast inward current did not change whereas the delayed outward current decreased with the external application of quinine. It is concluded that quinine is a potent repellent for Paramecium because it produces a depolarizing chemoreceptor potential which evokes action potentials and prolongs the duration of the action potential.  相似文献   

7.
Outward currents through the inward rectifier K+ channel contribute to repolarization of the cardiac action potential. The properties of the IRK1 channel expressed in murine fibroblast (L) cells closely resemble those of the native cardiac inward rectifier. In this study, we added Mg2+ (0.44–1.1 mM) or putrescine (∼0.4 mM) to the intracellular milieu where endogenous polyamines remained, and then examined outward IRK1 currents using the whole-cell patch-clamp method at 5.4 mM external K+. Without internal Mg2+, small outward currents flowed only at potentials between −80 (the reversal potential) and ∼−40 mV during voltage steps applied from −110 mV. The strong inward rectification was mainly caused by the closed state of the activation gating, which was recently reinterpreted as the endogenous-spermine blocked state. With internal Mg2+, small outward currents flowed over a wider range of potentials during the voltage steps. The outward currents at potentials between −40 and 0 mV were concurrent with the contribution of Mg2+ to blocking channels at these potentials, judging from instantaneous inward currents in the following hyperpolarization. Furthermore, when the membrane was repolarized to −50 mV after short depolarizing steps (>0 mV), a transient increase appeared in outward currents at −50 mV. Since the peak amplitude depended on the fraction of Mg2+-blocked channels in the preceding depolarization, the transient increase was attributed to the relief of Mg2+ block, followed by a re-block of channels by spermine. Shift in the holding potential (−110 to −80 mV), or prolongation of depolarization, increased the number of spermine-blocked channels and decreased that of Mg2+-blocked channels in depolarization, which in turn decreased outward currents in the subsequent repolarization. Putrescine caused the same effects as Mg2+. When both spermine (1 μM, an estimated free spermine level during whole-cell recordings) and putrescine (300 μM) were applied to the inside-out patch membrane, the findings in whole-cell IRK1 were reproduced. Our study indicates that blockage of IRK1 by molecules with distinct affinities, spermine and Mg2+ (putrescine), elicits a transient increase in the outward IRK1, which may contribute to repolarization of the cardiac action potential.  相似文献   

8.
BackgroundThe ATP-sensitive K+ (K(ATP)) channel is found in a variety of tissues extending from the heart and vascular smooth muscles to the endocrine pancreas and brain. Common to all K(ATP) channels is the pore-forming subunit Kir6.x, a member of the family of small inwardly rectifying K+ channels, and the regulatory subunit sulfonylurea receptor (SURx). In insulin secreting β-cells in the endocrine part of the pancreas, where the channel is best studied, the K(ATP) channel consists of Kir6.2 and SUR1. Under physiological conditions, the K(ATP) channel current flow is outward at membrane potentials more positive than the K+ equilibrium potential around ?80 mV. However, K(ATP) channel kinetics have been extensively investigated for inward currents and the single-channel kinetic model is based on this type of recording, whereas only a limited amount of work has focused on outward current kinetics.MethodsWe have estimated the kinetic properties of both native and cloned K(ATP) channels under varying ionic gradients and membrane potentials using the patch-clamp technique.ResultsAnalyses of outward currents in K(ATP) and cloned Kir6.2ΔC26 channels, alone or co-expressed with SUR1, show openings that are not grouped in bursts as seen for inward currents. Burst duration for inward current corresponds well to open time for outward current.ConclusionsOutward K(ATP) channel currents are not grouped in bursts regardless of membrane potential, and channel open time for outward currents corresponds to burst duration for inward currents.  相似文献   

9.
Summary The effects of tetraethylammonium ions on currents through high-conductance voltage- and Ca2+-activated K+ channels have been studied with the help of patch-clamp single-channel and whole-cell current recording on pig pancreatic acinar cells. In excised outside-out membrane patches TEA (1 to 2 mM) added to the bath solution virtually abolishes unitary current activity except at very positive membrane potentials when unitary currents corresponding to a markedly reduced conductance are observed. TEA in a lower concentration (0.2 mM) markedly reduces the open-state probability and causes some reduction of the single-channel conductance. In inside-out membrane patches bath application of TEA in concentrations up to 2 mM has no effect on single-channel currents. At a higher concentration (10 mM) slight reductions in single-channel conductance occur. In whole-cell current recording experiments TEA (1 to 2 mM) added to the bath solution completely suppresses the outward currents associated with depolarizing voltage jumps to membrane potentials of 0 mV and blocks the major part (70 to 90%) of the outward currents even at very positive membrane potentials (30 to 40 mV). In contrast TEA (2 mM) added to the cell interior (pipette solution) has no effect on the outward K+ current. Our results demonstrate that TEA in low concentrations (1 to 2 mM) acts specifically on the outside of the plasma membrane to block current through the high-conductance Ca2+- and voltage-activated K+ channels  相似文献   

10.
Colombo R  Cerana R 《Plant physiology》1991,97(3):1130-1135
Ion channels in the plasma membrane of protoplasts isolated from cultured cells of Arabidopsis thaliana were studied by means of the patch-clamp technique applied in the whole-cell configuration. In some protoplasts, depolarizing pulses and, in other protoplasts, hyperpolarizing pulses elicited time-dependent currents; both kinds of current were only rarely observed in the same protoplast. The hyperpolarization-activated inward rectifying currents, the focus of this paper, appeared to be due to the relatively slow opening of channels (activation time constant = 150 to 300 milliseconds), which closed at positive potentials. The reversal potential of this current, measured in the presence of different ion concentrations (symmetrical or asymmetrical K+ and Cl or gluconate), was always close to the electrochemical equilibrium potential of K+. The currents were inhibited by 10 millimolar tetraethylammonium, a K+ channel blocker. These data show that the hyperpolarization-activated currents flow through K+ channels, which can provide a pathway for the passive diffusion of K+ down its electrochemical gradient.  相似文献   

11.
Summary Electrical membrane properties of solitary spiking cells during newt (Cynops pyrrhogaster) retinal regeneration were studied with whole-cell patch-clamp methods in comparison with those in the normal retina.The membrane currents of normal spiking cells consisted of 5 components: inward Na+ and Ca++ currents and 3 outward K+ currents of tetraethylammonium (TEA)-sensitive, 4-aminopyridine (4-AP)-sensitive, and Ca++-activated varieties. The resting potential was about -40mV. The activation voltage for Na+ and Ca++ currents was about -30 and -17 mV, respectively. The maximum Na+ and Ca++ currents were about 1057 and 179 pA, respectively.In regenerating retinae after 19–20 days of surgery, solitary cells with depigmented cytoplasm showed slowrising action potentials of long duration. The ionic dependence of this activity displayed two voltage-dependent components: slow inward Na+ and TEA-sensitive outward K+ currents. The maximum inward current (about 156 pA) was much smaller than that of the control. There was no indication of an inward Ca++ current.During subsequent regeneration, the inward Ca++ current appeared in most spiking cells, and the magnitude of the inward Na+, Ca++, and outward K+ currents all increased. By 30 days of regeneration, the electrical activities of spiking cells became identical to those in the normal retina. No significant difference in the resting potential and the activation voltage for Na+ and Ca++ currents was found during the regenerating period examined.  相似文献   

12.
Transmembrane ion currents in isolated single smooth muscle cells (SMC) from the guinea pigtaenia coli were investigated using a whole-cell mode of the patch-clamp technique. Currents induced by depolarizing shifts in the membrane potential from its holding level of −60 mV contained an initial inward phase (Ca2+ current), which in 30–40 msec was followed by an outward phase. It was shown that outward current was carried by K ions and consisted at least of three components: one Ca2+-independent K+ current of delayed rectifier (KV) and two Ca2+-dependent K+ currents. The latter can be further divided into the apamin-sensitive (SK) and charybdotoxin-sensitive (BK) currents. It was found that relative contributions of these three components in total outward current at 0 mV were 35–45%, 5–15%, and 45–55% for KV, SK, and BK currents, respectively. A potential-dependent current carried by Ci ions was also found. This Cl current had inward direction within the range of potentials below the chloride equilibrium potential (E Cl) and outward direction above theE Cl. The magnitude of Cl current was significantly lower than the magnitude of total K+ current.  相似文献   

13.
Membrane properties of isolated mudpuppy taste cells   总被引:13,自引:3,他引:10       下载免费PDF全文
The voltage-dependent currents of isolated Necturus lingual cells were studied using the whole-cell configuration of the patch-clamp technique. Nongustatory surface epithelial cells had only passive membrane properties. Small, spherical cells resembling basal cells responded to depolarizing voltage steps with predominantly outward K+ currents. Taste receptor cells generated both outward and inward currents in response to depolarizing voltage steps. Outward K+ currents activated at approximately 0 mV and increased almost linearly with increasing depolarization. The K+ current did not inactivate and was partially Ca++ dependent. One inward current activated at -40 mV, reached a peak at -20 mV, and rapidly inactivated. This transient inward current was blocked by tetrodotoxin (TTX), which indicates that it is an Na+ current. The other inward current activated at 0 mV, peaked at 30 mV, and slowly inactivated. This more sustained inward current had the kinetic and pharmacological properties of a slow Ca++ current. In addition, most taste cells had inwardly rectifying K+ currents. Sour taste stimuli (weak acids) decreased outward K+ currents and slightly reduced inward currents; bitter taste stimuli (quinine) reduced inward currents to a greater extent than outward currents. It is concluded that sour and bitter taste stimuli produce depolarizing receptor potentials, at least in part, by reducing the voltage-dependent K+ conductance.  相似文献   

14.
The presence of tonoplast ion channels regulated by voltage in the physiological range of transtonoplast electric potential was studied in isolated vacuoles from Acer pseudoplatanus cultured cells. In symmetrical KCl or K-gluconate depolarizing pulses induced instantaneously developing, decaying outward currents, while in symmetrical tetramethylammonium chloride these currents were absent. The outward currents were reduced if the depolarizations were applied from a holding potential of +30 millivolts and increased upon depolarizations from a holding potential of −30 millivolts and even more from a holding potential of −50 millivolts. These results indicate that the outward currents are due to K+ movement through channels which are open around 0 millivolt and close at positive potentials. These K+ channels, regulated in the range of the physiological electric potentials reported for the vacuoles in situ, are likely the same K+ channels activated by hyperpolarizations which we have previously described (R Colombo, R Cerana, P Lado, A Peres [1988] J Membr Biol 103: 227-236).  相似文献   

15.
In an attempt to understand the processes mediating ion transport within the root, the patch clamp technique was applied to protoplasts isolated from the cortex and stele of maize roots and their plasma membrane conductances investigated. In the whole-cell configuration, membrane hyperpolarization induced a slowly activating inwardly rectifying conductance in most protoplasts isolated from the root cortex. In contrast, most protoplasts isolated from the stele contained a slowly activating outwardly rectifying conductance upon plasma membrane depolarization. The reversal potential of the inward current indicated that it was primarily due to the movement of K+; the outwardly rectifying conductance was comparatively less selective for K+. Membrane hyperpolarization beyond a threshold of about ?70 mV induced inward currents. When EK was set negative of this threshold, inward currents activated negative of EK and no outward currents were observed positive of EK. Outward currents in the stelar protoplasts activated at potentials positive of ?85 mV. However, when EK was set positive of ?85 mV a small inward current was also observed at potentials negative (and slightly positive) of the equilibrium potential for K+. Inwardly and outwardly rectifying K+ channels were observed in outside-out patches from the plasma membrane of cortical and stelar cells, respectively. Characterization of these channels showed that they were likely to be responsible for the macroscopic ‘whole-cell’ currents. Inward and outward currents were affected differently by various K+ channel blockers (TEA+, Ba2+ and Cs+). In addition, Ca2+ above 1 mM partially blocked the inward current in a voltage-dependent manner but had little effect on the outward current. It is suggested that the inwardly rectifying conductance identified in protoplasts isolated from the cortex probably represents an important component of the low-affinity K+ uptake mechanism (mechanism II) identified in intact roots. The outwardly rectifying conductance identified in protoplasts isolated from the stele could play a role in the release of cations into the xylem vessels for transport to the shoot.  相似文献   

16.
Summary In response to mechanical stimuli the protozoan,Stentor coeruleus, contracts in an all-or-none fashion and simultaneously reverses the direction of its ciliary beat. These behaviors have previously been shown to be correlated with the presence of a mechanoreceptor potential and all-or-none action potential (Wood 1970, 1973a). In the studies reported below the ionic bases of the resting, receptor and action potentials ofStentor were determined by use of intracellular microelectrodes penetrating animals chilled to 8.5–10 °C. The resting potential is most dependent on the extracellular concentration of KCl but some dependence on CaCl2 concentration was also observed. If allowance is made for the large increases in membrane conductance observed in solutions containing 2–8 mM KCl it is found that the resting potential data are well described by a modified form of the Goldman equation whereP Ca/P K = 0.068 andP Cl/P K = 0.072. The intracellular ionic activities (K i + = 13.1 mM, Cl i = 9.9 mM, Ca i + = 0 mM) which provide the best fit of this equation to the resting potential data are in close agreement with the intracellular concentration values measured by flame microspectrophotometry (Ki=12.4 mM, Cli = 9.4 mM) except in the case of Cai where most of the intracellular concentration is presumed to be bound. 65 to 75 mV action potentials are produced by suprathreshold depolarizations but contractions were not generally seen in these chilled animals, only ciliary reversals. The action potential peak varies with CaCl2 concentration with a slope of 12.6 mV/10 fold change but varies only slightly with KCl or Cl concentration. These peak potentials are well described by assuming that theP Ca/P k = 7.9 andP Cl/P K=1.0 at the time of the action potential peak. Depolarizing receptor potentials and brief inward receptor currents were observed for all forms of punctate and gross bodily mechanical stimulation employed. No evidence was found for any form of hyperpolarizing mechanoreceptor potentials as observed in some other ciliates. The reversal potential of the mechanoreceptor current varied with CaCl2 concentration in a manner similar to that of the action potential peak. As in the case of the action potential both theP Ca/P k andp cl/p k ratios appear to increase as a result of mechanical stimulation to 9.3–15 and 1.2–1.95 respectively. Mechanoreceptor currents are voltage dependent being increased when the membrane is depolarized above resting potential and decreased when the membrane is hyperpolarized. In general the electrophysiological characteristics ofStentor appear similar to those ofParamecium andStylonychia, but its resting membrane appears more selectively permeable to K+, it produces only depolarizing receptor potentials when mechanically stimulated and the initial action potential elicited by depolarizing current pulses can be all-or-none even in culture medium.  相似文献   

17.
The topological distribution of the chemoreceptors to quinine in the membrane of a ciliate Paramecium caudatum were examined by conventional electrophysiological techniques. A CNR-mutant specimen defective in voltage-gated Ca channels produced a transient depolarization followed by a transient hyperpolarization and a sustained depolarization when 1 mM quinine-containing solution was applied to its entirety. A Ni2+-paralyzed CNR-mutant specimen produced a simple membrane depolarization in response to a local application of 1 mM quinine-containing solution to its anterior end, whereas it produced a transient membrane hyperpolarization in response to an application to its posterior end. An anterior half fragment of a CNR specimen produced a membrane depolarization whereas a posterior half fragment of the specimen produced a transient hyperpolarization upon application of 1 mM quinine-containing solution. Both anterior depolarization and posterior hyperpolarization took place prior to the contraction of the cell body. It is concluded that Paramecium caudatum possesses two kinds of chemoreceptors or two kinds of coupling of the same receptor to different signal transduction pathways to quinine which are distributed in different locations on the cell surface. Activation of the anterior receptor produces a sustained depolarizing receptor potential while activation of the posterior receptor produces a transient hyperpolarizing receptor potential.Abbreviation CNR caudatum non reversal  相似文献   

18.
A kinetic model accounting for all salient features of the K+ channel of the squid giant axon, including the rising phase of the ON gating charge and the Cole-Moore effect, is provided. Upon accounting for a significant feature distinguishing K+, Na+ and Ca2 + channels from channel-forming peptides modeled in our previous 2016 BBA paper, the nucleation-and-growth kinetic model developed therein is extended to simulate ON ionic and gating currents of the K+ channel of the squid giant axon at different depolarization potentials by the use of only two free parameters. K+ channel opening is considered to proceed by progressive aggregation of single subunits, while they are moving their gating charge outward under depolarizing conditions within their tetrameric structure; K+ channel closing proceeds in the opposite direction, by repolarization-induced disaggregation of subunits, accompanied by inward movement of their gating charge.  相似文献   

19.
Summary The tight-seal whole-cell recording method has been used to studyNecturus choroid plexus epithelium. A cell potential of –59±2 mV and a whole cell resistance of 56±6 M were measured using this technique. Application of depolarizing step potentials activated voltage-dependent outward currents that developed with time. For example, when the cell was bathed in 110mm NaCl Ringer solution and the interior of the cell contained a solution of 110mm KCl and 5nm Ca2+, stepping the membrane potential from a holding value of –50 to –10 mV evoked outward currents which, after a delay of greater than 50 msec, increased to a steady state in 500 msec. The voltage dependence of the delayed currents suggests that they may be currents through Ca2+-activated K_ channels. Based on the voltage dependence of the activation of Ca2+-activated K+ channels, we have devised a general method to isolate the delayed currents. The delayed currents were highly selective for K+ as their reversal potential at different K+ concentration gradients followed the Nernst potential for K+. These currents were reduced by the addition of TEA+ to the bath solution and were eliminated when Cs+ or Na+ replaced intracellular K+. Increasing the membrane potential to more positive values decreased both the delay and the half-times (t 1/2) to the steady value. Increasing the pipette Ca2+ also decreased the delay and decreasedt 1/2. For instance, when pipette Ca2+ was increased from 5 to 500nm, the delay andt 1/2 decreased from values greater than 50 and 150 msec to values less than 10 and 50 msec. We conclude that the delayed currents are K+ currents through Ca2+-activated K+ channels.At the resting membrane potential of –60 mV, Ca2+-activated K+ channels contribute between 13 to 25% of the total conductance of the cell. The contribution of these channels to cell conductance nearly doubles with membrane depolarization of 20–30 mV. Such depolarizations have been observed when cerebrospinal fluid (CSF) secretion is stimulated by cAMP and with intracellular Ca2+. Thus the Ca2+-activated K+ channels may play a specific role in maintaining intracellular K+ concentrations during CSF secretion.  相似文献   

20.
The Ca2+-activated monovalent cation selective transient receptor potential melastatin 4 (TRPM4) channel has been recently identified in detrusor smooth muscle (DSM) of the urinary bladder. Two recent publications by our research group provide evidence in support of the novel hypothesis that TRPM4 channels enhance DSM excitability and contractility. This is a critical question as prior studies have primarily targeted hyperpolarizing currents facilitated by K+ channels, but the depolarizing component in DSM cells is not well understood. For the first time, we utilized the selective TRPM4 channel inhibitor, 9-phenanthrol, to investigate TRPM4 channel functional effects in DSM at both cellular and tissue levels in rodents. Our new data presented here showed that in rat DSM cells, 9-phenanthrol attenuates spontaneous inward currents in the presence of the muscarinic receptor agonist, carbachol, thus reducing DSM cell excitability. In support of our original hypothesis, we found that TRPM4 channel mRNA levels are much higher in DSM vs. vascular smooth muscle and that inhibition of TRPM4 channels can potentially attenuate DSM excitability. Thus, we postulate the novel concept that selective pharmacological inhibition of TRPM4 channels can limit both excitability and contractility of DSM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号