首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large incomplete rodent femur from a Quaternary cave deposit near Barahona, Puerto Rico, is established as the holotype of Tainotherium valei , a new extinct genus and species. Although biogeographic and body size similarities suggest that it may be related to the Puerto Rican giant hutia Elasmodontomys , the Antillean large-bodied rodent family Heptaxodontidae is now interpreted as invalid, and it is impossible to assign Tainotherium to a particular caviomorph family in the absence of associated craniodental material. Tainotherium differs from other West Indian species in possessing a large femoral head, a proximally angled femoral neck, a short greater trochanter and a medially positioned lesser trochanter unconnected by an intertrochanteric crest, and a transversely flattened, anteroposteriorly bowed shaft lacking well-defined ridges. These characters are all associated with arboreal life habits in other mammal groups. The Puerto Rican land mammal fauna was dominated by a rodent radiation occupying a wide variety of niches before human arrival in the West Indies, but although arboreality is correlated with increased likelihood of survival in Quaternary mammalian extinction events, all of this fauna is now extinct. It is unlikely that decreasing aridity and the reduction of Puerto Rican savanna-type environments at the end of the Pleistocene contributed to the extinction of the arboreal Tainotherium , and habitat destruction by pre-Columbian Amerindians may instead have been responsible.  相似文献   

2.
Recent concern over the possibility of a global decline in amphibians prompted this assessment of the West Indian species. At the species level, the West Indian amphibian fauna (156 species, all frogs and toads) has not undergone a general decline, and no species is known to be extinct. However, one Puerto Rican species (Eleutherodactylus karlschmidti) has not been seen in over ten years despite considerable search effort. Seven other species, including the Puerto Rican livebearing frog (E. jasperi), have not been seen recently, although their present status cannot be determined until additional effort is made to locate them. Two stream-associated species on Hispaniola (E. semipalmatus and Hyla vasta) appear to have declined in recont years, probably due to the alteration of riparian habitats by deforestation. Other vertebrate groups in the West Indies, such as mammals, have been more affected by human-caused environmental degradation than have amphibians. Large-scale extinctions of frogs and other forest-dwelling species are not expected to occur until forest cover reaches very low levels. Haiti is on the brink of such extinctions with less than 1% of its forest cover remaining. Two recommendations are made to help curtail the expected loss of biodiversity: (i) import charcoal to replace that produced by burning native trees (used as cooking fuel), as an immediate measure, and (ii) control human population growth, as a long-term solution.  相似文献   

3.
Has land surface cover in South America been impacted by the loss of most large herbivores following the severe Pleistocene and Early Holocene megafauna extinctions on this continent? Here, we estimate how mean savanna woody biomass may have changed in the Americas following these extinctions by creating an empirical model to understand how large herbivores impact savanna woody biomass. To create this empirical model, we combine a large recently published dataset of savanna woody cover from Lehmann et al. (2014) (n = 2154 plots) with estimates of mammals ranges and weights from the IUCN database. We evaluate how variables such as number of megaherbivores (mammal species ≥ 1000 kg), log10 sum species weights, and total number of mammal species predict changes to woody cover by using both ordinary least squares regression analysis (OLS) and simultaneous auto‐regressive (SAR) analysis to control for spatial autocorrelation. Both number of megaherbivores and log10 sum species weights, which both disproportionately weight for megaherbivores, significantly explained much (~ 5–13%) variance in woody cover, but the third variable weighting all animals equally, did not. We then combined these biotic variables with abiotic variables such as temperature, precipitation, and fire frequency to create a model predicting 36% of the variance of savanna woody cover. We used this model combined with estimated range maps of extinct South American megafauna to estimate that had those South American megafauna not gone extinct, total savanna woody cover in South America could possibly have decreased by ~ 29% and that savannas would likely have been more open like current African savannas.  相似文献   

4.
Between 50,000 and 3,000 years before present (BP) 65% of mammal genera weighing over 44 kg went extinct, together with a lower proportion of small mammals. Why species went extinct in such large numbers is hotly debated. One of the arguments proposes that climate changes underlie Late Quaternary extinctions, but global quantitative evidence for this hypothesis is still lacking. We test the potential role of global climate change on the extinction of mammals during the Late Quaternary. Our results suggest that continents with the highest climate footprint values, in other words, with climate changes of greater magnitudes during the Late Quaternary, witnessed more extinctions than continents with lower climate footprint values, with the exception of South America. Our results are consistent across species with different body masses, reinforcing the view that past climate changes contributed to global extinctions. Our model outputs, the climate change footprint dataset, provide a new research venue to test hypotheses about biodiversity dynamics during the Late Quaternary from the genetic to the species richness level.  相似文献   

5.
Although the recent historical period is usually treated as a temporal base-line for understanding patterns of mammal extinction, mammalian biodiversity loss has also taken place throughout the Late Quaternary. We explore the spatial, taxonomic and phylogenetic patterns of 241 mammal species extinctions known to have occurred during the Holocene up to the present day. To assess whether our understanding of mammalian threat processes has been affected by excluding these taxa, we incorporate extinct species data into analyses of the impact of body mass on extinction risk. We find that Holocene extinctions have been phylogenetically and spatially concentrated in specific taxa and geographical regions, which are often not congruent with those disproportionately at risk today. Large-bodied mammals have also been more extinction-prone in most geographical regions across the Holocene. Our data support the extinction filter hypothesis, whereby regional faunas from which susceptible species have already become extinct now appear less threatened; they may also suggest that different processes are responsible for driving past and present extinctions. We also find overall incompleteness and inter-regional biases in extinction data from the recent fossil record. Although direct use of fossil data in future projections of extinction risk is therefore not straightforward, insights into extinction processes from the Holocene record are still useful in understanding mammalian threat.  相似文献   

6.
The present, past and future of human-caused extinctions   总被引:3,自引:0,他引:3  
This paper re-evaluates whether we are really at the start of a mass extinction caused by humans. I consider the present, past and future of human-caused extinctions. As regards the present, estimates of extinction rates based on Red Data Books underestimate real values by a large factor, because the books evaluate only those species that have attracted specific attention and searches. Especially in tropical areas with few resident biologists, many poorly known species go extinct without having been the object of specific attention, and others disappear even before being described. A 'green list' of species known to be secure is needed to complement 'red books' of species known to be extinct. As regards the past, it is now clear that the first arrival of humans at any oceanic island with no previous human inhabitants has always precipitated a mass extinction in the island biota. Well-known victims include New Zealand's moas, Madagascar's giant lemurs, and scores of bird species on Hawaii and other tropical Pacific islands. Late-Pleistocene or Holocene extinctions of large mammals after the first arrival of humans in North America, South America and Australia may also have been caused by humans. Hence human-caused mass extinction is not a hypothesis for the future but an event that has been underway for thousands of years. As regards the future, consideration of the main mechanisms of human-caused extinctions (overhunting, effects of introduced species, habitat destruction, and secondary ripple effects) indicates that the rate of extinction is accelerating.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
A tick survey was conducted to determine the relative abundance and distribution of ticks associated with selected mammals in the Republic of Korea (ROK) during 2008-2009. A total of 918 ticks were collected from 76 mammals (6 families, 9 species) captured at 6 provinces and 3 Metropolitan Cities in ROK. Haemaphysalis longicornis (54.4%) was the most frequently collected tick, followed by Haemaphysalis flava (28.5%), Ixodes nipponensis (7.6%), Ixodes pomerantzevi (4.8%), Ixodes persulcatus (4.6%), and Haemaphysalis japonica (0.1%). Adults (57.0%) and nymphs (28.7%) of Ixodes and Haemaphysalis spp. were collected most frequently from medium or large mammals in this survey, while few larvae (14.3%) were collected. Hydropotes inermis was the most frequently captured mammal (52.6%), with a 16.4 tick index and 5 of 6 species of ticks collected during this survey. H. longicornis (69.7%) was the predominant tick collected from H. inermis, followed by H. flava (22.2%), I. persulcatus (6.1%), I. nipponensis (1.8%), and H. japonica (0.2%).  相似文献   

8.
Recent genetic studies have challenged the traditional view that the ancestors of British Celtic people spread from central Europe during the Iron Age and have suggested a much earlier origin for them as part of the human recolonization of Britain at the end of the last glaciation. Here we propose that small mammals provide an analogue to help resolve this controversy. Previous studies have shown that common shrews (Sorex araneus) with particular chromosomal characteristics and water voles (Arvicola terrestris) of a specific mitochondrial (mt) DNA lineage have peripheral western/northern distributions with striking similarities to that of Celtic people. We show that mtDNA lineages of three other small mammal species (bank vole Myodes glareolus, field vole Microtus agrestis and pygmy shrew Sorex minutus) also form a ‘Celtic fringe’. We argue that these small mammals most reasonably colonized Britain in a two-phase process following the last glacial maximum (LGM), with climatically driven partial replacement of the first colonists by the second colonists, leaving a peripheral geographical distribution for the first colonists. We suggest that these natural Celtic fringes provide insight into the same phenomenon in humans and support its origin in processes following the end of the LGM.  相似文献   

9.
The 'mass extinctions' at the end of the Pleistocene were unique, both in the Pleistocene and earlier in the geological record, in that the species lost were nearly all large terrestrial mammals. Although a global phenomenon, late Pleistocene extinctions were most severe in North America, South America and Australia, and moderate in northern Eurasia (Europe plus Soviet Asia). In Africa, where nearly all of the late Pleistocene 'megafauna' survives to the present day, losses were slight. Ruling out epidemic disease or cosmic catastrophe, the contending hypotheses to explain late Pleistocene extinctions are: (a) failure to adapt to climatic/environmental change; and (b) extermination by human hunters ('prehistoric overkill'). This review focuses on extinctions in northern Eurasia (mainly Europe) in comparison with North America. In addition to reviewing the faunal evidence, the highly relevant environmental and archaeological backgrounds are summarized. The latest survival dates of extinct species are estimated from stratigraphic occurrences of fossil remains, radiocarbon dates, or association with archaeological industries. The Middle and Upper Pleistocene (ca. 700,000-10,000 BP) in northern Eurasia and North America was a time of constantly changing climate, ranging from phases of extensive glaciation in cold stages, to temperate periods (interglacials). In the Lateglacial (ca. 15,000-10,000 BP), during which most extinctions occurred, there was a major reorganization of vegetation, mainly involving the replacement of open vegetation by forests. These changes were more profound than earlier in the Last Cold Stage, but similar in nature to vegetational changes that took place at previous cold stage/interglacial transitions. The archaeological record shows that humans have been present in Europe since the early Middle Pleistocene. The arrival in Europe ca. 35,000 BP of 'anatomically modern humans', with their technologically more advanced upper palaeolithic industries, was a 'quantum leap' in human history. Extinctions occurred throughout the European Pleistocene, but until the late Pleistocene most losses were replaced by the evolution or immigration of new species, and most of those lost without replacement were small mammals. In marked contrast, extinctions without replacement in the late Pleistocene were almost entirely confined to the largest mammals (greater than 1000 kg) and some medium-large species (100-1000 kg).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Reconstructing the evolutionary history of island biotas is complicated by unusual morphological evolution in insular environments. However, past human-caused extinctions limit the use of molecular analyses to determine origins and affinities of enigmatic island taxa. The Caribbean formerly contained a morphologically diverse assemblage of caviomorph rodents (33 species in 19 genera), ranging from ∼0.1 to 200 kg and traditionally classified into three higher-order taxa (Capromyidae/Capromyinae, Heteropsomyinae, and Heptaxodontidae). Few species survive today, and the evolutionary affinities of living and extinct Caribbean caviomorphs to each other and to mainland taxa are unclear: Are they monophyletic, polyphyletic, or paraphyletic? We use ancient DNA techniques to present the first genetic data for extinct heteropsomyines and heptaxodontids, as well as for several extinct capromyids, and demonstrate through analysis of mitogenomic and nuclear data sets that all sampled Caribbean caviomorphs represent a well-supported monophyletic group. The remarkable morphological and ecological variation observed across living and extinct caviomorphs from Cuba, Hispaniola, Jamaica, Puerto Rico, and other islands was generated through within-archipelago evolutionary radiation following a single Early Miocene overwater colonization. This evolutionary pattern contrasts with the origination of diversity in many other Caribbean groups. All living and extinct Caribbean caviomorphs comprise a single biologically remarkable subfamily (Capromyinae) within the morphologically conservative living Neotropical family Echimyidae. Caribbean caviomorphs represent an important new example of insular mammalian adaptive radiation, where taxa retaining “ancestral-type” characteristics coexisted alongside taxa occupying novel island niches. Diversification was associated with the greatest insular body mass increase recorded in rodents and possibly the greatest for any mammal lineage.  相似文献   

11.
The Indian gharial (Gavialis gangeticus) is not found in saltwater, but the geographical distribution of fossil relatives suggests a derivation from ancestors that lived in, or were at least able to withstand, saline conditions. Here, we describe a new Oligocene gharial, Aktiogavialis puertoricensis, from deltaic-coastal deposits of northern Puerto Rico. It is related to a clade of Neogene gharials otherwise restricted to South America. Its geological and geographical settings, along with its phylogenetic relationships, are consistent with two scenarios: (i) that a single trans-Atlantic dispersal event during the Tertiary explains the South American Neogene gharial assemblage and (ii) that stem gharials were coastal animals and their current restriction to freshwater settings is a comparatively recent environmental shift for the group. This discovery highlights the importance of including fossil information in a phylogenetic context when assessing the ecological history of modern organisms.  相似文献   

12.
A new genus (Borinken) and five new species (Borinken elyunque, Distigmoptera chamorrae, Kiskeya elyunque, Ulrica eltoro, and Ulrica iviei) from Puerto Rico are described and illustrated. A keyto all West Indian Monoplatini genera is provided, as are keys to all speciesof Kiskeya and to the speciesof Ulrica from Puerto Rico. A list of the flea beetle genera, along with the number of species and some of the faunal features is presented and discussed for the West Indies.  相似文献   

13.
McDonald and Brown developed a model based on island biogeographic principles to predict the magnitude and composition of small mammal extinctions from isolated boreal habitats atop mountains of the Great Basin following global warming. The model predicts that three of 14 boreal mammals will go extinct regionally and that four of 19 mountain ranges will lose upwards of 50% of their present faunas. Here, we re-examine the model on the basis of its underlying assumptions, on the statistical and biogeographic protocols used, and on its predictive power. A key assumption, that populations of these small mammals are isolated by absolute barriers to dispersal, is challenged by published field observations and by extensive trapping records. Statistical procedures used to construct the model are questionable and the model itself yields imprecise estimates. The biogeographic principle used to identify extinction-prone species, nested subsets of species, makes predictions that are at odds with available autecological information. The demonstration of a nested pattern of species occurrences does not provide definitive evidence in resolving SLOSS-or whether a single large island or several small islands of equivalent total area will contain more species. We conclude that the model is not a reliable method for forecasting species extinctions following global warming. The final resolution of the biogeography of montane mammals (and predictive models of extinction) in the Great Basin must await a full and accurate accounting of past and present species distributions.  相似文献   

14.
Extinctions of megafauna species during the Late Quaternary dramatically reduced the global diversity of mammals. There is intense debate over the causes of these extinctions, especially regarding the extent to which humans were involved. Most previous analyses of this question have focused on chronologies of extinction and on the archaeological evidence for human-megafauna interaction. Here, I take an alternative approach: comparison of the biological traits of extinct species with those of survivors. I use this to demonstrate two general features of the selectivity of Late Quaternary mammal extinctions in Australia, Eurasia, the Americas and Madagascar. First, large size was not directly related to risk of extinction; rather, species with slow reproductive rates were at high risk regardless of their body size. This finding rejects the 'blitzkrieg' model of overkill, in which extinctions were completed during brief intervals of selective hunting of large-bodied prey. Second, species that survived despite having low reproductive rates typically occurred in closed habitats and many were arboreal or nocturnal. Such traits would have reduced their exposure to direct interaction with people. Therefore, although this analysis rejects blitzkrieg as a general scenario for the mammal megafauna extinctions, it is consistent with extinctions being due to interaction with human populations.  相似文献   

15.
First human-caused extinction of a cetacean species?   总被引:3,自引:0,他引:3  
The Yangtze River dolphin or baiji (Lipotes vexillifer), an obligate freshwater odontocete known only from the middle-lower Yangtze River system and neighbouring Qiantang River in eastern China, has long been recognized as one of the world's rarest and most threatened mammal species. The status of the baiji has not been investigated since the late 1990s, when the surviving population was estimated to be as low as 13 individuals. An intensive six-week multi-vessel visual and acoustic survey carried out in November-December 2006, covering the entire historical range of the baiji in the main Yangtze channel, failed to find any evidence that the species survives. We are forced to conclude that the baiji is now likely to be extinct, probably due to unsustainable by-catch in local fisheries. This represents the first global extinction of a large vertebrate for over 50 years, only the fourth disappearance of an entire mammal family since AD 1500, and the first cetacean species to be driven to extinction by human activity. Immediate and extreme measures may be necessary to prevent the extinction of other endangered cetaceans, including the sympatric Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis).  相似文献   

16.
Most studies of mammal extinctions during the Pleistocene–Holocene transition explore the relative effects of climate change vs human impacts on these extinctions, but the relative importance of the different environmental factors involved remains poorly understood. Moreover, these studies are strongly biased towards megafauna, which may have been more influenced by human hunting than species of small body size. We examined the potential environmental causes of Pleistocene–Holocene mammal extinctions by linking regional environmental characteristics with the regional extinction rates of large and small mammals in 14 Palaearctic regions. We found that regional extinction rates were larger for megafauna, but extinction patterns across regions were similar for both size groups, emphasizing the importance of environmental change as an extinction factor as opposed to hunting. Still, the bias towards megafauna extinctions was larger in southern Europe and smaller in central Eurasia. The loss of suitable habitats, low macroclimatic heterogeneity within regions and an increase in precipitation were identified as the strongest predictors of regional extinction rates. Suitable habitats for many species of the Last Glacial fauna were grassland and desert, but not tundra or forest. The low‐extinction regions identified in central Eurasia are characterized by the continuous presence of grasslands and deserts until the present. In contrast, forest expansion associated with an increase in precipitation and temperature was likely the main factor causing habitat loss in the high‐extinction regions. The shift of grassland into tundra also contributed to the loss of suitable habitats in northern Eurasia. Habitat loss was more strongly related to the extinctions of megafauna than of small mammals. Ungulate species with low tolerance to deep snow were more likely to go regionally extinct. Thus, the increase in precipitation at the Pleistocene–Holocene transition may have also directly contributed to the extinctions by creating deep snow cover which decreases forage availability in winter.  相似文献   

17.
Late Pleistocene extinctions are of interest to paleontological and anthropological research. In North America and Australia, human occupation occurred during a short period of time and overexploitation may have led to the extinction of mammalian megafauna. In northern Eurasia megafaunal extinctions are believed to have occurred over a relatively longer period of time, perhaps as a result of changing environmental conditions, but the picture is much less clear. To consider megafaunal extinction in Eurasia, we compare differences in the geographical distribution and commonness of extinct and extant species between paleontological and archaeological localities from the late middle Pleistocene to Holocene. Purely paleontological localities, as well as most extinct species, were distributed north of archaeological sites and of the extant species, suggesting that apart from possible differences in adaptations between humans and other species, humans could also have a detrimental effect on large mammal distribution. However, evidence for human overexploitation applies only to the extinct steppe bison Bison priscus. Other human-preferred species survive into the Holocene, including Rangifer tarandus, Equus ferus, Capreolus capreolus, Cervus elaphus, Equus hemionus, Saiga tatarica, and Sus scrofa. Mammuthus primigenius and Megaloceros giganteus were rare in archaeological sites. Carnivores appear little influenced by human presence, although they become rarer in Holocene archaeological sites. Overall, the data are consistent with the conclusion that humans acted as efficient hunters selecting for the most abundant species. Our study supports the idea that the late Pleistocene extinctions were environmentally driven by climatic changes that triggered habitat fragmentation, species range reduction, and population decrease, after which human interference either by direct hunting or via indirect activities probably became critical.  相似文献   

18.
The late Quaternary megafaunal extinction impacted ecological communities worldwide, and affected key ecological processes such as seed dispersal. The traits of several species of large-seeded plants are thought to have evolved in response to interactions with extinct megafauna, but how these extinctions affected the organization of interactions in seed-dispersal systems is poorly understood. Here, we combined ecological and paleontological data and network analyses to investigate how the structure of a species-rich seed-dispersal network could have changed from the Pleistocene to the present and examine the possible consequences of such changes. Our results indicate that the seed-dispersal network was organized into modules across the different time periods but has been reconfigured in different ways over time. The episode of megafaunal extinction and the arrival of humans changed how seed dispersers were distributed among network modules. However, the recent introduction of livestock into the seed-dispersal system partially restored the original network organization by strengthening the modular configuration. Moreover, after megafaunal extinctions, introduced species and some smaller native mammals became key components for the structure of the seed-dispersal network. We hypothesize that such changes in network structure affected both animal and plant assemblages, potentially contributing to the shaping of modern ecological communities. The ongoing extinction of key large vertebrates will lead to a variety of context-dependent rearranged ecological networks, most certainly affecting ecological and evolutionary processes.  相似文献   

19.
Dones RA  Evans GA 《ZooKeys》2011,(108):1-10
A new species of armored scale, Mycetaspis ailynaomi Dones and Evans is described and illustrated from specimens collected on mamey (Mammea americana) from Puerto Rico. A key to the species of Mycetaspis is provided.  相似文献   

20.
From infestation of lettuce with preinfective females to egg deposition, populations of Rotylenchulus reniformis from Baton Rouge, Louisiana; Lubbock and Weslaco, Texas; and Mayaguez, Puerto Rico, required 41, 13, 7, and 7 days at 15, 20, 25, and 34 C, respectively. No nematode infection occurred at 10 C with any R. reniformis population, and the population from Puerto Rico did not reproduce at 15 C. Nematode survival was not influenced by temperature, since populations from Texas and Louisiana survived for 6 months without a host at - 5 , - 1 , 4, and 25 C. Survival of R. reniformis was substantially influenced by soil moisture. Soil moistures greater than 7% (< 1 bar) aided nematode survival at storage temperature of 25 C, whereas moisture adversely affected nematode survival below freezing. Soil moisture below 4% (> 15 bars) favored nematode survival below freezing but adversely affected nematodes in soils stored at 25 C. Soil moisture effects on nematode survival were less accentuated at 4 and 0 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号