首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous studies have identified TNFalpha as a positive regulator and IL-4 as a negative regulator of human monocyte CD44-HA binding. In order to determine the mechanisms of IL-4- and TNFalpha-mediated regulation of monocyte HA binding, we measured HA binding and CD44 expression on peripheral blood monocytes following monocyte treatment with TNFalpha or IL-4, as well as following monocyte treatment with inhibitors of protein synthesis, N- and O-linked glycosylation, and chondroitin sulfation. IL-4 decreased CD44-HA binding on monocytes initially treated with TNFalpha. Similarly, pretreatment of monocytes with IL-4 prevented subsequent TNFalpha-mediated HA binding. Cycloheximide (protein synthesis inhibitor), tunicamycin (N-linked glycosylation inhibitor), and beta-d-xyloside (chondroitin sulfation inhibitor) all inhibited IL-4-mediated downregulation of TNFalpha-induced monocyte HA binding. Western blot analysis of CD44 from TNFalpha-treated monocytes revealed a 5-10 Mr decrease in the standard isoform of CD44. In contrast, IL-4 treatment of monocytes inhibited CD44-HA binding and reversed the 5- to 10-kDa decrease in monocyte CD44 Mr. Finally, studies with F10.44.2, a CD44 mab that enhances CD44-HA binding, indicated that IL-4 treatment of monocytes not only diminished constitutive HA binding, but also diminished CD44 mab-induced HA binding. Taken together, these data suggested that IL-4-mediated inhibition of TNFalpha-induced monocyte HA binding was dependent not only on protein synthesis, but also on N-linked glycosylation and chondroitin-sulfate modification of either CD44 or, alternatively, another monocyte protein(s) that may regulate the ability of CD44 to bind HA.  相似文献   

2.
The adherence of cells to microvascular endothelium is important in a number of processes, including inflammatory responses and metastasis. It has been demonstrated that in human models, cytokines such as TNF, IL-1, IFN-gamma increase the adhesiveness of endothelium for cells of the immune and inflammatory system by stimulating the expression of cell adhesion molecules on endothelial cell surfaces. We and others have shown similar cytokine-induced endothelial adhesiveness for tumor cells in murine and human models. In contrast to the effect of those modulators, transforming growth factor-beta (TGF-beta) has been shown to inhibit the binding of human neutrophils and T lymphocytes to human endothelium, although the mechanism of TGF-beta action remains unknown. Little is known about the effect of TGF-beta on tumor cell-endothelial interaction. In the present study, we demonstrate that TGF-beta inhibits basal and TNF-enhanced binding of murine P815 mastocytoma cells to murine microvascular endothelium (MME). The alterations in MME mediated by TGF-beta, also lead to the inhibition of adherence of murine splenocytes, thymocytes, and human lymphoblastoid cells but do not inhibit adherence of murine B16 melanoma cells. The effect of TGF-beta is transient and inhibition of the endothelial adhesive phenotype is strongest 12 to 24 h after addition of the factor to MME. The TGF-beta-mediated inhibition of P815 basal binding to endothelium is dependent on protein synthesis because cycloheximide reverses the TGF-beta effect. TGF-beta does not appear to activate classical signal transduction pathways. Inhibitors of G proteins do not abolish TGF-beta action, protein kinase C and protein kinase A activators elicit an effect opposite to that of the factor, TGF-beta does not increase intracellular cAMP levels, and finally calcium-mobilizing agents do not mimic, but rather inhibit the effect of TGF-beta. However, TGF-beta-mediated inhibition of both basal binding and TNF-enhanced P815 binding to MME is completely abolished in the presence of the protein phosphatase inhibitor okadaic acid which suggests that TGF-beta may elicit its effect by stimulating protein phosphatase activity.  相似文献   

3.
BACKGROUND: Increased expression of the connective tissue polysaccharide hyaluronan (HA) in the renal corticointerstitium is associated with progressive renal fibrosis. Numerous studies have demonstrated involvement proximal tubular epithelial cells in the fibrotic process and in the current study we have characterised their expression of the HA receptor, CD44, and examined changes in CD44 expression and function in response to either IL-1beta or glucose. METHODS: Characterisation of CD44 splice variant expression was carried out in primary cultures of human proximal tubular cells (PTC) and HK2 cells. Binding and internalisation HA was examined by addition of exogenous of fluorescein-HA (fl-HA), and expression of CD44 examined by immunoblot analysis and flow cytometry. Alteration in "functional" CD44 was determined by immunoprecipitation of CD44 following stimulation in the presence of fl-HA. RESULTS: PTC, both primary culture and the PTC cell line, HK2, express at least 5 CD44 splice variants, the expression of which are not altered by addition of either IL-1beta or 25mM D-glucose. Addition of either stimulus increased cell surface binding and internalisation of fl-HA and increased expression of functionally active CD44. Increased binding and internalisation of fl-HA, was blocked by anti-CD44 antibody, and by the inhibition of O-glycosylation. CONCLUSIONS: The data demonstrate that stimuli inducing PTC HA synthesis also regulate PTC-HA interactions. Furthermore increased HA binding and internalisation is the result of post-translational modification of CD44 by O-glycosylation, rather than by alteration in expression of CD44 at the cell surface, or by alternate use of CD44 splice variants.  相似文献   

4.
CD44 is an adhesion molecule that serves as a cell surface receptor for several extracellular matrix components, including hyaluronan (HA). The proteolytic cleavage of CD44 from the cell surface plays a critical role in the migration of tumor cells. Although this cleavage can be induced by certain stimuli such as phorbol ester and anti-CD44 antibodies in vitro, the physiological inducer of CD44 cleavage in vivo is unknown. Here, we demonstrate that HA oligosaccharides of a specific size range induce CD44 cleavage from tumor cells. Fragmented HA containing 6-mers to 14-mers enhanced CD44 cleavage dose-dependently by interacting with CD44, whereas a large polymer HA failed to enhance CD44 cleavage, although it bound to CD44. Examination using uniformly sized HA oligosaccharides revealed that HAs smaller than 36 kDa significantly enhanced CD44 cleavage. In particular, the 6.9-kDa HA (36-mers) not only enhanced CD44 cleavage but also promoted tumor cell motility, which was completely inhibited by an anti-CD44 monoclonal antibody. These results raise the possibility that small HA oligosaccharides, which are known to occur in various tumor tissues, promote tumor invasion by enhancing the tumor cell motility that may be driven by CD44 cleavage.  相似文献   

5.
Transforming growth factor-beta1 (TGF-beta1)-mediated loss of proximal tubular epithelial cell-cell interaction is regulated in a polarized fashion. The aim of this study was to further explore the polarity of the TGF-beta1 response and to determine the significance of R-Smad-beta-catenin association previously demonstrated to accompany adherens junction disassembly. Smad3 signaling response to TGF-beta1 was assessed by activity of the Smad3-responsive reporter gene construct (SBE)(4)-Lux and by immunoblotting for phospho-Smad proteins. Similar results were obtained with both methods. Apical application of TGF-beta1 led to increased Smad3 signaling compared with basolateral stimulation. Association of Smad proteins with beta-catenin was greater following basolateral TGFbeta-1 stimulation, as was the expression of cytoplasmic Triton-soluble beta-catenin. Inhibition of beta-catenin expression by small interfering RNA augmented Smad3 signaling. Lithium chloride, a GSK-3 inhibitor, increased expression of beta-catenin and attenuated TGF-beta1-dependent Smad3 signaling. Lithium chloride did not influence degradation of Smad3 but resulted in decreased nuclear translocation. Smad2 activation as assessed by Western blot analysis and activity of the Smad2-responsive reporter constructs ARE/MF1 was also greater following apical as compared with basolateral TGFbeta-1 stimulation, suggesting that this is a generally applicable mechanism for the regulation of TGF-beta1-dependent R-Smads. Caco-2 cells are a colonic carcinoma cell line, with known resistance to the anti-proliferative effects of TGF-beta1 and increased expression of beta-catenin. We used this cell line to address the general applicability of our observations. Inhibition of beta-catenin in this cell line by small interfering RNA resulted in increased TGF-beta1-dependent Smad3 phosphorylation and restoration of TGF-beta1 anti-proliferative effects.  相似文献   

6.

Background  

Formation of branching tubes is a fundamental step in the development of glandular organs. To identify extracellular cues that orchestrate epithelial tubulogenesis, we employed an in vitro assay in which EpH4-J3B1A mammary epithelial cells form spheroidal cysts when grown in collagen gels under serum-free conditions, but form branching tubules in the presence of fetal calf serum (FCS).  相似文献   

7.
Epithelial cells in vivo form tight cell-cell associations that spatially separate distinct apical and basolateral domains. These domains provide discrete cellular processes essential for proper tissue and organ development. Using confocal imaging and selective plasma membrane domain activation, the type I and type II transforming growth factor-beta (TGFbeta) receptors were found to be localized specifically at the basolateral surfaces of polarized Madin-Darby canine kidney (MDCK) cells. Receptors concentrated predominantly at the lateral sites of cell-cell contact, adjacent to the gap junctional complex. Cytoplasmic domain truncations for each receptor resulted in the loss of specific lateral domain targeting and dispersion to both the apical and basal domains. Whereas receptors concentrate basolaterally in regions of direct cell-cell contact in nonpolarized MDCK cell monolayers, receptor staining was absent from areas of noncell contact. In contrast to the defined basolateral polarity observed for the TGFbeta receptor complex, TGFbeta ligand secretion was found to be from the apical surfaces. Confocal imaging of MDCK cells with an antibody to TGFbeta1 confirmed a predominant apical localization, with a stark absence at the basal membrane. These findings indicate that cell adhesion regulates the localization of TGFbeta receptors in polarized epithelial cultures and that the response to TGFbeta is dependent upon the spatial distribution and secretion of TGFbeta receptors and ligand, respectively.  相似文献   

8.
We report here the effects of differentiation on the binding and action of transforming growth factor-beta (TGF-beta) in three lines of myogenic cells. In two lines (L6-A1 and C2) which irreversibly differentiate by fusing to form postmitotic myotubes, there is a virtual disappearance of TGF-beta binding sites as differentiation occurs. Analyses of the binding curves by the method of Scatchard indicates that there is little or no change in affinity but a substantial decrease in the number of binding sites. In L6-A1 cells, responsiveness to TGF-beta decreases in parallel to the loss of receptors. The decreases in TGF-beta binding and activity with differentiation are not paralleled by similar changes in another growth factor, insulin-like growth factor-I, which exhibits little change in binding and only a modest decrease in activity as L6-A1 myoblasts differentiate to form myotubes. In a third cell line (BC3H1), which exhibits reversible differentiation without fusion, there is little or no change in TGF-beta binding as the cells differentiate. Comparisons with reported decreases in binding of fibroblast and epidermal growth factors indicates that there are substantial differences in growth factor binding and actions as muscle cells differentiate, but it is not possible to make the simple generalization that differentiation is accompanied by a decrease in binding of all growth factors.  相似文献   

9.
10.
Recent studies suggest that treatment with PPAR-gamma agonists and statins have beneficial effects on renal disease. However, the combined effects of PPAR-gamma agonists and statins in human renal epithelial cells are unknown. Our present study revealed that there were synergistic effects of pravastatin and pioglitazone in the expression of alpha-smooth muscle actin (alpha-SMA), connective tissue growth factor (CTGF), fibronectin (FN), plasminogen activator inhibitor-1 (PAI-1) and collagen 1 in human renal proximal tubular epithelial cells induced by transforming growth factor-beta 1 (TGF-beta1). The beneficial effects of combined therapy against renal tubular epithelial cell injury are attributed, at least in part, to the inhibition of transdifferentiation, extracellular matrix deposition and cytokine production.  相似文献   

11.
Although unregulated activation of the Ras/Raf/mitogen-activated protein kinase kinase/Erk signaling pathway is believed to be a central mechanism by which many cell types undergo oncogenic transformation, recent studies indicate that activation of Raf kinase by oncogenic Ras is not sufficient to cause tumorigenic transformation in intestinal epithelial cells. Thus, identification of signaling proteins and pathways that interact with Raf to transform intestinal epithelial cells may be critical for understanding aberrant growth control in the intestinal epithelium. Functional interactions between Raf and the small GTPase RhoA were studied in RIE-1 cells overexpressing both activated Raf(22W) and activated RhoA(63L). Double transfectants were morphologically transformed, formed colonies in soft agar, grew in nude mice, overexpressed cyclin D1 and cyclooxygenase-2 (COX-2), and were resistant to growth inhibition by transforming growth factor (TGF) beta. RIE-Raf and RIE-RhoA single transfectants showed none of these characteristics. Expression of a dominant-negative RhoA(N19) construct in RIE-Ras(12V) cells was associated with markedly reduced COX-2 mRNA, COX-2 protein, and prostaglandin E2 levels when compared with RIE-Ras(12V) cells transfected with vector alone. However, no change in transformed morphology, growth in soft agar, cyclin D1 expression, TGFalpha expression, or TGFbeta sensitivity was observed. In summary, coexpression of activated Raf and RhoA induces transformation and TGFbeta resistance in intestinal epithelial cells. Although blockade of RhoA signaling reverses certain well-described characteristics of RIE-Ras cells, it is insufficient to reverse the transformed phenotype and restore TGFbeta sensitivity. Blockade of additional Rho family members or alternate Ras effector pathways may be necessary to fully reverse the Ras phenotype.  相似文献   

12.
13.
14.
15.
Insulin-like growth factor binding protein-3 (IGFBP-3) has been proposed to mediate the growth inhibitory effects of transforming growth factor (TGF)-beta in breast and prostate cancer cells. Both TGF-beta and exogenous IGFBP-3 inhibit DNA synthesis in Mv1 mink lung epithelial cells (CCL64). The present study asks whether IGFBPs synthesized by CCL64 cells mediate growth inhibition by TGF-beta. CCL64 cells synthesize and secrete a single 34-kDa IGFBP that was identified as IGFBP-2 by immunoprecipitation and immunodepletion. Recombinant bovine IGFBP-2 inhibited CCL64 DNA synthesis in serum-free media in an IGF-independent manner. Coincubation with Leu(60)-IGF-I, an IGF-I analog that binds to IGFBPs with higher affinity than to IGF-I receptors, decreased the inhibition by bIGFBP-2. Leu(60)-IGF-I also decreased the inhibition of CCL64 DNA synthesis by TGF-beta by up to 70%, whereas Long-R3-IGF-I, an IGF-I analog with higher affinity for IGF-I receptors than for IGFBPs, did not decrease inhibition, suggesting that the effect of Leu(60)-IGF-I resulted from its forming complexes with endogenous IGFBPs. Leu(60)-IGF-I did not decrease TGF-beta stimulation of a Smad3-dependent reporter gene. Following incubation of intact CCL64 cells with bIGFBP-2 at 0 degrees C, bIGFBP-2 was recovered in membrane fractions; membrane association was abolished by coincubation with Leu(60)-IGF-I. If exogenous and secreted IGFBP-2 must bind to CCL64 cells to inhibit DNA synthesis, Leu(60)-IGF-I might reduce the inhibition of DNA synthesis by bIGFBP-2 or TGF-beta by inhibiting the association of IGFBP-2 in the media with CCL64 cells. Since TGF-beta does not increase IGFBP-2 abundance, we propose that TGF-beta sensitizes CCL64 cells to the latent growth inhibitory activity of endogenous IGFBP-2 by potentiating an intracellular IGFBP-2 signaling pathway or by promoting the association of secreted IGFBP-2 with the plasma membrane.  相似文献   

16.
17.
We have identified two distinct classes of transforming growth factor-beta (TGF-beta)-binding proteins by affinity labeling rat glomeruli with 125I-TGF-beta 1 and 125I-TGF-beta 2. The first type consists of a group of proteins that bind TGF-beta 1 but do not bind TGF-beta 2. When 125I-TGF-beta 1 affinity-labeled glomeruli were separated under nonreducing conditions, four prominent bands with Mr values of 320,000, 260,000, 170,000, and 90,000 were observed. Following reduction, the 320,000 and 170,000 bands yielded only a 100,000 band, the 260,000 complex yielded bands of 200,000, 100,000, and 85,000, and the 90,000 band migrated with an Mr of 85,000. Binding of 125I-TGF-beta 1 to these proteins was unaffected by the addition of as much as a 1,000-fold excess of TGF-beta 2. The second type of glomerular TGF-beta-binding protein consists of Mr 160,000-200,000 and 280,000 proteins that bind both TGF-beta 1 and beta 2. Digestion of these affinity-labeled proteins with heparitinase and chondroitinase resulted in a decrease of approximately 40,000 in their apparent molecular weights. Glomerular TGF-beta 1-binding proteins are distinct from previously described TGF-beta-binding proteins in their specificity for TGF-beta 1 and their formation of disulfide-linked multimers. The TGF-beta 1/beta 2-binding proteins share some properties of the previously described type III TGF-beta receptor.  相似文献   

18.
19.
Transforming growth factor-beta1 (TGF-beta1) belongs to a family of multifunctional cytokines that regulate a variety of biological processes, including cell differentiation, proliferation, and apoptosis. The effects of TGF-beta1 are cell context and cell cycle specific and may be signaled through several pathways. We examined the effect of TGF-beta1 on apoptosis of primary human central airway epithelial cells and cell lines. TGF-beta1 protected human airway epithelial cells from apoptosis induced by either activation of the Fas death receptor (CD95) or by corticosteroids. This protective effect was blocked by inhibition of the Smad pathway via overexpression of inhibitory Smad7. The protective effect is associated with an increase in the cyclin-dependent kinase inhibitor p21 and was blocked by the overexpression of key gatekeeper cyclins for the G1/S interface, cyclins D1 and E. Blockade of the Smad pathway by overexpression of the inhibitory Smad7 permitted demonstration of a TGF-beta-mediated proapoptotic pathway. This proapoptotic effect was blocked by inhibition of the p38 MAPK kinase signaling with the inhibitor SB-203580 and was associated with an increase in p38 activity as measured by a kinase assay. Here we demonstrate dual signaling pathways involving TGF-beta1, an antiapoptotic pathway mediated by the Smad pathway involving p21, and an apoptosis-permissive pathway mediated in part by p38 MAPK.  相似文献   

20.
We have previously identified two hyaluronan (HA) binding domains in the HA receptor, RHAMM, that occur near the carboxyl-terminus of this protein. We show here that these two HA binding domains are the only HA binding regions in RHAMM, and that they contribute approximately equally to the HA binding ability of this receptor. Mutation of domain II using recombinant polypeptides of RHAMM demonstrates that K423 and R431, spaced seven amino acids apart, are critical for HA binding activity. Domain I contains two sets of two basic amino acids, each spaced seven residues apart, and mutation of these basic amino acids reduced their binding to HA--Sepharose. These results predict that two basic amino acids flanking a seven amino acid stretch [hereafter called B(X7)B] are minimally required for HA binding activity. To assess whether this motif predicts HA binding in the intact RHAMM protein, we mutated all basic amino acids in domains I and II that form part of these motifs using site-directed mutagenesis and prepared fusion protein from the mutated cDNA. The altered RHAMM protein did not bind HA, confirming that the basic amino acids and their spacing are critical for binding. A specific requirement for arginine or lysine residues was identified since mutation of K430, R431 and K432 to histidine residues abolished binding. Clustering of basic amino acids either within or at either end of the motif enhanced HA binding activity while the occurrence of acidic residues between the basic amino acids reduced binding. The B(X7)B motif, in which B is either R or K and X7 contains no acidic residues and at least one basic amino acid, was found in all HA binding proteins molecularly characterized to date. Recombinant techniques were used to generate chimeric proteins containing either the B(X7)B motifs present in CD44 or link protein, with the amino-terminus of RHAMM (amino acids 1-238) that does not bind HA. All chimeric proteins containing the motif bound HA in transblot analyses. Site-directed mutations of these motifs in CD44 sequences abolished HA binding. Collectively, these results predict that the motif of B(X7)B as a minimal binding requirement for HA in RHAMM, CD44 and link protein, and occurs in all HA binding proteins described to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号