首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The release of a chromophoric analogue of GDP, 2-amino-6-mercaptopurine riboside 5'-diphosphate (thioGDP), from its complex with elongation factor Tu (EF-Tu) is catalyzed by elongation factor Ts (EF-Ts). The mechanism of this reaction includes a ternary complex; EF-Tu.thioGDP.EF-Ts (Eccleston, J. F. (1984) J. Biol. Chem. 259, 12997-13003). This mechanism has been further investigated using pressure relaxation techniques combined with spectrophotometric measurements. The equilibrium of a solution of EF-Tu, EF-Ts, and thioGDP over a range of concentrations is perturbed on increasing the pressure to 150 atm. Rapid decrease of the pressure back to 1 atm results in a biphasic relaxation process, an initial fast phase which is complete within 1 ms followed by a slower phase. This is interpreted as the result of an isomerization of the EF-Tu.thioGDP.EF-Ts ternary complex which occurs before the release of thioGDP. Such an isomerization process may be a general feature in the release of GDP from guanosine nucleotide-binding proteins.  相似文献   

2.
Interactions of EF-Ts with EF-Tu at all steps of the elongation cycle were studied by limited trypsinolysis, gel-filtration, analytical centrifugation and fluorescence polarization techniques. It is shown that EF-Ts does not dissociate from EF-Tu after GDP to GTP exchange, but remains bound to the Aa-tRNA.EF-Tu.GTP complex up to GTP hydrolysis stage on the ribosome. The possible role of these interactions is discussed.  相似文献   

3.
4.
5.
Affinity labeling in situ of the Thermus thermophilus elongation factor Tu (EF-Tu) nucleotide binding site was achieved with periodate-oxidized GDP (GDPoxi) or GTP (GTPoxi) in the absence and presence of elongation factor Ts (EF-Ts). Lys52 and Lys137, both reacting with GDPoxi and GTPoxi, are located in the nucleotide binding region. In the absence of EF-Ts Lys137 and to a lesser extent Lys52 were accessible to the reaction with GTPoxi. GDPoxi reacted much more efficiently with Lys52 than with Lys137 under these conditions [Peter, M. E., Wittman-Liebold, B. & Sprinzl, M. (1988) Biochemistry 27, 9132-9138]. In the presence of EF-Ts, GDPoxi reacted more efficiently with Lys137 than with Lys52, indicating that the interaction of EF-Ts with EF-Tu.GDPoxi induces a conformation resembling that of the EF-Tu.GDPoxi complex in the absence of EF-Ts. Binding of EF-Ts to EF-Tu.GDP enhances the accessibility of the Arg59-Gly60 peptide bond of EF-Tu to trypsin cleavage. Hydrolysis of this peptide bond does not interfere with the ability of EF-Ts to bind to EF-Tu. EF-Ts is protected against trypsin cleavage by interaction with EF-Tu.GDP. High concentrations of EF-Ts did not interfere significantly with aminoacyl-tRNA.EF-Tu.GTP complex formation.  相似文献   

6.
A method has been developed to search for the elongation factor Tu (EF-Tu) domain(s) that interact with elongation factor Ts (EF-Ts). This method is based on the suppression of Escherichia coli EF-Tu-dominant negative mutation K136E, a mutation that exerts its effect by sequestering EF-Ts. We have identified nine single-amino acid- substituted suppression mutations in the region 146-199 of EF-Tu. These mutations are R154C, P168L, A174V, K176E, D181G, E190K, D196G, S197F, and I199V. All suppression mutations but one (R154C) significantly affect EF-Tu's ability to interact with EF-Ts under equilibrium conditions. Moreover, with the exception of mutation A174V, the GDP affinity of EF-Tu appears to be relatively unaffected by these mutations. These results suggest that the domain of residues 154 to 199 on EF-Tu is involved in interacting with EF-Ts. These suppression mutations are also capable of suppressing dominant negative mutants N135D and N135I to various degrees. This suggests that dominant negative mutants N135D and N135I are likely to have the same molecular basis as the K136E mutation. The method we have developed in this study is versatile and can be readily adapted to map other regions of EF-Tu. A model of EF-Ts-catalyzed guanine-nucleotide exchange is discussed.  相似文献   

7.
The three-dimensional structure of the bovine mitochondrial elongation factor (EF)-Tu.Ts complex (EF-Tumt.Tsmt) has been determined to 2.2-A resolution using the multi-wavelength anomalous dispersion experimental method. This complex provides the first insight into the structure of EF-Tsmt. EF-Tsmt is similar to Escherichia coli and Thermus thermophilus EF-Ts in the amino-terminal domain. However, the structure of EF-Tsmt deviates considerably in the core domain with a five-stranded beta-sheet forming a portion of subdomain N of the core. In E. coli EF-Ts, this region is composed of a three-stranded sheet. The coiled-coil domain of the E. coli EF-Ts is largely eroded in EF-Tsmt, in which it consists of a large loop packed against subdomain C of the core. The conformation of bovine EF-Tumt in complex with EF-Tsmt is distinct from its conformation in the EF-Tumt.GDP complex. When domain III of bovine EF-Tumt.GDP is superimposed on domain III of EF-Tumt in the EF-Tumt.Tsmt complex, helix B from domain I is also almost superimposed. However, the rest of domain I is rotated relative to this helix toward domain II, which itself is rotated toward domain I relative to domain III. Extensive contacts are observed between the amino-terminal domain of EF-Tsmt and domain I of EF-Tumt. Furthermore, the conserved TDFV sequence of EF-Tsmt also contacts domain I with the side chain of Asp139 contacting helix B of EF-Tumt and inserting the side chain of Phe140 between helices B and C. The structure of the EF-Tumt.Tsmt complex provides new insights into the nucleotide exchange mechanism and provides a framework for explaining much of the mutational data obtained for this complex.  相似文献   

8.
Elongation factor Ts (EF-Ts) is the guanine-nucleotide exchange factor of elongation factor Tu (EF-Tu), which promotes the binding of aminoacyl-tRNA to the mRNA-programmed ribosome in prokaryotes. The EF-Tu.EF-Ts complex, one of the EF-Tu complexes during protein synthesis, is also a component of RNA-dependent RNA polymerases like the polymerase from coliphage Qbeta. The present study shows that the Escherichia coli mutant GRd.tsf lacking the coiled-coil motif of EF-Ts is completely resistant to phage Qbeta and that Qbeta-polymerase complex formation is not observed. GRd.tsf is the first E. coli mutant ever described that is unable to form a Qbeta-polymerase complex while still maintaining an almost normal growth behavior. The phage resistance correlates with an observed instability of the mutant EF-Tu.EF-Ts complex in the presence of guanine nucleotides. Thus, the mutant EF-Tu.EF-Ts is the first EF-Tu.EF-Ts complex ever described that is completely inactive in the Qbeta-polymerase complex despite its almost full activity in protein synthesis. We propose that the role of EF-Ts in the Qbeta-polymerase complex is to control and trap EF-Tu in a stable conformation with affinity for RNA templates while unable to bind aminoacyl-tRNA.  相似文献   

9.
Elongation factor 1 (EF-1) was purified from rabbit reticulocytes and found to contain at least two distinct polypeptides: one of Mr 53 000 and one of Mr 30 000. The 30 000-Mr polypeptide was purified from EF-1 by treatment of the factor with 5.4 M guanidine . HCl and subsequent chromatography on DEAE-BioGel A in the presence of 5 M urea. By a number of functional criteria, the 30 000-Mr polypeptide was found to be the eucaryotic elongation factor Ts (eEF-Ts). These criteria include the ability of the polypeptide to stimulate Artemia salina eEF-Tu-dependent binding of aminoacyl-tRNA to 80-S ribosomes as well as eEF-Tu + EF-2-dependent polyphenylalanine synthesis. The reticulocyte factor also markedly increased the rate of exchange of eEF-Tu . gdp complexes with free GTP. Furthermore, rabbit antibodies to EF-1 from A. salina which was previously shown to contain eEF-Ts [Slobin, L. I. and M?ller, W. (1978) Eur. J. Biochem. 84, 69--77] were found to cross-react with reticulocyte eEF-Ts, suggesting extensive structural homology between brine shrimp and rabbit eEF-Ts. The demonstration that eEF-Ts is and integral component of EF-1 from such diverse sources as brine shrimp and rabbit reticulocytes supports the conclusion that the factor is universally present in eucaryotic EF-1.  相似文献   

10.
A study of the kinetic mechanism of elongation factor Ts   总被引:5,自引:0,他引:5  
Elongation factor Ts (EF-Ts) catalyzes the reaction EF-Tu X GDP + nucleotide diphosphate (NDP) reversible EF-Tu X NDP + GDP where NDP is GDP, IDP, GTP, or GMP X PCP. The EF-Ts-catalyzed exchange rates were measured at a series of concentrations of EF-Tu X [3H] GDP and free nucleotide. Plotting the rate data according to the Hanes method produced a series of lines intersecting on the ordinate, a characteristic of substituted enzyme mechanisms. GDP is a competitive inhibitor of IDP exchange, a result predicted for the substituted enzyme mechanism but inconsistent with ternary complex mechanisms that involve an intermediate complex containing EF-Ts and both substrates. The exchange of both GTP and the GTP analog GMP X PCP also follow the substituted enzyme mechanism. The maximal rates of exchange of GDP and GTP are the same, which indicates that the rates of dissociation of EF-Ts from EF-Tu X GDP and EF-Tu X GTP are the same. The steady-state maximal exchange rate is slower by a factor of 20 than the previously reported rate of dissociation of GDP from EF-Ts X EF-Tu. This is interpreted to mean that the rate-determining step in the exchange reaction is the dissociation of EF-Ts from EF-Tu X GDP.  相似文献   

11.
The interaction of Escherichia coli elongation factor Tu (EF-Tu) with elongation factor Ts (EF-Ts) and guanine nucleotides was studied by the stopped-flow technique, monitoring the fluorescence of tryptophan 184 in EF-Tu or of the mant group attached to the guanine nucleotide. Rate constants of all association and dissociation reactions among EF-Tu, EF-Ts, GDP, and GTP were determined. EF-Ts enhances the dissociation of GDP and GTP from EF-Tu by factors of 6 x 10(4) and 3 x 10(3), respectively. The loss of Mg(2+) alone, without EF-Ts, accounts for a 150-300-fold acceleration of GDP dissociation from EF-Tu.GDP, suggesting that the disruption of the Mg(2+) binding site alone does not explain the EF-Ts effect. Dissociation of EF-Ts from the ternary complexes with EF-Tu and GDP/GTP is 10(3)-10(4) times faster than from the binary complex EF-Tu.EF-Ts, indicating different structures and/or interactions of the factors in the binary and ternary complexes. Rate constants of EF-Ts binding to EF-Tu in the free or nucleotide-bound form or of GDP/GTP binding to the EF-Tu.EF-Ts complex range from 0.6 x 10(7) to 6 x 10(7) M(-1) s(-1). At in vivo concentrations of nucleotides and factors, the overall exchange rate, as calculated from the elemental rate constants, is 30 s(-1), which is compatible with the rate of protein synthesis in the cell.  相似文献   

12.
Animal mitochondrial protein synthesis factors elongation factor (EF) Tu and EF-Ts have been purified as an EF-Tu.Ts complex from crude extracts of bovine liver mitochondria. The mitochondrial complex has been purified 10,000-fold to near homogeneity by a combination of chromatographic procedures including high performance liquid chromatography. The mitochondrial EF-Tu.Ts complex is very stable and cannot be dissociated even in the presence of high concentrations of guanine nucleotides. No guanine nucleotide binding to this complex can be observed in the standard nitrocellulose filter binding assay. Mitochondrial EF-Ts activity can be detected by its ability to facilitate guanine nucleotide exchange with Escherichia coli EF-Tu. The EF-Tumt exhibits similar levels of activity on isolated mammalian mitochondrial and E. coli ribosomes, but displays minimal activity on Euglena gracilis chloroplast 70 S ribosomes and has no detectable activity on wheat germ cytoplasmic ribosomes. In contrast to the bacterial EF-Tu and the EF-Tu from the chloroplast of E. gracilis, the ability of the mitochondrial factor to catalyze polymerization is not inhibited by the antibiotic kirromycin.  相似文献   

13.
Most lipases of Gram-negative bacteria require a lipase-specific foldase (Lif) in order to fold in the periplasm into their active, protease-resistant conformation prior to their secretion. The periplasmic domain of the Lif (amino acids 44-353) of Burkholderia glumae was purified as a His-tagged protein, and its function in the folding of lipase was studied in vitro. Refolding of the denatured lipase into its active conformation was dependent on the presence of the Lif. Circular dichroism revealed that the lipase refolded in the absence of Lif into a form with a native-like conformation, which was more stable against heat-induced denaturation than the native form, but was enzymatically inactive. This form of the protein could be activated by adding Lif after several hours, which demonstrates that the function of this chaperone is to help lipase to overcome an energetic barrier in the productive folding pathway rather than to prevent it from entering a non-productive pathway. The Lif was shown to interact with the native lipase in protease-protection experiments as well as by affinity chromatography, consistent with a role of the Lif late in the folding process. These results demonstrate that the Lif functions in a way analogous to the propeptides of many bacterial proteases and indicate that the amino acid sequence of the lipase does not contain all the information required for the protein to adopt its three-dimensional structure.  相似文献   

14.
A 6.5 kb region from the genome of the cyanobacterium Spirulina platensis was cloned using as a probe the Escherichia coli gene for ribosomal protein S2. Sequence analysis revealed, in this region, the presence of the gene for ribosomal protein S2 and part of the gene for the elongation factor Ts (EF-Ts). The arrangement rpsB-spacer-tsf resembles that reported for E. coli. The deduced amino acid sequences of the platensis S2 and EF-Ts show significant homology with the E. coli counterparts.  相似文献   

15.
Elongation factor Ts (EF-Ts) is the guanine nucleotide-exchange factor for elongation factor Tu (EF-Tu) that is responsible for promoting the binding of aminoacyl-tRNA to the mRNA-programmed ribosome. The structure of the Escherichia coli EF-Tu-EF-Ts complex reveals a protruding antiparallel coiled-coil motif in EF-Ts, which is responsible for the dimerization of EF-Ts in the crystal. In this study, the sequence encoding the coiled-coil motif in EF-Ts was deleted from the genome in Escherichia coli by gene replacement. The growth rate of the resulting mutant strain was 70-95% of that of the wild-type strain, depending on the growth conditions used. The mutant strain sensed amino acid starvation and synthesized the nucleotides guanosine 5'-diphosphate 3'-diphosphate and guanosine 5'-triphosphate 3'-diphosphate at a lower cell density than the wild-type strain. Deletion of the coiled-coil motif only partially reduced the ability of EF-Ts to stimulate the guanine nucleotide exchange in EF-Tu. However, the concentration of guanine nucleotides (GDP and GTP) required to dissociate the mutant EF-Tu-EF-Ts complex was at least two orders of magnitude lower than that for the wild-type complex. The results show that the coiled-coil motif plays a significant role in the ability of EF-Ts to compete with guanine nucleotides for the binding to EF-Tu. The present results also indicate that the deletion alters the competition between EF-Ts and kirromycin for the binding to EF-Tu.  相似文献   

16.
17.
Substitution of V20 by G in the consensus element G18HVDHGK24 of EF-Tu (referred to as EF-TuG20) strongly influences the interaction with GDP as well as the GTPase activity [Jacquet, E. & Parmeggiani, A. (1988) EMBO J. 7, 2861-2867]. In an extension of this work we describe additional properties of the mutated factor, paying particular attention to the interaction with the macromolecular ligands. Our results show that the conformational transitions induced by the mutation strongly favor the regeneration of the active complex EF-TuG20.GTP, almost as effectively as with wild-type EF-Tu in the presence of elongation factor Ts. Addition of elongation factor Ts further enhances the rate of the GDP to GTP exchange of the mutated factor. Remarkably, EF-TuG20.GDP can support the enzymatic binding of aminoacyl-tRNA to ribosome.mRNA at low MgCl2 concentration, an effect that with wild-type EF-Tu can only occur in the presence of kirromycin. Our results show that EF-TuG20.GDP shares common features with the GTP-like conformation induced by kirromycin on wild-type EF-Tu. The ability of the ribosome to activate the EF-TuG20 center for GTP hydrolysis is strongly decreased, while the stimulation by aminoacyl-tRNA is conserved. The ribosomal activity is partially restored by addition of aminoacyl-tRNA plus poly(U), showing that codon/anticodon interaction contribute to correct the anomalous interaction between ternary complex and ribosomes. The impaired activity of EF-TuG20 in poly(Phe) synthesis is related to the degree of defective GTP hydrolysis and, most interestingly, it is characterized by a striking increase of the fidelity of translation at high MgCl2 concentration. This effect probably depends on a more selective recognition of the ternary complex by ribosome.mRNA, as a consequence of a longer pausing of EF-TuG20 on the ribosome. In conclusion, position 20 in EF-Tu is important for coordinating the allosteric mechanisms controlling the action of EF-Tu and its ligands.  相似文献   

18.
19.
The exchange of elongation factor Tu (EF-Tu)-bound GTP in the presence and absence of elongation factor Ts (EF-Ts) was monitored by equilibrium exchange kinetic procedures. The kinetics of the exchange reaction were found to be consistent with the formation of a ternary complex EF-Tu X GTP X EF-Ts. The equilibrium association constants of EF-Ts to the EF-Tu X GTP complex and of GTP to EF-Tu X EF-Ts were calculated to be 7 X 10(7) and 2 X 10(6) M-1, respectively. The dissociation rate constant of GTP from the ternary complex was found to be 13 s-1. This is 500 times larger than the GTP dissociation rate constant from the EF-Tu X GTP complex (2.5 X 10(-2) s-1). A procedure based on the observation that EF-Tu X GTP protects the aminoacyl-tRNA molecule from phosphodiesterase I-catalyzed hydrolysis was used to study the interactions of EF-Tu X GTP with Val-tRNAVal and Phe-tRNAPhe. Binding constants of Phe-tRNAPhe and Val-tRNAVal to EF-Tu X GTP of 4.8 X 10(7) and 1.2 X 10(7)M-1, respectively, were obtained. The exchange of bound GDP with GTP in solution in the presence of EF-Ts was also examined. The kinetics of the reaction were found to be consistent with a rapid equilibrium mechanism. It was observed that the exchange of bound GDP with free GTP in the presence of a large excess of the latter was accelerated by the addition of aminoacyl-tRNA. On the basis of these observations, a complete mechanism to explain the interactions among EF-Tu, EF-Ts, guanine nucleotides, and aminoacyl-tRNA has been developed.  相似文献   

20.
Prohibitins are ubiquitous, abundant and evolutionarily strongly conserved proteins that play a role in important cellular processes. Using blue native electrophoresis we have demonstrated that human prohibitin and Bap37 together form a large complex in the mitochondrial inner membrane. This complex is similar in size to the yeast complex formed by the homologues Phb1p and Phb2p. In yeast, levels of this complex are increased on co-overexpression of both Phb1p and Phb2p, suggesting that these two proteins are the only components of the complex. Pulse-chase experiments with mitochondria isolated from phb1/phb2-null and PHB1/2 overexpressing cells show that the Phb1/2 complex is able to stabilize newly synthesized mitochondrial translation products. This stabilization probably occurs through a direct interaction because association of mitochondrial translation products with the Phb1/2 complex could be demonstrated. The fact that Phb1/2 is a large multimeric complex, which provides protection of native peptides against proteolysis, suggests a functional homology with protein chaperones with respect to their ability to hold and prevent misfolding of newly synthesized proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号