首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 1468 bp cDNA coding for the chicken homolog of the human MBD4 G/T mismatch DNA glycosylase was isolated and sequenced. The derived amino acid sequence (416 amino acids) shows 46% identity with the human MBD4 and the conserved catalytic region at the C-terminal end (170 amino acids) has 90% identity. The non-conserved region of the avian protein has no consensus sequence for the methylated DNA binding domain. The recombinant proteins from human and chicken have G/T mismatch as well as 5-methylcytosine (5-MeC) DNA glycosylase activities. When tested by gel shift assays, human recombinant protein with or without the methylated DNA binding domain binds equally well to symmetrically, hemimethylated DNA and non-methylated DNA. However, the enzyme has only 5-MeC DNA glycosylase activity with the hemimethylated DNA. Footprinting of human MBD4 and of an N-terminal deletion mutant with partially depurinated and depyrimidinated substrate reveal a selective binding of the proteins to the modified substrate around the CpG. As for 5-MeC DNA glycosylase purified from chicken embryos, MBD4 does not use oligonucleotides containing mCpA, mCpT or mCpC as substrates. An mCpG within an A+T-rich oligonucleotide is a much better substrate than an A+T-poor sequence. The Km of human MBD4 for hemimethylated DNA is ~10–7 M with a Vmax of ~10–11 mol/h/µg protein. Deletion mutations show that G/T mismatch and 5-MeC DNA glycosylase are located in the C-terminal conserved region. In sharp contrast to the 5-MeC DNA glycosylase isolated from the chicken embryo DNA demethylation complex, the two enzymatic activities of MBD4 are strongly inhibited by RNA. In situ hybridization with antisense RNA indicate that MBD4 is only located in dividing cells of differentiating embryonic tissues.  相似文献   

2.
The human protein MED1 (also known as MBD4) was previously isolated in a two-hybrid screening using the mismatch repair protein MLH1 as a bait, and shown to have homology to bacterial base excision repair DNA N-glycosylases/lyases. To define the mechanisms of action of MED1, we implemented a sensitive glycosylase assay amenable to kinetic analysis. We show that MED1 functions as a mismatch-specific DNA N-glycosylase active on thymine, uracil, and 5-fluorouracil when these bases are opposite to guanine. MED1 lacks uracil glycosylase activity on single-strand DNA and abasic site lyase activity. The glycosylase activity of MED1 prefers substrates containing a G:T mismatch within methylated or unmethylated CpG sites; since G:T mismatches can originate via deamination of 5-methylcytosine to thymine, MED1 may act as a caretaker of genomic fidelity at CpG sites. A kinetic analysis revealed that MED1 displays a fast first cleavage reaction followed by slower subsequent reactions, resulting in biphasic time course; this is due to the tight binding of MED1 to the abasic site reaction product rather than a consequence of enzyme inactivation. Comparison of kinetic profiles revealed that the MED1 5-methylcytosine binding domain and methylation of the mismatched CpG site are not required for efficient catalysis.  相似文献   

3.
DNA cytosine methylation in mammals modulates gene expression and chromatin accessibility. It also impacts mutation rates, via spontaneous oxidative deamination of 5-methylcytosine (5mC) to thymine. In most cases the resulting T:G mismatches are repaired, following T excision by one of the thymine DNA glycosylases, TDG or MBD4. We found that C-to-T mutations are enriched in the binding sites of CCAAT/enhancer binding proteins (CEBP). Within a CEBP site, the presence of a T:G mismatch increased CEBPβ binding affinity by a factor of >60 relative to the normal C:G base pair. This enhanced binding to a mismatch inhibits its repair by both TDG and MBD4 in vitro. Furthermore, repair of the deamination product of unmethylated cytosine, which yields a U:G DNA mismatch that is normally repaired via uracil DNA glycosylase, is also inhibited by CEBPβ binding. Passage of a replication fork over either a T:G or U:G mismatch, before repair can occur, results in a C-to-T mutation in one of the daughter duplexes. Our study thus provides a plausible mechanism for accumulation of C-to-T human somatic mutations.  相似文献   

4.
Role of MED1 (MBD4) Gene in DNA repair and human cancer   总被引:6,自引:0,他引:6  
The human protein MED1, also known as MBD4, was isolated in a yeast two-hybrid screening as an interactor of the mismatch repair protein MLH1. MED1 contains an N-terminal 5-methylcytosine binding domain (MBD), which allows binding to methylated DNA, and a C-terminal catalytic domain with homology to bacterial DNA damage-specific glycosylases/lyases. This suggests that DNA methylation may play a role in human DNA repair. MED1 acts as a mismatch-specific DNA N-glycosylase active on thymine, uracil, 5-fluorouracil and, weakly, 3,N(4)-ethenocytosine paired with guanine. The glycosylase activity of MED1 prefers substrates in which the G:T mismatch is present in the context of methylated or unmethylated CpG sites. Since G:T mismatches can originate via spontaneous deamination of 5-methylcytosine to thymine, MED1 appears to act as a caretaker of genomic fidelity at CpG sites. Mutagenesis caused by these deamination events is a frequent mechanism of genetic instability in cancer; thus, based on the biochemical activity of its gene product, MED1 is a candidate tumor suppressor gene. Indeed, frameshift mutations of the MED1 gene have been reported in human colorectal, gastric, endometrial, and pancreatic cancer. In the future, efforts should be directed toward investigations of the functional role of the MED1 gene in the pathogenesis, prevention, and treatment of human cancer.  相似文献   

5.
The human DNA repair protein MED1 (also known as MBD4) was isolated as an interactor of the mismatch repair protein MLH1 in a yeast two-hybrid screening. MED1 has a tripartite structure with an N-terminal 5-methylcytosine binding domain (MBD), a central region, and a C-terminal catalytic domain with homology to bacterial DNA damage-specific glycosylases/lyases. Indeed, MED1 acts as a mismatch-specific DNA N-glycosylase active on thymine, uracil, and 5-fluorouracil paired with guanine. The glycosylase activity of MED1 preferentially targets G:T mismatches in the context of CpG sites; this indicates that MED1 is involved in the repair of deaminated 5-methylcytosine. Interestingly, frameshift mutations of the MED1 gene have been reported in human colorectal, endometrial, and pancreatic cancers. For its putative role in maintaining genomic fidelity at CpG sites, it is important to characterize the biochemical properties and the substrate spectrum of MED1. Here we show that MED1 works under a wide range of temperature and pH, and has a limited optimum range of ionic strength. MED1 has a weak glycosylase activity on the mutagenic adduct 3,N(4)-ethenocytosine, a metabolite of vinyl chloride and ethyl carbamate. The differences in glycosylase activity on G:U and G:T substrates are not related to differences in substrate binding and likely result from intrinsic differences in the chemical step. Finally, the isolated catalytic domain of MED1 retains the preference for G:T and G:U substrates in the context of methylated or unmethylated CpG sites. This suggests that the catalytic domain is fundamental, and the 5-methylcytosine binding domain dispensable, in determining the substrate spectrum of MED1.  相似文献   

6.
MBD4 is a member of the methyl-CpG-binding protein family. It contains two DNA binding domains, an amino-proximal methyl-CpG binding domain (MBD) and a C-terminal mismatch-specific glycosylase domain. Limited in vitro proteolysis of mouse MBD4 yields two stable fragments: a 139-residue fragment including the MBD, and the other 155-residue fragment including the glycosylase domain. Here we show that the latter fragment is active as a glycosylase on a DNA duplex containing a G:T mismatch within a CpG sequence context. The crystal structure confirmed the C-terminal domain is a member of the helix-hairpin-helix DNA glycosylase superfamily. The MBD4 active site is situated in a cleft that likely orients and binds DNA. Modeling studies suggest the mismatched target nucleotide will be flipped out into the active site where candidate residues for catalysis and substrate specificity are present.  相似文献   

7.
The mammalian repair protein MBD4 (methyl-CpG-binding domain IV) excises thymine from mutagenic G·T mispairs generated by deamination of 5-methylcytosine (mC), and downstream base excision repair proteins restore a G·C pair. MBD4 is also implicated in active DNA demethylation by initiating base excision repair of G·T mispairs generated by a deaminase enzyme. The question of how mismatch glycosylases attain specificity for excising thymine from G·T, but not A·T, pairs remains largely unresolved. Here, we report a crystal structure of the glycosylase domain of human MBD4 (residues 427-580) bound to DNA containing an abasic nucleotide paired with guanine, providing a glimpse of the enzyme-product complex. The mismatched guanine remains intrahelical, nestled into a recognition pocket. MBD4 provides selective interactions with the mismatched guanine (N1H, N2H(2)) that are not compatible with adenine, which likely confer mismatch specificity. The structure reveals no interactions that would be expected to provide the MBD4 glycosylase domain with specificity for acting at CpG sites. Accordingly, we find modest 1.5- to 2.7-fold reductions in G·T activity upon altering the CpG context. In contrast, 37- to 580-fold effects were observed previously for thymine DNA glycosylase. These findings suggest that specificity of MBD4 for acting at CpG sites depends largely on its methyl-CpG-binding domain, which binds preferably to G·T mispairs in a methylated CpG site. MBD4 glycosylase cannot excise 5-formylcytosine (fC) or 5-carboxylcytosine (caC), intermediates in a Tet (ten eleven translocation)-initiated DNA demethylation pathway. Our structure suggests that MBD4 does not provide the electrostatic interactions needed to excise these oxidized forms of mC.  相似文献   

8.
Unlike other members of the methyl-cytosine binding domain (MBD) family, MBD4 serves as a potent DNA glycosylase in DNA mismatch repair specifically targeting mCpG/TpG mismatches arising from spontaneous deamination of methyl-cytosine. The protein contains an N-terminal MBD (MBD4MBD) and a C-terminal glycosylase domain (MBD4GD) separated by a long linker. This arrangement suggests that the MBD4MBD either directly augments enzymatic catalysis by the MBD4GD or targets the protein to regions enriched for mCpG/TpG mismatches. Here we present structural and dynamic studies of MBD4MBD bound to dsDNA. We show that MBD4MBD binds with a modest preference formCpG as compared to mismatch, unmethylated and hydroxymethylated DNA. We find that while MBD4MBD exhibits slow exchange between molecules of DNA (intermolecular exchange), the domain exhibits fast exchange between two sites in the same molecule of dsDNA (intramolecular exchange). Introducing a single-strand defect between binding sites does not greatly reduce the intramolecular exchange rate, consistent with a local hopping mechanism for moving along the DNA. These results support a model in which the MBD4MBD4 targets the intact protein to mCpG islands and promotes scanning by rapidly exchanging between successive mCpG sites which facilitates repair of nearby mCpG/TpG mismatches by the glycosylase domain.  相似文献   

9.
While methylcytosines serve as the fifth base encoding epigenetic information, they are also a dangerous endogenous mutagen due to their intrinsic instability. Methylcytosine undergoes spontaneous deamination, at a rate much higher than cytosine, to generate thymine. In mammals, two repair enzymes, thymine DNA glycosylase (TDG) and methyl-CpG binding domain 4 (MBD4), have evolved to counteract the mutagenic effect of methylcytosines. Both recognize G/T mismatches arising from methylcytosine deamination and initiate base-excision repair that corrects them to G/C pairs. However, the mechanism by which the methylation status of the repaired cytosines is restored has remained unknown. We show here that the DNA methyltransferase Dnmt3a interacts with TDG. Both the PWWP domain and the catalytic domain of Dnmt3a are able to mediate the interaction with TDG at its N-terminus. The interaction affects the enzymatic activity of both proteins: Dnmt3a positively regulates the glycosylase activity of TDG, while TDG inhibits the methylation activity of Dnmt3a in vitro. These data suggest a mechanistic link between DNA repair and remethylation at sites affected by methylcytosine deamination.  相似文献   

10.
An endonuclease activity (called MS-nicking) for all possible base mismatches has been detected in the extracts of yeast, Saccharomyces cerevisiae. DNAs with twelve possible base mismatches at one defined position are cleaved at different efficiencies. DNA fragments with A/G, G/A, T/G, G/T, G/G, or A/A mismatches are nicked with greater efficiencies than C/T, T/C, C/A, and C/C. DNA with an A/C or T/T mismatch is nicked with an intermediate efficiency. The MS-nicking is only on one particular DNA strand, and this strand disparity is not controlled by methylation, strand break, or nature of the mismatch. The nicks have been mapped at 2-3 places at second, third, and fourth phosphodiester bonds 5' to the mispaired base; from the time course study, the fourth phosphodiester bond probably is the primary incision site. This activity may be involved in mismatch repair during genetic recombination.  相似文献   

11.
Active DNA demethylation in mammals occurs via hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation family of proteins (TETs). 5hmC residues in DNA can be further oxidized by TETs to 5-carboxylcytosines and/or deaminated by the Activation Induced Deaminase/Apolipoprotein B mRNA-editing enzyme complex family proteins to 5-hydromethyluracil (5hmU). Excision and replacement of these intermediates is initiated by DNA glycosylases such as thymine-DNA glycosylase (TDG), methyl-binding domain protein 4 (MBD4) and single-strand specific monofunctional uracil-DNA glycosylase 1 in the base excision repair pathway. Here, we report detailed biochemical and structural characterization of human MBD4 which contains mismatch-specific TDG activity. Full-length as well as catalytic domain (residues 426–580) of human MBD4 (MBD4cat) can remove 5hmU when opposite to G with good efficiency. Here, we also report six crystal structures of human MBD4cat: an unliganded form and five binary complexes with duplex DNA containing a T•G, 5hmU•G or AP•G (apurinic/apyrimidinic) mismatch at the target base pair. These structures reveal that MBD4cat uses a base flipping mechanism to specifically recognize thymine and 5hmU. The recognition mechanism of flipped-out 5hmU bases in MBD4cat active site supports the potential role of MBD4, together with TDG, in maintenance of genome stability and active DNA demethylation in mammals.  相似文献   

12.
13.
Back JH  Park JH  Chung JH  Kim DS  Han YS 《DNA Repair》2006,5(8):894-903
Oxidative damage represents a major threat to genomic stability because the major product of DNA oxidation, 8-oxoguanine (GO), frequently mispairs with adenine during replication. We were interested in finding out how hyperthermophilic bacteria under goes the process of excising mispaired adenine from A/GO to deal with genomic oxidative damage. Herein we report the properties of an Escherichia coli MutY (EcMutY) homolog, TthMutY, derived from a hyperthermophile Thermus thermophilus. TthMutY preferentially excises on A/GO and G/GO mispairs and has additional activities on T/GO and A/G mismatches. TthMutY has significant sequence homology to the A/G and T/G mismatch recognition motifs, respectively, of MutY and Mig.MthI. A substitution from Tyr112 to Ser or Ala (Y112S and Y112A) in the putative thymine-binding site of TthMutY showed significant decrease in DNA glycosylase activity. A mutant form of TthMutY, R134K, could form a Schiff base with DNA and fully retained its DNA glycosylase activity against A/GO and A/G mispair. Interestingly, although TthMutY cannot form a trapped complex with substrate in the presence of NaBH(4), it expressed AP lyase activity, suggesting Tyr112 in TthMutY may be the key residue for AP lyase activity. These results suggest that TthMutY may be an example of a novel class of bifunctional A/GO mismatch DNA glycosylase that can also remove thymine from T/GO mispair.  相似文献   

14.
The repair enzymes thymine DNA glycosylase (TDG) and methyl-CpG-binding protein 4 (MBD4) remove thymines from T:G mismatches resulting from deamination of 5-methylcytosine. Thymine glycol, a common DNA lesion produced by oxidative stress, can arise from oxidation of thymine or from oxidative deamination of 5-methylcytosine, and is then present opposite adenine or opposite guanine, respectively. Here we have used oligonucleotides with thymine glycol incorporated into different sequence contexts and paired with adenine or guanine. We show that TDG and MBD4 can remove thymine glycol when present opposite guanine but not when paired with adenine. The efficiency of these enzymes for removal of thymine glycol is about half of that for removal of thymine in the same sequence context. The two proteins may have evolved to act specifically on DNA mismatches produced by deamination and by oxidation-coupled deamination of 5-methylcytosine. This repair pathway contributes to mutation avoidance at methylated CpG dinucleotides.  相似文献   

15.
The mammalian DNA glycosylase-methyl-CpG binding domain protein 4 (MBD4)-is involved in active DNA demethylation via the base excision repair pathway. MBD4 contains an N-terminal MBD and a C-terminal DNA glycosylase domain. MBD4 can excise the mismatched base paired with a guanine (G:X), where X is uracil, thymine or 5-hydroxymethyluracil (5hmU). These are, respectively, the deamination products of cytosine, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Here, we present three structures of the MBD4 C-terminal glycosylase domain (wild-type and its catalytic mutant D534N), in complex with DNA containing a G:T or G:5hmU mismatch. MBD4 flips the target nucleotide from the double-stranded DNA. The catalytic mutant D534N captures the intact target nucleotide in the active site binding pocket. MBD4 specifically recognizes the Watson-Crick polar edge of thymine or 5hmU via the O(2), N(3) and O(4) atoms, thus restricting its activity to thymine/uracil-based modifications while excluding cytosine and its derivatives. The wild-type enzyme cleaves the N-glycosidic bond, leaving the ribose ring in the flipped state, while the cleaved base is released. Unexpectedly, the C(1)' of the sugar has yet to be hydrolyzed and appears to form a stable intermediate with one of the side chain carboxyl oxygen atoms of D534, via either electrostatic or covalent interaction, suggesting a different catalytic mechanism from those of other DNA glycosylases.  相似文献   

16.
Cytosine methylation at CpG dinucleotides is a central component of epigenetic regulation in vertebrates, and the base excision repair (BER) pathway is important for maintaining both the genetic stability and the methylation status of CpG sites. This perspective focuses on two enzymes that are of particular importance for the genetic and epigenetic integrity of CpG sites, methyl binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). We discuss their capacity for countering C to T mutations at CpG sites, by initiating base excision repair of G·T mismatches generated by deamination of 5-methylcytosine (5mC). We also consider their role in active DNA demethylation, including pathways that are initiated by oxidation and/or deamination of 5mC.  相似文献   

17.
Methyl-CpG-binding domain 4 (MBD4) DNA glycosylase is involved in excision of spontaneous deamination products of cytosine and 5-methylcytosine in animals, but it is unknown whether related proteins perform similar functions in plants. We report here the isolation and biochemical characterization of a putative MBD4 homolog from Arabidopsis thaliana, designated as MBD4L (MBD4-like). The plant enzyme lacks the MBD domain present in mammalian MBD4 proteins, but conserves a DNA glycosylase domain with critical residues for substrate recognition and catalysis, and it is more closely related to MBD4 homologs than to other members of the HhH-GPD superfamily. Arabidopsis MBD4L excises uracil and thymine opposite G, and the presence of halogen substituents at C5 of the target base greatly increases its excision efficiency. No significant activity is detected on cytosine derivatives such as 5-methylcytosine or 5-hydroxymethylcytosine. The enzyme binds to the abasic site product generated after excision, which decreases its catalytic turnover in vitro. Both the full-length protein and a N-terminal truncated version retaining the catalytic domain exhibit a preference for a CpG sequence context, where most plant DNA methylation is found. Our results suggest that an important function of Arabidopsis MBD4L is to protect the plant genome from the mutagenic consequences of cytosine and 5-methylcytosine deamination.  相似文献   

18.
The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, we present a 2.0 A resolution crystal structure and complementary mutagenesis results for this thermophilic HhH MIG enzyme. The results suggest that MIG distorts the target thymine nucleotide by twisting the thymine base approximately 90 degrees away from its normal anti position within DNA. We propose that functionally significant differences exist in DNA repair enzyme extrahelical nucleotide binding and catalysis that are characteristic of whether the target base is damaged or is a normal base within a mispair. These results explain why pure HhH DNA glycosylases and combined glycosylase/AP lyases cannot be interconverted by simply altering their functional group chemistry, and how broad-specificity DNA glycosylase enzymes may weaken the glycosylic linkage to allow a variety of damaged DNA bases to be excised.  相似文献   

19.
Human thymine DNA glycosylase (TDG) was discovered as an enzyme that can initiate base excision repair at sites of 5-methylcytosine- or cytosine deamination in DNA by its ability to release thymine or uracil from G.T and G.U mismatches. Crystal structure analysis of an Escherichia coli homologue identified conserved amino acid residues that are critical for its substrate recognition/interaction and base hydrolysis functions. Guided by this revelation, we performed a mutational study of structure function relationships with the human TDG. Substitution of the postulated catalytic site asparagine with alanine (N140A) resulted in an enzyme that bound mismatched substrates but was unable to catalyze base removal. Mutation of Met-269 in a motif with a postulated role in protein-substrate interaction selectively inactivated stable binding of the enzyme to mismatched substrates but not so its glycosylase activity. These results establish that the structure function model postulated for the E. coli enzyme is largely applicable to the human TDG. We further provide evidence for G.U being the preferred substrate of TDG, not only at the mismatch recognition step of the reaction but also in base hydrolysis, and for the importance of stable complementary strand interactions by TDG to compensate for its comparably poor hydrolytic potential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号