首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between lipid composition and phase transition was investigated by differential scanning calorimetry for intact and membrane phospholipid extracts of wild-type (w/t) and the cel-(Tw 40) mutant of Neurospora crassa. The cel-(Tw 40) mutant (grown on minimal, sucrose medium supplemented with Tween 40 at approximately 34 degrees C) had approximately twice the saturated fatty acid content of w/t organisms grown at approximately 22 degrees C. The gel-liquid crystal phase transitions of ergosterol-free extracts derived from w/t and cel-(Tw 40) occur at -31 and -11 degrees C, respectively. The heats of transition (delta H) of these extracts were 1 and 13 cal/g, respectively. The addition of ergosterol (the predominant sterol in Neurospora) to the phospholipid extracts decreased the observed heats of transition, but did not alter the transition temperature. Intact Neurospora, whether w/t or cal-(Tw 40) did not manifest similar gel-liquid crystal phase transitions in the differential scanning calorimeter. However, an endothermic peak at approximately 30 degrees C was observed in intact cells and extracted phospholipids of both w/t and cel-(Tw 40) organisms. This peak was insensitive to the addition of ergosterol, had a low heat content (delta H congruent to 1 cal/g), and was reversible.  相似文献   

2.
Summary The effect of doubling the saturated fatty acid content on the electrophysiology ofNeurospora crassa membranes was studied. Intracellular membrane input resistance (R m ) and potential (E m ) were measured for wild-type (w/t) andcel (Tween 40) organisms as a function of temperature. Over the 0 to 40°C temperature range studied, meanE m values of bothw/t andcel (Tw 40) organisms increased from –160 to –210 mV. This difference is greater than that expected from Nernst potential considerations, indicating an active component ofE m . This active component is insensitive to a doubling of the saturated fatty acid content.R m exhibits a temperature dependence and hysteresis. Averaged data indicate an increase inR m with decreased temperature. The slope of the temperature dependence varies among individual hyphae. Above 17.5°Ccel (Tw 40) hyphae averaged greater than 70% higher values ofR m thanw/t. Below 17.5°Cw/t R m data divided into low and high temperature dependence groups, whilecel data exhibited a low temperature dependence. The results are discussed in relation to gel-liquid crystal phase transitions, membrane fluidity, and the contribution of fatty acid structure to membrane electrical properties.  相似文献   

3.
Summary The relationship between lipid composition and phase transition was investigated by differential scanning calorimetry for intact and membrane phospholipid extracts of wild-type (w/t) and thecel (Tw 40) mutant ofNeurospora crassa. Thecel (Tw 40) mutant (grown on minimal, sucrose medium supplemented with Tween 40 at 34 °C) had approximately twice the saturated fatty acid content ofw/t organisms grown at 22 °C. The gel-liquid crystal phase transitions of ergosterol-free extracts derived fromw/t andcel (Tw 40) occur at –31 and –11 °C, respectively. The heats of transition (H) of these extracts were 1 and 13 cal/g, respectively. The addition of ergosterol (the predominant sterol inNeurospora) to the phospholipid extracts decreased the observed heats of transition, but did not alter the transition temperature. IntactNeurospora, whetherw/t orcel (Tw 40) did not manifest similar gel-liquid crystal phase transitions in the differential scanning calorimeter. However, an endothermic peak at approximately 30 °C was observed in intact cells and extracted phospholipids of bothw/t andcel (Tw 40) organisms. This peak was insensitive to the addition of ergosterol, had a low heat content (H1 cal/g), and was reversible.  相似文献   

4.
Acholeplasma laidlawii, a mycoplasma, is unable to synthesize unsaturated fatty acids but it will incorporate them into its plasma membrane if they are supplied exogeneously. Thus the fatty acid composition of the cell membrane can be defined by growing the organism in media containing specific fatty acids. We obtained cells with predominantly one type of unsaturated fatty acid (either oleic, linoleic or linolenic acid) or cells with only saturated fatty acid in the cell membrane. The cells were irradiated with 7 MeV electrons and the effect of membrane fatty acid composition on cell survival was examined. At 200 Gy/min and 0.5 degrees C (melting ice) there was little difference in the radiation sensitivities of the cells grown in unsaturated fatty acids either in aerated or anoxic radiation conditions. However, the cells containing saturated fatty acids irradiated in anoxic conditions were markedly more sensitive than the cells containing unsaturated fatty acids. At 200 Gy/min and 37 degrees C the two types of cells were of similar sensitivity both in aerated and anoxic radiation conditions. At 5 Gy/min at 0.5 degrees C the cells containing linolenic acid (18:3) were less sensitive than those containing solely saturated fatty acids. However, at 5 Gy/min at 37 degrees C there was no difference in sensitivity between these two types of cell. Our results strongly argue against the involvement of lipid peroxidation as a molecular change leading to cell death.  相似文献   

5.
Membrane fluidity adaptation to the low growth temperature in Bacillus subtilis involves two distinct mechanisms: (1) long-term adaptation accomplished by increasing the ratio of anteiso- to iso-branched fatty acids and (2) rapid desaturation of fatty acid chains in existing phospholipids by induction of fatty acid desaturase after cold shock. In this work we studied the effect of medium composition on cold adaptation of membrane fluidity. Bacillus subtilis was cultivated at optimum (40 degrees C) and low (20 degrees C) temperatures in complex medium with glucose or in mineral medium with either glucose or glycerol. Cold adaptation was characterized by fatty acid analysis and by measuring the midpoint of phospholipid phase transition T(m) (differential scanning calorimetry) and membrane fluidity (DPH fluorescence polarization). Cells cultured and measured at 40 degrees C displayed the same membrane fluidity in all three media despite a markedly different fatty acid composition. The T(m) was surprisingly the highest in the case of a culture grown in complex medium. On the contrary, cultivation at 20 degrees C in the complex medium gave rise to the highest membrane fluidity with concomitant decrease of T(m) by 10.5 degrees C. In mineral media at 20 degrees C the corresponding changes of T(m) were almost negligible. After a temperature shift from 40 to 20 degrees C, the cultures from all three media displayed the same adaptive induction of fatty acid desaturase despite their different membrane fluidity values immediately after cold shock.  相似文献   

6.
Differential scanning calorimetry (DSC) and electron spin resonance (ESR) measurements were made to characterize how modifications in the fatty acid composition of Escherichia coli affected the thermotropic phase transition(s) of the membrane lipd. When the fatty acid composition contained between 20 and 60% saturated fatty acids, the DSC curves for isolated phospholipids and cytoplasmic membranes showed a broad (15-25 degree C) gel to liquid-crystalline phase transition, the position of which depended on the particular fatty acid composition. Utilizing multiple lipid mutants, enrichment of the membrane phospholipids with a single long-chain cis-monoenoic fatty acid in excess of that possible in a fatty acid levels less than 20% and gradually replaced the broad peak as the cis-monoenoic fatty acid content increased. These results were obtained with phospholipids, cytoplasmic membranes, and whole cells. With these same phopholipids, plots of 2,2,6,6-tetramethylpiperidinyl-1-oxy partitioning and ESR order parameters vs. 1/T revealed discontinuities at temperatures 40-60 degrees C above the calorimetrica-ly measured gel to liquid-crystalline phase transitions. Moreover, when the membrane phospholipids were enriched with certain combinations of cis-monenoic fatty acids (e.g., cis-delta 9-16:1 plus cis-delta 11-18:1) the DSC curve showed a broad gel to liquid crystalline phase change below 0 degrees C but the ESR studies revealed no discontinuities at temperatures above those of the gel to liquid-crystalline transition. These results demonstrated that enrichment of the membrane lipids with molecules in which both fatty acyl chains are identical cis-monoenoic residues led to a distinct type of liquid-crystalline phase. Furthermore, a general conclusion from this study is that Escherichia coli normally maintains a heterogeneous mixture of lipid molecules and, by so doing, prevents strong lipid-lipid associations that lead to the formation of lipid domains in the membrane.  相似文献   

7.
The saturated/unsaturated fatty acid ratio of Escherichia coli 15T- decreases almost threefold as growth temperature decreases from 43 to 27 degrees C, wheras the ratio of a fast-growing mutant derived from 15T- changes only half as much. Strain 15T- experiences a 2.4-fold change in doubling time across this temperature range, but doubling time in the mutant changes 3.3-fold.  相似文献   

8.
The alteration of the degree of unsaturated fatty acids in membrane lipids has been shown to be a key mechanism in the tolerance to temperature stress of living organisms. The step that most influences the physiology of membranes has been proposed to be the amount of di-unsaturated fatty acids in membrane lipids. In this study, we found that the desaturation of fatty acid to yield the di-unsaturated fatty acid 18:2(9,12), in Spirulina platensis strain C1, was not regulated by temperature. As shown by the fatty acid composition and gene expression patterns, the levels of 18:1(9) and 18:2(9,12) remained almost constant either when the cells were grown at 35 degrees C (normal growth temperature) or 22 and 40 degrees C. The expression of desC (Delta9) and desA (Delta12) genes, which are responsible for the introduction of first and second double bonds into fatty acids, respectively, was not affected by the temperature shift from 35 to 22 degrees C or to 40 degrees C. Only the expression and mRNA stability of the desD gene (Delta6) that is responsible for the introduction of a third double bond into fatty acids were enhanced by a temperature shift from 35 to 22 degrees C, but not the shift from 35 to 40 degrees C. The increase in the level of desD mRNA elevated the desaturation of fatty acid from 18:2(9,12) to 18:3(6,9,12) at 22 degrees C. However, the increased level of 18:3(6,9,12) was observed after 36 h of incubation at 22 degrees C, indicating a slow response to temperature of fatty acid desaturation in this cyanobacterium. These findings suggest that the desaturation of fatty acids might not be a key mechanism in the response to the temperature change of S. platensis strain C1.  相似文献   

9.
H Bador  R Morelis  P Louisot 《Biochimie》1984,66(3):223-233
The temperature dependence of sialyltransferase (CMP-N-acetylneuraminate: D-galactosyl-glycoprotein N-acetyl-neuraminyltrasferase, EC 2.4.99.1) inhibition is described when 1-palmitoyl-sn-glycero-3-phosphorylcholine, or a saturated fatty acid (lauric, myristic or palmitic acid) or an equimolar mixture of the two components are added. Lysophospholipid and fatty acids have no appreciable effect on the optimal temperature for sialyltransferase activity. In the presence of lysophospholipid, the membranous sialyltransferase activity is decreased for all the temperature range tested. In contrast, the solubilized sialyltransferase activity is decreased for temperatures exceeding 29 degrees C. In the presence of saturated fatty acids, the membranous activity is decreased above a chain-length dependent temperature: 22 degrees, 25 degrees and 30 degrees C for lauric, myristic and palmitic acids, respectively. In contrast, the solubilized activity remains unchanged. In the presence of equimolar mixtures of lysophospholipid and fatty acid, the membranous activity is decreased above the same critical temperature as that described for fatty acids added alone. In contrast, the solubilized activity is decreased above 29 degrees C. From these observations, it is suggested that lysophospholipid inhibits the solubilized enzyme when the temperature exceeds the critical micellar temperature of this lipid. The fatty acids inhibit the microsomal enzyme probably by incorporating into the membrane. It is also suggested that equimolar mixtures of lysophospholipid and fatty acid give rise to molecular analogs of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine.  相似文献   

10.
11.
The olfactory (non-myelinated) and trigeminal (myelinated) nerve axons of garfish show changes in phospholipid fatty acid composition when these fish are acclimated to temperatures ranging from 11 to 35 degrees C. Myelinated and non-myelinated nerve axons show similar changes in the percent saturated, percent 16-carbon, percent 18-carbon, and percent 20-carbon-and-greater unsaturated fatty acids. The observed changes in phospholipid fatty acid composition fit a linear regression model suggesting a gradual change in axonal phospholipid fatty acid composition with temperature. The temperature-induced changes in garfish nerve phospholipid fatty acid composition are consistent with the general observation of increased saturated fatty acid residues in plasma membrane phospholipids of organisms acclimated to higher environmental temperatures. The garfish data are similar to data previously obtained for goldfish tissues and Tetrahymena.  相似文献   

12.
Fatty acids newly synthesized by Brevibacterium ammoniagenes grown at different temperatures were analyzed. The assay temperature, not the growth temperature, was found to be the major factor affecting the unsaturated/saturated ratio of newly synthesized fatty acids in logarithmic-phase cells. However, in the stationary-phase cells the growth temperature also affected the product profile significantly; cells grown at 7 degrees C produced relatively more oleate and stearate and less palmitate and hexadecenoate when shifted up to 37 degrees C than did cells grown and assayed at 37 degrees C. The unsaturated/saturated ratio as well as average chain length of fatty acids also varied along with the progress of isothermal growth phase. These changes in fatty acid product profiles observed in vivo could be mimicked in vitro assays of the fatty acid synthetase by changing malonyl-CoA concentrations. Our results suggest that the malonyl-CoA concentration is a factor which, in addition to temperature, determines growth-phase-dependent and growth-temperature-dependent changes in the unsaturated/saturated ratios of fatty acids.  相似文献   

13.
In order to establish a possible correlation between the expression of the boundary lipid and the NADH-oxidase activity, the temperature dependences of the membranes of bacteria grown at 14 and 38 degrees C were investigated. The Tmelt. for the boundary lipid determined by comparing the excimerization parameters of the fluorescent probe pyrene in the vicinity of the proteins and in the total lipid phase was directly correlated with Tgrowth. A similar temperature dependence was observed with the NADH-oxidase activity, i. e. inhibition of activity at T greater than Tmelt. coincided with the disappearance of the boundary lipid. Incorporation of a cis-unsaturated fatty acid (linoleic acid) into the membranes markedly decreased the structural heterogeneity of membrane lipids and caused a simultaneous inhibition of the NADH-oxidase activity. No structural-functional changes were observed in the case of saturated fatty acids (stearic acid). It was assumed that the presence of boundary lipids in the membrane is essential for the normal functioning of the multienzyme system of the respiratory chain. Presumably, the state of the immediate lipid environment controls the function of the micrococcal respiratory chain at the level of interaction between the carriers in the membrane.  相似文献   

14.
Structural failure of the erythrocyte membrane in shear deformation occurs when the maximum shear resultant (force/length) exceeds a critical value, the yield shear resultant. When the yield shear resultant is exceeded, the membrane flows with a rate of deformation characterized by the plastic viscosity coefficient. The temperature dependence of the yield shear resultant and the plastic viscosity coefficient have been measured over the temperature range 10-40 degrees C. Over this range the yield shear resultant does not change significantly (+/- 15%), but the plastic viscosity coefficient changes exponentially from a value of 1.3 X 10(-2) surface poise (dyn s/cm) at 10 degrees C to a value of 6.2 X 10(-4) surface poise (SP) at 40 degrees C. The different temperature dependence of these two parameters is not surprising, inasmuch as they characterize different molecular events. The yield shear resultant depends on the number and strength of intermolecular connections within the membrane skeleton, whereas the plastic viscosity depends on the frictional interactions between molecular segments as they move past one another in the flowing surface. From the temperature dependence of the plastic viscosity, a temperature-viscosity coefficient, E, can be calculated: eta p = constant X exp(--E/RT). This quantity (E) is related to the probability that a molecular segment can "jump" to its next location in the flowing network. The temperature-viscosity coefficient for erythrocyte membrane above the elastic limit is calculated to be 18 kcal/mol, which is similar to coefficients for other polymeric materials.  相似文献   

15.
Non-esterified long-chain fatty acids reduce the extent of hypotonic hemolysis at a certain low concentration range but cause hemolysis at higher concentrations. This biphasic behavior was investigated at different temperatures (0-37 degrees C) for lauric (12:0), myristic (14:0), palmitoleic (16:1), oleic (cis-18:1) and elaidic (trans-18:1) acids. The results are summarized as follows: (A) the fatty acids examined exhibit a high degree of specificity in their thermotropic behavior; (B) oleic acid protects against hypotonic hemolysis even at the highest concentrations, up to 15 degrees C, when it becomes hemolytic, but only in a limited concentration range; (C) elaidic acid does not affect the osmotic stability of erythrocytes up to 20 degrees C, when it starts protecting: above 30 degrees C, it becomes hemolytic at the highest concentrations; (D) palmitoleic acid is an excellent protecting agent at all temperatures in a certain concentration range, becoming hemolytic at higher concentrations; (E) lauric acid protects up to 30 degrees C and becomes hemolytic only above this temperature; (F) myristic acid exhibits an extremely unusual behavior at 30 and 37 degrees C by having alternating concentration ranges of protecting and hemolytic effects; (G) there is a common critical temperature for hemolysis at 30 degrees C for saturated and trans-unsaturated fatty acids; (H) the initial slope of Arrhenius plots of percent hemolysis at the concentration of maximum protection is negative for cis-unsaturated fatty acids and positive for saturated and trans-unsaturated fatty acids.  相似文献   

16.
Adaptation of Mycoplasma gallisepticum, a sterol-requiring Mycoplasma sp., to growth in a serum-free medium supplemented with cholesterol in decreasing concentrations and with various saturated or unsaturated fatty acids enabled us to control both the cholesterol levels and the membrane fatty acid composition. An estimate of the membrane physical state from fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene indicated that the membrane lipids of native M. gallisepticum were highly ordered. Elongation of the saturated fatty acid chains from 14 to 18 carbon atoms caused only a small increase in the membrane lipid ordering, whereas the introduction of a cis double bond reduced it significantly. Lipid-phase transitions were observed in low-cholesterol-adapted organisms, whose membrane lipids were still highly ordered at the growth temperature.  相似文献   

17.
The fatty acid composition of the lipid A moiety of the lipopolysaccharide and phospholipid fractions of Proteus mirabilis changed significantly on varying the growth temperature. A decrease in the growth temperature from 43 degrees C to 15 degrees C resulted in a decrease in the palmitic acid content of the lipopolysaccharide from 19.4% of total fatty acids at 43 degrees C to 1.4% at 15 degrees C, and by the appearance of an unsaturated fatty acid residue, hexadecenoic acid. Changes in the 3-hydroxy-myristic acid content of the lipid A were minimal. The decrease in the growth temperature also resulted in a decrease in the saturated fatty acid content of the phospholipid fraction, which was accompanied by an increase in their fluidity, as measured by the freedom of motion of spin-labeled fatty acids incorporated into dispersions made of the phospholipids. Nevertheless, the fluidity obtained with membrane phospholipids extracted from the cells grown at various temperatures were essentially the same when fluidity was determined at the growth temperature, supporting the hypothesis that variations in the fatty acid composition of membrane phospholipids serve to produce membranes having a constant fluidity at different temperatures of growth.  相似文献   

18.
Detailed analyses regarding the effects of temperature and phospholipid fatty acid replacement on the capping of membrane immunoglobulin (mIg) have been performed using a recently described flow cytometric procedure (Cuchens, M. A., and Buttke, T. M. (1984) Cytometry 5, 601-609). Purified murine B cells were incubated for 12-20 h in the presence of bovine serum albumin-complexed 80 microM stearic (18:0), oleic (cis-18:1), or linoleic (cis, cis-18:2) free fatty acids. Unmodified and free fatty acid-treated cells were stained with fluorescein-conjugated rabbit anti-mouse Ig and subjected to pulse-shape (width) analyses to follow the kinetics of mIg capping. In both unmodified and free fatty acid-treated cells, capping of mIg occurred at all temperatures between 17 and 37 degrees C, but the rate of cap formation was temperature dependent. Arrhenius plots of mIg capping were linear, with activation energies ranging from 14 to 23 kcal/mol depending on the saturated/unsaturated fatty acid ratio of B cell phospholipids. Ligand-induced redistribution of mIg thus appears to be sensitive to changes in membrane acyl chain composition.  相似文献   

19.
When Streptococcus salivarius was grown in batch culture in the presence of various Tween detergents, the fatty acid moiety of the detergent was incorporated into the lipids of its membrane. Tween 80 (containing primarily oleic acid) markedly stimulated the production of extracellular glucosyltransferase and also increased the degree of unsaturation of the membrane lipid fatty acids. The possibility that an increase in membrane unsaturated fatty acids promoted extracellular glucosyltransferase production was examined by growing cells at different temperatures in the presence or absence of Tween 80. The membrane lipids of cells grown at 30 degrees C, 37 degrees C and 40 degrees C without Tween 80 exhibited unsaturated/saturated fatty acid ratios of 2.06, 1.01 and 0.87 respectively. A significant increase in the production of extracellular glucosyltransferase was observed at 30 degrees C compared to cells grown at 40 degrees C. However, cells produced much more exoenzyme at all temperatures when grown with Tween 80. The results indicated that an increase in the unsaturated fatty acid content of the membrane lipids was not by itself sufficient to account for the stimulation of extracellular glucosyltransferase production by Tween 80, but that the surfactant also had to be present.  相似文献   

20.
In order to monitor the membrane fluidity of cells without perturbation by an introduced probe, we developed a method for large-scale preparation of 2H-labeled melanoma cells for a 2H NMR study by incubating melanoma cells with [18,18,18-2H3]stearic acid/phosphatidylcholine liposomes for 2 h at 37 degrees C. It turned out that this treatment did not significantly change the cell viability, lipid metabolism or membrane fluidity. The 2H from C-18 of stearic acid is dominantly located at the original position of the fatty acid in the 2H-labeled membrane vesicles, as studied by a tracer experiment with [1-14C]stearic acid. We found that three to four 2H-labeled species were present at 19 degrees C in 2H NMR spectra of the 2H-labeled membrane vesicles prepared from B16 melanoma cells. The extent of peak-splittings due to 2H-quadrupole interaction decreased as the temperature rose, and a definite point of phase transition was not observed. At elevated temperature, 2H-labeled lipids undergo fast exchange between the bilayer and an isotropic phase such as oil phase of triolein or inverted micelles in lipid polymorphs. We further analyzed the change of membrane organization in mouse B16 melanoma cells treated with 12-O-tetradecanoylphorbol-13-acetate (TPA), which strongly inhibited melanogenesis. The magnitude of the quadrupole splitting at 19 degrees C in membranes from TPA-treated cells was significantly less (40%) than in the untreated control. This is mainly explained by decreased molecular ordering (fluidity) due to the increased amount of unsaturated fatty acids in the membranes of TPA-treated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号