首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of pH on ammonium uptake by Typha latifolia L.   总被引:5,自引:0,他引:5  
The effects of solution pH on NH4+ uptake kinetics and net H+ extrusion by Typha latifolia L. were studied during short-term (days) and long-term (weeks) exposure to pH in the range of pH 3.5–8.0. The NH4+ uptake kinetics were estimated from depletion curves using a modified Michaelis-Menten model. T. latifolia was able to grow in solution culture with NH4+ as the sole N source and to withstand a low medium pH for short periods (days). With prolonged exposure (weeks) to pH 3.5, however, the plants showed severe symptoms of stress and stopped growing. The solution pH affected NH4+ uptake kinetics. The affinity for NH4+, as quantified by the half saturation constant (K1/2) and Cmin (the NH4+ concentration at which uptake ceases), decreased with pH. K1/2 was increased from 7.1 to 19.2 mmol m?3 and Cmin from 2.0 to 5.7 mmol m?3 by lowering the pH in steps from 8.0 to 3.5. Vmax was, however, largely unaffected by pH (~22 μmol h?1 g?1 root dry weight). Under prolonged exposure to constant pH, growth rates were highest at PH 5.0 and 6.5. At pH 8.0 growth was slightly depressed and at pH 3.5 growth completely stopped. NH4+ uptake kinetics were similar at pH 5.0, 6.5 and 8.0 whereas at pH 3.5 NH4+ uptake almost completely stopped. The ratio between net H+ extrusion and NH4+ uptake decreased significantly at low pH. The adverse effects of low pH on NH4+ uptake kinetics are probably a consequence of a reduced H+-ATPase activity and/or an increased re-entry of H+ at low pH, and the associated decrease in the electrochemical gradient across the plasma membranes of the root cells.  相似文献   

2.
Similar NH4+ and NO3?.uptake kinetic patterns were observed in Neoagardhiella baileyi (Harvey ex Kiitzing) Wyinne & Taylor and Gracilaria foliifera (Forssk?l) Borgesen. NO3? was taken up in a rate-sturating fashion described by the Michaelis-Menten equation. NH4+ uptake was multicomponent: a saturable component was accompanied by a diffusive or a high K component showing no evidence of saturation (at ≤50 μM [NH4+]). Nitrogen starved plantsi(C/N atom ratios > ca. 10) showed higher transient rates of NH4+ uptake at a given concentration than plants not N-Iimited. Only plants with high N content exhibited diel changes inNH4+ uptake rates, and showed transient rates of NH4+ accumulation which did not greatly exceed the capacity to incorporate N in steady-state growth. NH4+ was preferred over NO3?even in plants preconditioned on NO3?as the sole N. source, NO3? uptake was suppressed at 5μM [NH4+], but simultaneous uptake occurred at unsurpressed rates at lower concentrations. Potential for N accumulation was greater via NH4+uptake than via NO3?uptake. Changing capacity for NH4+ uptake with N content appears to be a mechanism whereby excessive accumulation of N was avoided by N-.satiated plants but a large accumulation was possible for N-depleted plants.  相似文献   

3.
The kinetics of ammonium and nitrate uptake by young rice plants   总被引:13,自引:0,他引:13  
Summary An important process which affects the fate of fertilizer nitrogen (N) applied to a rice crop is crop N uptake. This uptake rate is controlled by many factors including the N-ion species and its concentration. In this study the relation between N concentration at the root surface and N uptake was characterized using Michaelis-Menten kinetics. The equation considers two parameters, Vmax and Km, which are measures of the maximum rate of uptake and the affinity of the uptake sites for the nutrient, respectively. Uptake rates of intact rice plants growing in a continuously flowing nutrient solution system were fitted to the Michaelis-Menten model using a weighted regression analysis. For NH4−N the Km values for 4- and 9-week-old rice plants indicated a high affinity for the ammonium ions relative to concentrations reported for rice soils after fertilization. The Vmax values expressed on a unit-root-mass basis decreased with plant age, indicating a reduction in the average density of uptake sites on the root surface. The kinetics of NO3−N uptake was similar to that of NH4−N when NO3−N was the only N source. However, if NH4−N and NO3−N were present simultaneously in the solution the Vmax for the uptake of NO3−N was severely reduced, while the Km was affected very little. This inhibition appears to be noncompetitive. Fertilization of young rice plants leading to concentration of N at the root surface above approximately 900 μM will not increase crop uptake and may contribute to inefficient N recovery by the crop. The existence of NH4−N and NO3−N simultaneously at the root surface may also lead to inefficient N recovery because of reduced uptake of NO3−N.  相似文献   

4.
Previously the growth of Spartina alterniflora has been found to be limited by nitrogen and correlated with sediment redox potential. In this study we have investigated a possible connection between these two factors. We have found that internal O2 transport is insufficient to saturate NH4+ uptake in short S. alterniflora in hydroponic culture. Rates of NH4+ uptake and root respiration were very sensitive to O2 concentration in the rhizosphere, saturating at about 5% O2. Ammonium uptake continued at a reduced rate for at least 4 hr under anaerobic conditions. Plant to plant variations in anaerobic rates of NH4+ uptake and root respiration were significantly correlated to the diffusion rate of CH4 tracer gas from the leaves to the roots of individual plants.  相似文献   

5.
Multiphasic Uptake of Ammonium by Soybean Roots   总被引:1,自引:0,他引:1  
Uptake of ammonium by intact soybean (Glycine max Merr. cv. Amsoy) plants can be represented by 3 phases of a single, multiphasic mechanism in the range 1.78 × 10-5-3.57 × 10-3M. Each phase covers a limited concentration range and obeys Michaelis-Menten kinetics. The multiphasic pattern of NH4+ uptake is remarkably consistent at all stages of soybean growth (20, 40, 60 and 80 days).  相似文献   

6.
NH4+ and K+ uptake experiments have been conducted with 3 ectomycorrhizal fungi, originating from Douglas fir (Pseudotsuga menziesii (Mirb.] Franco) stands. At concentrations up to 250 μM, uptake of both NH4+ and K+ follow Michaelis-Menten kinetics. Laccaria bicolor (Maire) P. D. Orton, Lactarius rufus (Scop.) Fr. and Lactarius hepaticus Plowr. ap. Boud. exhibit Km values for NH4+ uptake of 6, 35, and 55 μM, respectively, and Km values for K+ uptake of 24, 18, and 96 μM, respectively. Addition of 100 μM NH4+ raises the Km of K+ uptake by L. bicolor to 35 μM, while the Vmax remains unchanged. It is argued that the increase of Km is possibly caused by depolarization of the plasma membrane. It is not due to a competitive inhibition of K+ by NH4+ since the apparent inhibitor constant is much higher than the Km, for NH4+ uptake. The possibility that NH4+ and K+ are taken up by the same carrier can be excluded. The Km, values for K+ uptake in the two other fungi are not significantly affected by 100 μM NH4+. Except for a direct effect of NH4+ on influx of K+ into the cells, there may also be an indirect effect after prolonged incubation of the cells in the presence of 100 μM NH4+.  相似文献   

7.
Growth rates and rates of nitrate uptake by N-depleted cells were measured for an oceanic diatom, Chaetoceros gracilis, and a neritic diatom, Asterionella japonica, as functions of nitrate concentration of the medium. Both growth and N-uptake rates appeared to be hyperbolic with nitrate concentration and could be fit to an equation of Michaelis-Menten form: where v is rate, Vm. is the maximum rate, S is nitrate concentration, and Ksis the half-saturation constant. Ksvalues for uptake and growth were similar if not identical for each species. Uptake experiments can provide a presumptive measure of Ksfor growth, thought to be an ecologically significant characteristic of a species.  相似文献   

8.
The effects of metabolic and protein synthesis inhibitors on NH4 + uptake by Pisum arvense plants at low (0.05 mM) and high (1 mM) external ammonium concentration were studied. In short-time experiments cycloheximide decreased the ammonium uptake rate at low level of NH4 + and increased the absorption of NH4 + from uptake medium containing high ammonium concentration. Arsenate and azide supplied into uptake solutions at low ammonium concentration strongly decreased or completely suppressed the NH4 + uptake rate, respectively. When the experiments were carried out at high level of ammonium only azide decreased the uptake rate of NH4 + and arsenate stimulated this process. Dinitrophenol very strongly repressed the uptake rate of NH4 + at both ammonium concentrations. After removing dinitrophenol from both solutions, neither at low nor high external ammonium level the recovery of NH4 + uptake rate was achieved within 150 min or 3 h, respectively. The recovery of NH4 + uptake rate after removing azide was observed within 90 min and 3 h at low and high ammonium concentrations, respectively. The regulation of NH4 + uptake by some inhibitors at low external ammonium level was investigated using plasma membrane vesicles isolated from roots by two-phase partitioning. Orthovanadate completely suppressed the uptake of NH4 + by vesicles and quinacrine decreased the NH4 + uptake which 55 suggests that ammonium uptake depends on activities of plasma membrane-bound enzymes. On the other hand, it was found that dinitrophenol completely reduced the NH4 + uptake by vesicles. The various effects of inhibitors on ammonium uptake dependent on external ammonium concentration suggest the action of different ammonium transport systems in Pisum arvense roots. The ammonium transport into root cells at low NH4 + level requires energy and synthesis of protein in the cytoplasm. The research was supported by grant of KBN No. 6PO4C 068 08  相似文献   

9.
 Nitrogen deposition and intentional forest fertilisation with nitrogen are known to affect the species composition of ectomycorrhizal fungal communities. To learn more about the mechanisms responsible for these effects, the relations between fungal growth, nitrogen uptake and nitrogen availability were studied in ectomycorrhizal fungi in axenic cultures and in symbiosis with pine seedlings. Effects of different levels of inorganic nitrogen (NH4) on the mycelial growth of four isolates of Paxillus involutus and two isolates of Suillus bovinus were assessed. With pine seedlings, fungal uptake of 15N-labelled NH4 was studied in short-term incubation experiments (72 h) in microcosms and in long-term incubation experiments (3 months) in pot cultures. For P. involutus growing in symbiosis with pine seedlings, isolates with higher NH4 uptake were affected more negatively at high levels of nitrogen availability than isolates with lower uptake. More NH4 was allocated to shoots of seedlings colonised by a high-uptake isolate, indicating transfer of a larger fraction of assimilated NH4 to the host than with isolates showing lower NH4 uptake rates. Thus low rates of N uptake and N transfer to the host may enable EM fungi avoid stress induced by elevated levels of nitrogen. Seedlings colonised by S. bovinus transferred a larger fraction of the 15N label to the shoots than seedlings colonised by P. involutus. Seedling shoot growth probably constituted a greater carbon sink in pot cultures than in microcosms, since the mycelial growth of P. involutus was more sensitive to high NH4 in pots. There was no homology in mycelial growth rate between pure culture and growth in symbiosis, but N uptake in pure culture corresponded to that during growth in symbiosis. No relationship was found between deposition of antropogenic nitrogen at the sites of origin of the P. involutus isolates and their mycelial growth or uptake of inorganic nitrogen. Accepted: 18 September 1998  相似文献   

10.
Three-year-old Scots pine (Pinus sylvestris) trees were grown on a sandy forest soil in pots, with the objective to determine their NH4/NO3 uptake ratio and proton efflux. N was supplied in three NH4-N/NO3-N ratios, 3:1, 1:1 and 1:3, either as 15NH4+14NO3 or as 14NH4+15NO3. Total N and 15N acquisition of different plant parts were measured. Averaged over the whole tree, the NH4/NO3 uptake ratios throughout the growing season were found to be 4.2, 2.5, and 1.5 for the three application ratios, respectively. The excess cation-over-anion uptake value (Ca-Aa) appeared to be linearly related to the natural logarithm of the NH4/NO3 uptake ratio. Further, this uptake ratio was related to the NH4/NO3 ratio of the soil solution. From these relationship it was estimated that Scots pine exhibits an acidifying uptake pattern as long as the contribution of nitrate to the N nutrition is lower than 70%. Under field circumstances root uptake may cause soil acidification in the topsoil, containing the largest part of the root system, and soil alkalization in deeper soil layers.  相似文献   

11.
The ammonium analogue, methylamine, is taken up rapidly from dilute solution by Macrocystis pyrifera (L.) C. A. Agardh. 14C-methylamine was used to characterize the transport system, with respect to dependence on external concentration, temperature, pH and substrate specificity. The results suggest that methylamine enters the algal tissue via a specific mediated transport system. Uptake of methylamine showed no consistent relation to the N content of the plant tissue, but was highly dependent on the portion of plant sampled and severely affected by cutting the tissue. The strong inhibition of methylamine uptake by ammonium and lesser inhibition by other alkylamines suggests that the uptake system functions as an “ammonium permease”. Uptake of 14C-methylamine can be used as a highly sensitive measure of NH4+ uptake activity and should be a useful tool for studying NH4+ uptake in the laboratory and field.  相似文献   

12.
The incorporation of 15NH4+ as a function of time and concentration was used to estimate ammonium uptake by Caulerpa cupressoides (West) C. Agardh, taken from its habitat on the sediments of Tague Bay lagoon, St. Croix, U.S. Virgin Islands. 15N-based uptake rates followed Michaelis-Menten type saturation kinetics; the maximum uptake rate was 8.7 ± 3.0 μmol N/g dry wt·h at 26° C and the half-saturation constant was 48 ± 10 μM (X?± SE). The high half-saturatiaon constant reflects the dependence of Caulerpa on sediment pore waters as a nitrogen source. Calculations of uptake from isotope time course data were compared to estimates made from ammonium depletion. More ammonium disappeared than could be accounted for by the incorporation of 15N in Caulerpa, and isotope dilution of the ammonium pool is shown not to be responsible for underestimates of uptake, primarily because large 15N additions (40–300 μM) were used. It is suggested that either (1) a secondary ammonium sink such as wall sorption or bacterial uptake significantly influenced ammonium concentrations, or (2) 15N was lost as labelled dissolved organic nitrogen or volatilized during 15N sample preparation.  相似文献   

13.
The influence of various nitrogen (N) and sulphur (S) forms on the uptake of manganese (Mn) in young spring barley (Hordeum vulgare L cv Golf) plants was examined in both a hydroponic system and in a soil-based system. The soil was a typical Danish Mn-deficient soil viz. a sandy loam soil developed on old marine sediments. Plants growing in solution culture with NO3 as the only N source had a higher Mn uptake than plants receiving mixtures of NO3 and NH4+. These findings were opposite to the results obtained in the soil-based experiments, where plants fertilized with NO3 as the only N source accumulated much less Mn than plants fertilized with NH4+. Combining the results of these experiments confirmed that NH4+ acted as a powerful antagonist to Mn2+ during uptake but that this antagonistic effect was more than compensated for by the influence of NH4+ in reducing plant-unavailable Mn(IV) to plant-available Mn(II) in the soil. Furthermore the soil experiments showed that fertilizers containing sulphur in the form of reduced S (thiosulphate) had a strong mobilizing effect on Mn, and enabled the plants to accumulate large amounts of Mn in the biomass compared with oxidized S (sulphate). Thus, fertilization with thiosulphate may be very effective in alleviating Mn-deficiency in soils developed on old marine sediments where Mn availability is limiting plant growth.  相似文献   

14.
Young saplings of Pinus sylvestris L. were exposed to gaseous NH3 at 53 or 105 g m–3 for one year in open-top chambers. Saplings received 15N-labelled (NH4)2SO4 via the soil. To examine the importance of foliar N uptake, changes in the concentration of total and labelled N in the needles were followed. Increase in needle biomass and N concentration were found in trees exposed to NH3, confirming that atmospheric NH3 acted as a N fertilizer. NH3 had a greater and quicker effect than (NH4)2SO4: compared with the growth in ambient air, the N concentration in the needles exposed to NH3 had increased by 49% in four months, while the increase after highest N-fertilization (200 kg N ha–1 y–1) was only 8%. The small contribution of NH4 + fertilization to the total N concentration was not due to a deficient N uptake: the 15N concentration in the needles increased significantly with time. On the other hand, NH3 uptake in shoots may have a negative effect on the NH4 + root uptake. The relation between plant N and atmospheric NH3 concentration was non-linear and possible reasons for this observation are discussed. Fumigation with NH3 significantly decreased the ratios of K/N and P/N, showing that fumigation disrupted the nutrient balance.  相似文献   

15.
The uptake of 15NO3 - and 15NH4 + has been examined in 5-,10- and 28-day-old micropropagated strawberry (Fragaria x ananassa Duch. cv. Kent) shoots rooted in one-half strength Murashige and Skoog (MS) liquid medium on cellulose plugs (Sorbarods). The results indicated that the plantlets absorbed both NO3 - and NH4 + during the culture with a greater uptake of NH4 + at 5 days of culture. Furthermore, a pronounced reduction in NO3 - and NH4 + uptake at 10 and 28 days of culture was observed within 6 h of the short-term uptake study. This reduction could be explained by the low CO2 concentration in test tubes during the photoperiod, since no reduction in nitrogen uptake occurred in the CO2 enriched condition. The results are interpreted as an indication of the important role for photosynthetic CO2 fixation in the process of nitrogen uptake by the plantlets during the rooting stage.Contribution No. CRH 82, Centre de Recherche en Horticulture, F.S.A.A., Université Laval, Québec.  相似文献   

16.
Energy-dependent concentrative uptake of 14CH3NH3+ by cells of Escherichia coli provides preliminary evidence for one or more transport systems for NH4+ uptake. NH4+, but not glutamic acid, inhibited the uptake of 14CH3NH3+. Varying the pH for the uptake assays exposed two apparent systems: one maximally functioning at pH 7 that was strongly inhibited by cyanide or by the uncoupler m-chlorophenyl carbonylcyanide hydrazone and another maximally functioning at pH 9 and resistant to cyanide or m-chlorophenyl carbonylcyanide hydrazone. Kinetic analysis showed considerable experimental variability from day to day. Often simple Michaelis-Menten kinetics were not followed, but NH4+ was reproducibly a stronger inhibitor of uptake of 14CH3NH3+ than was nonradioactive CH3NH3+.  相似文献   

17.
Nutrient uptake is generally thought to exhibit a simple seasonal pattern, but few studies have measured temporal variation of nutrient uptake capacity in mature trees. We measured net uptake capacity of K, NH+4, NO3, Mg and Ca across a range of solution concentrations by roots of mature loblolly pine at Calhoun Experimental Forest in October 2001, July 2001, and April 2002. Uptake capacity was generally lowest in July; rates in October were similar to those in April. Across a range of concentrations, antecedent nutrient solution concentrations affected the temporal patterns in uptake in July but not in October or April. In July, uptake of NH+4, Mg and Ca was positively correlated with concentration when roots were exposed to successively lower concentrations, but negatively correlated with concentration when exposed to successively higher concentrations. In contrast, uptake in October was constant across the range of concentrations, while uptake increased with concentration in April. As in studies of other species, we found greater uptake of NH+4 than NO3. Temporal patterns of uptake capacity are difficult to predict, and our results indicate that experimental conditions, such as experiment duration, antecedent root conditions and nutrient solution concentration, affect measured rates of nutrient uptake.  相似文献   

18.
Pisum arvense plants were subjected to 5 days of nitrogen deprivation. Then, in the conditions that increased or decreased the root glutamine and asparagine pools, the uptake rates of 0.5 mM NH4 + and 0.5 mM K+ were examined. The plants supplied with 1 mM glutamine or asparagine took up ammonium and potassium at rates lower than those for the control plants. The uptake rates of NH4 + and K+ were not affected by 1 mM glutamate. When the plants were pre-treated with 100 μM methionine sulphoximine, an inhibitor of glutamine synthesis, the efflux of NH4 + from roots to ambient solution was enhanced. On the other hand, exposure of plants to methionine sulphoximine led to an increase in potassium uptake rate. The addition of asparagine, glutamine or glutamate into the incubation medium caused a decline in the rate of NH4 + uptake by plasma membrane vesicles isolated from roots of Pisum arvense, whereas on addition of methionine sulphoximine increased ammonium uptake. The results indicate that both NH4 + and K+ uptake appear to be similarly affected by glutamine and asparagine status in root cells. The research was supported by grant of KBN No. 6PO4C 068 08  相似文献   

19.
Substantial concentrations of NH4 + are found in the apoplast of the leaves of Brassica napus. Physiological studies on isolated mesophyll protoplasts with 15NH4 + revealed the presence of a high-affinity ammonium transporter that shared physiological similarity to the high-affinity NH4 + transporters in Arabidopsis thaliana (AtAMT1;3). PCR techniques were used to isolate a full-length clone of a B. napus homologue of AMT1 from shoot mRNA which showed 97% similarity to AtAMT1;3. The full-length cDNA when cloned into the yeast expression vector pFL61 was able to complement a yeast mutant unable to grow on media with NH4 + as the sole nitrogen source. Regulatory studies with detached leaves revealed a stimulation of both NH4 + uptake and expression of mRNA when the leaves were supplied with increasing concentrations of NH4 +. Withdrawal of NH4 + supply for up to 96 h had little effect on mRNA expression or NH4 + uptake; however, plants grown continuously at high NH4 + levels exhibited decreased mRNA expression. BnAMT1;2mRNA expression was highest when NH4 + was supplied directly to the leaf and lowest when either glutamine or glutamate was supplied to the leaves, which directly paralleled chloroplastic glutamine synthetase (GS2) activity in the same leaves. These results provide tentative evidence that BnAMT1;2may be regulated by similar mechanisms to GS2 in leaves.  相似文献   

20.
1. Agricultural and urban land use may increase dissolved inorganic nitrogen (DIN) concentrations in streams and saturate biotic nutrient demand, but less is known about their impacts on the cycling of organic nutrients. To assess these impacts we compared the uptake of DIN (as ammonium, NH4+), dissolved organic carbon (DOC, as acetate), and dissolved organic nitrogen (DON, as glycine) in 18 low‐gradient headwater streams in southwest Michigan draining forested, agricultural, or urban land‐use types. Over 3 years, we quantified uptake in two streams in each of the three land‐use types during three seasons (spring, summer and autumn). 2. We found significantly higher NH4+ demand (expressed as uptake velocity, Vf) in urban compared to forested streams and NH4+Vf was greater in spring compared to summer and autumn. Acetate Vf was significantly higher than NH4+ and glycine Vf, but neither acetate nor glycine Vf were influenced by land‐use type or season. 3. We examined the interaction between NH4+ and acetate demand by comparing simultaneous short‐term releases of both solutes to releases of each solute individually. Acetate Vf did not change during the simultaneous release with NH4+, but NH4+Vf was significantly higher with increased acetate. Thus, labile DOC Vf was not limited by the availability of NH4+, but NH4+Vf was limited by the availability of labile DOC. In contrast, neither glycine nor NH4+Vf changed when released simultaneously indicating either that overall N‐uptake was saturated or that glycine and NH4+ uptake were controlled by different factors. 4. Our results suggest that labile DOC and DON uptake can be equivalent to, or even higher than NH4+ uptake, a solute known to be highly bioreactive, but unlike NH4+ uptake, may not differ among land‐use types and seasons. Moreover, downstream export of nitrogen may be exacerbated by limitation of NH4+ uptake by the availability of labile DOC in headwater streams from the agricultural Midwestern United States. Further research is needed to identify the factors that influence cycling of DOC and DON in streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号